
Peolsson et al. BMC Medical Imaging 2010, 10:9
http://www.biomedcentral.com/1471-2342/10/9

Open AccessR E S E A R C H  A R T I C L E
Research articleModelling human musculoskeletal functional 
movements using ultrasound imaging
Michael Peolsson†3, Tommy Löfstedt†1,2, Susanna Vogt1,2, Hans Stenlund1,2, Anton Arndt4,5 and Johan Trygg*1,2

Abstract
Background: A widespread and fundamental assumption in the health sciences is that muscle functions are related to 
a wide variety of conditions, for example pain, ischemic and neurological disorder, exercise and injury. It is therefore 
highly desirable to study musculoskeletal contributions in clinical applications such as the treatment of muscle injuries, 
post-surgery evaluations, monitoring of progressive degeneration in neuromuscular disorders, and so on.

The spatial image resolution in ultrasound systems has improved tremendously in the last few years and nowadays
provides detailed information about tissue characteristics. It is now possible to study skeletal muscles in real-time
during activity.

Methods: The ultrasound images are transformed to be congruent and are effectively compressed and stacked in 
order to be analysed with multivariate techniques. The method is applied to a relevant clinical orthopaedic research 
field, namely to describe the dynamics in the Achilles tendon and the calf during real-time movements.

Results: This study introduces a novel method to medical applications that can be used to examine ultrasound image 
sequences and to detect, visualise and quantify skeletal muscle dynamics and functions.

Conclusions: This new objective method is a powerful tool to use when visualising tissue activity and dynamics of 
musculoskeletal ultrasound registrations.

Background
Image analysis has been used for decades as a tool to
analyse different kinds of tissues. It provides a rich
resource when presenting medical and clinical informa-
tion and the plethora of techniques using images is
increasing rapidly.

Various pathologic conditions benefit from medical
imaging of soft tissues in terms of detection, progression,
remission (effects of treatment), etc. Tumours, for exam-
ple, share important similarities with skeletal muscles.
They are both inherently smooth masses with dynamic
characteristics. In the tumour case, a change in the tis-
sue's dynamic quality is an important indicator of diag-
nostic evaluations and is therefore of great clinical value.
For instance, decreased tissue dynamics in a muscle can,
in the musculoskeletal case, be an indication of inflam-
mation [1] or ischemia [2]. Muscle function can also be

related to a wide variety of conditions, for example pain,
ischemic and neurological disorders, exercise and injury.
There is thus an urging need for imaging tools that can be
used to study the dynamics of skeletal muscles, and espe-
cially to do so in real-time.

The quality of ultrasound imaging has evolved quickly
and is today capable of producing high spatial resolution
image sequences with a high frame rate. This makes
ultrasound imaging suitable for analysis of both struc-
tural and functional aspects of muscles. Examples include
tendon injuries in sports medicine [3] and inflammation
processes [4,5].

Speckle tracking is a technique that can be applied to
ultrasound sequences. Speckle tracking relies on the scat-
tered echoes that arise from inhomogeneities in the tis-
sues. Speckle tracking provides studying tissue motions
in real-time by following a specific pattern frame-by-
frame in a sequence of images [6]. The speckle tracking
can be described in terms of e.g. displacement maps [7-
11]. Our studies here are focused mainly on transverse
displacements, but are performing 2D measurement; a
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recent study has shown that measurements of 2D dis-
placements can be accurately performed [12]. Skeletal
muscle dynamics and muscle fatigue have also been stud-
ied by using speckle tracking [13,14].

The aim of our study is to develop a complementary
method that can be used separately for analysis of skeletal
muscles, or used together with current and established
methods—such as speckle tracking—to improve model
precision. The method that we present here is based on
two parts: the discrete wavelet transform and multivari-
ate data analysis. The wavelet transform is able to extract
position, size and shape information that is present in
greyscale B-scan ultrasound image sequences of muscle
tissues movements. Not only are single pixel intensities
considered, but regions of pixel intensities are considered
and extracted as a whole. Secondly, multivariate analysis
is applied to the wavelet transformed images in order to
get a global model of the captured events. Multivariate
analysis allows a multitude of different tools to be used on
the data, e.g. comparisons, cluster analysis, discrimina-
tion analysis, etc; and helps to detect, visualise and quan-
tify the skeletal muscle dynamics and functionality.
Multivariate methods can also analyse speckle tracking
data, as we will demonstrate in the given examples.

The intensity value changes within an image represent
movements directly observable (the effect of noise is
heavily reduced by using the MACI method) and which
can for example, in the speckle tracking case, be directly
and actively followed, "observed", around within an image
in an image sequence. Using the discrete wavelet trans-
form means instead that these intensity value changes,
which represent actual muscle tissue movements, are
indirectly and passively observed as they pass by the
"observer" (the variable, the wavelet coefficient), meaning
a particular muscle tissue movement is not represented
by any single variable, but by a multitude of variables
simultaneously and together describing a particular phe-
nomenon within the sequence.

The MACI method is applied to describe the dynamics
in the Achilles tendon and the calf during real-time heel
raise movements. It will be argued that this technique is a
valuable tool to use when studying and visualising muscle
tissue dynamics.

The strategic significance of a method like MACI is
very high since it could be applied to muscle rehabilita-
tion programmes (including sports medicine), neurologi-
cal disorders (e.g. whiplash and fibromyalgia) and pain
related conditions (e.g. back pain).

Modelling tissue dynamics
The basis for image analysis is that an M × N two-dimen-
sional digital intensity image can be seen as a function,
I(x, y), with an intensity value for every point, (x, y), of the
image [15].

When several such 2D images are stacked upon each
other, like in an ultrasound image sequence, a multivari-
ate image space occurs. In such a multivariate image
space, each location is represented by a multitude of val-
ues and a massive amount of highly correlated data is the
result. Different unfolding procedures can then be used
in order to analyse these 3D data structures [16-18].

The feature extraction procedure used here is based on
the discrete 2D wavelet transform (2D-DWT). The 2D-
DWT is beneficial to use here since when using it to
transform and compress large sets of images, the impor-
tant position, size and shape information in the images is
not lost. The images are compressed by choosing the
wavelet coefficients that hold the most information about
the ultrasound sequence. This is done by measuring the
variance of each coefficient. The selected wavelet coeffi-
cients are then put in a regular two-way data table where
each row represents an image and each column contains
the wavelet coefficients for that image. Principal compo-
nent analysis (PCA) is then used to analyse the two-way
data table of wavelet coefficients.

In the examples below, movements in the Achilles ten-
don and the calf were analysed by multivariate analysis of
congruent images (MACI). The results were then com-
pared to an analysis of the same movements in the corre-
sponding areas using state of the art speckle tracking.
Specifically, the absolute transversal displacement was
measured using speckle tracking and the results were
compared to the results of the MACI method. Also, a grid
of square speckle tracking ROIs was placed equidistantly
in the whole image plane in the third example and a PCA
of the resulting tracks was made. The purpose of using
these speckle tracking measures was to show that the
MACI technique indeed does capture the actual move-
ments in the sequence.

The investigated types of movements are: standardised
passive movement, standardised active movement and
functional movement.

Methods
The MACI method was used in the example cases below
to extract information from ultrasound image sequences.
The resulting two-way data table was examined with
PCA and the movements verified by speckle tracking.
This section explains speckle tracking, PCA and the con-
cept of MACI.

Speckle tracking
The acoustic patterns in an ultrasound signal change
when the muscle being scanned moves. These acoustic
markers, or speckle patterns, remain relatively stable over
time and can therefore be followed frame-by-frame in a
sequence of images [19]. A commercial software package
(EchoPac, GE Healthcare, Horten, Norway) was used
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together with the ultrasonic system Vivid 7 (GE Health-
care, Horten, Norway) in all case examples in this study.
An in-house developed speckle tracking software was
also used in the third example.

The first step in speckle tracking is to specify a rectan-
gular region of interest (ROI) in a particular frame. The
method finds the corresponding region in the next frame
that is most similar to the selected region, by some crite-
rion. The objective is thus to find the values of Δx and Δy
that minimise

Where I is the image intensity, x and y are the pixel
coordinates at time, or frame, t and w is a weighting func-
tion, which can be 1 in the simplest case.

The speckles are not always followed correctly when
there are rapid alterations in the tissue, when there are
large deformations in the tissue or when there are out of
plane motions present. However, current research indi-
cates that speckle tracking indeed is well suited for skele-
tal muscle investigations [20,21].

The speckle tracking algorithm used in the in-house
developed speckle tracking software is the Lucas-Kanade
optical flow method [22] using pyramids [23] (hierarchi-
cal version) as implemented in the open source computer
vision library (OpenCV) version 1.1 http://opencv.wil-
lowgarage.com/wiki/.

Some more information regarding greyscale B-scan
ultrasound and speckle tracking is given in the supple-
mental material in Additional file 1.

Principal component analysis
Principal component analysis (PCA) is commonly used to
identify patterns in multi- and megavariate data sets [24].

PCA is one of the cornerstones of multivariate data
analysis. It is used to extract systematic variation in a
dataset by projecting the data to a lower-dimensional
space in which they are more easily analysed. PCA
achieves this by finding the best least squares approxi-
mating hyperplane in this lower-dimensional space.

PCA can be computed by iterative methods, such as
nonlinear iterative partial least squares (NIPALS), or for
example by eigenvalue decomposition. When PCA is
done, three matrices will constitute the result and they
are related by

where k is the number of latent variables, T contains
the scores, P contains the loadings and E is a matrix of
residuals. X is the matrix of data being analysed.

The scores give information about the relation between
the observations, for example the variation between the
frames of an ultrasound sequence. Plotting score vectors
against each other results in a score plot that gives infor-
mation about trends, clusters and outliers in the data.

The loadings are seen as a measure of the importance
of the variables. The loadings can be used to reconstruct
the ultrasound sequence, resulting in a loading image.
This image gives information about what parts of the
frames are important for describing the movement.

PCA was performed using SIMCA-P+ 11.5 (Umetrics,
Umeå, Sweden).

Multivariate analysis of congruent images
Multivariate analysis of congruent images (MACI) is used
to find and express patterns over multivariate image
spaces for the purpose of classification of, or finding rela-
tionships between, the images [25]. The main goals of
multivariate image analysis are: firstly, to compress the
highly correlated data into terms of a few linear combina-
tions of the intensity values; and secondly, to preserve the
spatial information in the images.

By congruent is meant a set of images that are properly
pre-processed, i.e. transformed, so that each image ele-
ment corresponds to the same element across all images.
When the images are not fully congruent initially, as they
seldom are, they are made so by some means. In this case
the discrete 2D wavelet transform (2D-DWT) of the
images was used to make them congruent. The 2D-DWT
was used to extract spatial (position) and frequency
(shape and size) based features from the images. The
wavelet basis Symlet 8 was used in the transforms.

The wavelet coefficients for each image are put into the
rows of an ordinary two-way data table on which conven-
tional multivariate methods, such as PCA, can be used to
extract the information. In such methods, each variable
must describe the same phenomenon for each observa-
tion; this is solved by using the congruent wavelet coeffi-
cients.

The development of the wavelet texture analysis-based
methods have, in recent years, opened the door to this
new field of multivariate data analysis [26].

To summarise the principles of MACI, an overview of
transforming B-scan ultrasound images to a PCA score
plot by using the 2D-DWT is presented in Figure 1.

Experimental setup
Three case examples will be described in this manuscript,
and they will be used to illustrate the usefulness of our
method. The first example is of a standardised passive
ankle movement; the second of a standardised active
ankle movement; and the third of a functional ankle
movement. The reason for these choices of case examples
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is that treatment and rehabilitation of patients with rup-
tured Achilles tendon surgery covers the described cho-
sen movement types in the post-surgery rehabilitation
phase.

The movement examined in the examples is dorsal-
plantar flexion. The reason for this choice of movement is
that it can be standardised by using an isokinetic dyna-
mometer (Isomed 2000, D&R Ferstl GmbH, Henau, Ger-
many). The isokinetic dynamometer controlled the
muscular activity (EMG and force) and the range of
motion (ROM) of the ankle. The EMG and dynamometer
could, for instance, confirm that there was no active mus-
cle contribution present in the passive ankle movement.

The passive dynamic and active isometric movements
were performed using the isokinetic dynamometer, with
the subject laying face down with the ankle fixated onto
the dynamometer platform. The functional movement
was performed with the subject in a standing position,
holding a hand towards the wall in order to balance the
body. Two heel raises were performed from this position
using one leg at the time.

When capturing the ultrasound loops, the ultrasound
system (Vivid 7, GE Healthcare, Horten, Norway) was
used together with a linear 12 MHz ultrasound probe.
The probe was hand-held and placed in a longitudinal
direction over the posterior portion of the Achilles ten-
don, 3 cm cranially from the lateral malleolus. The ana-
tomic regions that were captured are seen in Figure 2.
Movements were captured at 78.6 FPS with a resulting
time resolution of approximately 13 ms between frames;
the lateral resolution was 0.5 mm.

A commercial speckle tracking post-process software
package from GE Medical (Echopac, GE Healthcare,
Horten, Norway) was applied to the ultrasound loops in
order to provide a reference analysis of the different
phases of the ankle movements. An ROI was specified in
a vertical position in the tendon, 2 cm proximal to the
malleolus. The ROI was specified in the first frame and

the speckle tracking method was applied in order to cap-
ture the tendon movements in the following frames in a
frame-by-frame approach. The ROI was seen to move in
accordance with the tissue during the movements. The
absolute transversal displacement of the movements was
measured, the distance (mm) that each segment of the
ROI moved. Information regarding how to interpret the
speckle tracking displacement plots is given in the sup-
plemental material, in Additional file 1.

Rectangular ROIs were also specified equidistantly in a
100 × 100 grid over the entire image plane in the third
example. This was done using an in-house developed
speckle tracking software. The reason for this is to pro-
vide a more similar reference to the whole-image analysis
that the MACI method performs on the image sequence
in the third example.

EMG was used in the active foot ankle movement to
confirm baseline rest (not shown).

Figure 1 The schematic principle of MACI. The principle of transforming an ultrasound image sequence (a) to PCA (c) by means of the wavelet 
transform (b). A multivariate image space, an ultrasound loop—a series of images. (b) The congruent images are put as the rows of an ordinary two-
way data table. This means that each row corresponds to a point, or frame, in time. The columns contain wavelet coefficients. (c) A two-component 
PCA score plot of the table of wavelet coefficients, i.e. the second score vector, t2, plotted against the first score vector, t1.

Figure 2 An ultrasound image. The anatomic regions in the area 
around the Achilles tendon are explained by this example ultrasound 
image. All ultrasound images that occur in this article are captured at 
about the same anatomic region and are similar to this image. Case Ex-
ample 1 and Case Example 2 are using a subset of such an image, cov-
ering only the Achilles tendon. Case Example 3 exploits the full image.
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Case study 1: Passive foot ankle movement
The objective here was to analyse the tissue response dur-
ing a non-active dorsal-plantar flexion movement. This
movement is the first type of movement in the clinical
rehabilitation phase.

The dorsal-plantar flexions were provided by fixating
the foot onto a platform that was connected to an isoki-
netic dynamometer. The ankle angle was varied at a con-
stant speed of 30 degrees per second between 20 degrees
of dorsal flexion and 20 degrees of plantar flexion, form-
ing the range of motion (ROM).

A second objective was to study the repeatability of the
method when repeating the dorsal-plantar flexions;
therefore two subsequent ROMs were performed.

A 5 × 10 mm speckle tracking ROI was placed in the
first frame in the centre of the image field across the
Achilles tendon, as seen in Figure 3(a).
Case study 2: Active foot ankle movement
The objective in this case was to analyse a movement
where the subject activates the calf muscles voluntarily.
In order to do so, a standardised active muscle contrac-
tion was performed. The reason for this choice was that
voluntary muscle activation is the second phase in the
rehabilitation program after surgery. In this case, the sub-
ject was asked to perform a maximum plantar flexion
towards the dynamometer platform (maximum voluntary
contraction, MVC). The foot angle in this test was set to 0
degrees.

A 5×10 mm speckle tracking ROI was placed in the first
frame in the centre of the image field across the Achilles
tendon, as seen in Figure 4(a).
Case study 3: functional movement
The third type of ankle movement studied was a func-
tional movement, in which the ankle was not fixated onto
an isokinetic apparatus. The reason for this choice was
that functional movements are central in clinical rehabili-
tation programs in order to regain functionality and
smoothness in movements and to prevent secondary

lesions. Stabilisation training, by way of balancing,
strength training and relearning to use injured muscle
structures, is important in rehabilitation.

In this example, the subject performed three subse-
quent 30 degrees heel raises (plantar flexions) in a stand-
ing position. The reason for the choice of three
repetitions was to see if it was possible to get an indica-
tion of the methodological repeatability when analysing
the ultrasound images using the two image analysis tech-
niques.

A 5×40 mm speckle tracking ROI was placed in the first
frame in the centre of the image field across the whole
field, as seen in Figure 5(a).

A speckle tracking measurement of the pennation angle
in the Soleus muscle during the movement was per-
formed in order to provide a measurement of the muscle
deformation. The pennation angle was measured as the
angle of fascicular insertion into the deep fascia of the
Achilles tendon. The pennation angles were measured
using the in-house developed software and each measure
was found as the angle between three points. The penna-
tion angle measurements were confirmed using visual
confirmation [27,28].

Ethical consideration
All experiments were performed on one of the authors of
this manuscript. A copy of the written consent of this
author for the publication of this case report and any
accompanying images is available for review by the Edi-
tor-in-Chief of this journal.

Results
Case study 1: Passive foot ankle movement
The output from the commercial ultrasound software is
shown in Figure 3(a). The original greyscale loop is pre-
sented in the upper left part of the image and an ROI is
specified vertically within the Achilles tendon. The right
part of this and subsequent such images presents the dis-

Figure 3 The results of case example 1. The ultrasound loop is modelled using the speckle tracking method (a) and the MACI method (b) and (c). 
Figure (a) illustrates the transversal displacement in the Achilles tendon of two subsequent passive dorsal flexion movements, Figure (b) illustrates the 
corresponding result of the same movement as a two-component PCA score plot (the second score vector, t2, against the first score vector, t1) and 
Figure (c) presents the result as distance to model (DModX) plotted against the frame number. Each turning point of the reference movement (a) is 
found in the corresponding frames at turning points in the PCA score plot (b) and as the best fitting observations in the DModX plot (c).
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placement as a function of time for each of the coloured
segments of the ROI.

Figure 3(a) presents the speckle tracking result from the
tissue movements during two subsequent dorsal flexions.
The turning phases of the dorsal and plantar movements
are clearly visible.

In Figure 3(b) and Figure 3(c) the MACI result is pre-
sented for a sub image covering the Achilles tendon of the
same image sequence as in Figure 3(a). PCA was per-
formed on the wavelet compressed images and the result
is presented as a score plot and as a distance to model
plot, DModX—which is equal to the residual standard
deviation [29]. The score plot for this MACI model is pre-

sented in Figure 3(b) and the DModX plot in Figure 3(c).
The movement phases are highlighted in Figure 3(a) and
the corresponding ones in Figure 3(b) and Figure 3(c).

The score plot in Figure 3(b) shows the relationship
between the frames of the loop. The score plot shows that
each movement starts and ends near to the origin. The
first principal component separates the plantar flexions
from the dorsal flexions and the second principal compo-
nent indicates a difference between the two dorsal flex-
ions. The difference between the dorsal flexions is
probably due to a slightly unrelaxed muscle in these
phases of the movement. The turning phases are easily

Figure 4 The results of case example 2. (a) The plantar flexion movement starts at rest and enters the active concentric phase, which is transformed 
into a stationary phase, the active static contraction phase, and ends with the active eccentric phase, returning to rest. The last phase is missing in the 
figure because of a time limitation in the commercial ultrasound software. The eccentric phase is, however, confirmed if the contraction phase is 
cropped and only the stationary and eccentric phases are examined, or equivalently if the in-house developed speckle tracking software is used. The 
PCA score plot (b), where the second score vector, t2, is plotted against the first score vector, t1, shows that the start and end zones of the movement 
are located in the same area of the plot, implying a relaxed muscle before and after the MVC.

Figure 5 The results of case example 3. The similarity of three subsequent heel raises has been analysed. The three repetitions are clearly seen in 
(a), where they are presented as absolute transversal displacements. A PCA score plot, with the second score vector, t2, plotted against the first score 
vector, t1, is presented in (b). The speckle tracking results of (a) are found as end or turning points of the trajectories in the PCA score plot (b).
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identified since the observations, the frames, change
direction in the score plot.

The DModX plot, Figure 3(c), shows how well different
frames were modelled by PCA. Each movement phase
and turning zone that was identified in the speckle track-
ing result can also be identified and correlated in the
DModX plot, by simply comparing the frame numbers;
the identified frame numbers are found in Table 1. From
the DModX plot it is apparent that the model mainly
focused on explaining the turning phases—the phases
with highest variability—since they have the lowest dis-
tance to the model.

Overall, the sequence was modelled well—the two
score vectors, created from an initial set of 3000 variables,
account for 13% of all variation in the compressed
sequence and the observations are within the 5% level in
DModX—and all movement phases can be identified and
correlated. Similar movement pattern appears in the two
subsequent repetitions, both when using speckle tracking
and when using the MACI method.

The Euclidean distance between adjacent pairs of
images in the PCA score plot in Figure 3(b) reveals

important information. Images in the start and end zones
and in the turning phase areas are tethered, implying that
they are similar. Between the start and end zones and the
turning phase areas there are larger distances between
the images, implying greater differences. Thus, larger dif-
ferences are seen where the muscle tissue is either com-
pressed or stretched.

Case study 2: Active foot ankle movement
Figure 4(a) presents the speckle tracking reference analy-
sis result of the movement, the displacement as a func-
tion of time for each of the coloured segments of the ROI.
The first two phases—active concentric phase (isokinetic
phase), active static contraction (isometric phase)—are
clearly visible in the displacement plot. The last phase,
the active eccentric phase (isokinetic phase), cannot be
plotted together with the two first phases because of a
time limitation in the commercial ultrasound software,
but the displacement plot does return close to the base-
line after the last phase of the movement. This is con-
firmed if the contraction phase is cropped and only the

Table 1: Critical points in the case example movements

Critical Point Speckle Tracking MACI

Example 1 Turn, dorsal flexion 1: 56 (700) 57 (712)

Turn, plantar flexion 1: 153 (1934) 152 (1921)

Turn, dorsal flexion 2: 246 (3117) 246 (3117)

Turn, plantar flexion 2: 346 (4389) 345 (4377)

Example 2 Concentric phase: 1-156 (0-1972) 1-164 (0-2074)

Static contraction phase: 157-338 (1985-4288) 165-329 (2087-4173)

Eccentric phase: 339-439 (4300-5573) 330-470 (4186-5967)

Example 3 Turn, repetition 1: 49 (611) 49 (611)

Turn, repetition 2: 178 (2252) 184 (2328)

Turn, repetition 3: 309 (3919) 312 (3957)

This table provides a means for comparing the time of change of each movement, and each movement phase, for each method. The time of 
changes was found from the results in Figure 3, Figure 4 and Figure 5.
The frames at which the dorsal and plantar flexions are peaking are presented for Case Example 1. The duration of the movement phases are 
presented for Case Example 2. The frames at which the plantar flexions are peaking are presented for Case Example 3. The corresponding 
times in milliseconds are also stated within parentheses. All numbers are approximates and were found from the end of the range of motion 
for Example 1 and Example 3, and the beginning and the end of the MVC for Example 2.
By comparing the columns of the two methods, it is seen that both methods give very similar results.
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stationary and eccentric phases are examined, or if the in-
house developed speckle tracking software is used.

The MACI result of this case study is presented as a
PCA score plot in Figure 4(b). The MACI method was
applied to a sub image of the same sequence, a sub image
covering the Achilles tendon, just like in the previous case
example. All three phases can be identified in the score
plot and correlated to the displacement result from
speckle tracking, as is also seen in Table 1. This PCA
model managed to model the movement very well; the
two score vectors, created from an initial set of 3000 vari-
ables, that was presented here account for 28% of all vari-
ation in the compressed sequence.

The differences in the Euclidian distances between the
phases in Figure 4(b) indicate a difference between two
kinds of contractions: dynamic isokinetic and static iso-
metric, respectively. In the isometric MVC phase, in the
second PCA component direction, it can be seen that
clusters of images are separated by images farther apart.
Hence, the tissue portrayed in these images both contains
images showing hardly any variation (the clusters) and
images that are separated by some distance, which sug-
gests dynamic contributions in the tissue in the isometric
phase as well. This is a likely result because of the diffi-
culty of maintaining a constant force during the MVC,
and MACI thus actually confirms research already made
by for example [30]. The distances between the images
are larger in the dynamic isokinetic phases, implying
more variation, which indicates more dynamics in the tis-
sue during these phases.

Case study 3: Functional movement
The results of the functional movement analysis are pre-
sented in Figure 5. In this case, the speckle tracking ROI
was placed in the vertical direction crossing all tissue lay-
ers present in the image, instead of just within the Achil-
les tendon as in the two previous case examples. The

right part of Figure 5(a) shows clearly a rhythmic pattern
when studying direction, magnitude and internal rela-
tionships between investigated segments in the calf.

A rhythmic pattern can also be seen in the PCA score
plot in Figure 5(b) for the three sequential movements.
All repetitions start in the right part of the score plot and
move to the left, they turn and return to the right, close to
the start area. The start zone, plantar flexion, turning
zone, dorsal flexion and end zones can all be identified
and correlated to the movements identified by the
speckle tracking method. This can be seen in Figure 5(b)
and in Table 1.

The first PCA component in Figure 5(b) separates the
plantar flexions from the dorsal flexions. The second
component describes inter-repetition variation and the
isokinetic turning phase of the plantar flexions—we will
return to this in a moment. Thus, the MACI method pro-
vides information about both progression characteristics
and different phases of the movements as well as infor-
mation about variations between the three repetitions. It
is worth noting that each component carries unique
information about the movements and could thus be
investigated further.

A comparison of the three repetitions reveals a strong
resemblance between them. The PCA scores correspond-
ing to the first and the second repetition have a correla-
tion of 0.64, the first and the third repetition a correlation
of 0.72 and the second and third repetition have a correla-
tion of 0.90. The first repetition has a slightly shorter
duration than the other two, giving rise to the lower cor-
relation with them.

The second and somewhat different speckle tracking
analysis that was made for this case example was per-
formed in order to show that the MACI method indeed
does find the same movement phases that are found using
speckle tracking. A grid of equidistantly spaced ROIs was

Figure 6 A whole-image speckle tracking example. A rectangular grid of equidistantly placed ROIs was specified over the whole image plane, as 
seen in (a). There is a 12 × 12 grid in (a) for clarity, but in the analysis a 100 × 100 grid was used. (b) illustrates a frame at a later point in time; it is clear 
that the ROIs have repositioned due to the tissue movements. The red ROIs in (a) and (b) are positions that were tracked badly, in this case they went 
outside of the right border of the image. The PCA score plot in (c) is found from the two-way matrix created by putting the coordinates of the ROIs as 
variables in the columns and the time (the frames) in the rows. Note the close resemblance to Figure 5(b).
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specified within the whole image plane, as suggested by
Figure 6(a). The ROIs track the underlying tissue over
time, see Figure 6(b), and a PCA was performed on the
tracked coordinates; the result is presented in Figure 6(c).

It is clear that Figure 6(c) is very similar to Figure 5(b);
the two methods have thus captured the same properties
of the movements. The first score vector for the three
repetitions have almost the same correlation between the
repetitions as the MACI method had. However, for the
second component, one can see that the start and the end
zones of each repetition are much farther apart when
using the speckle tracking method than when using the
MACI method; something that it is reasonable to believe
that they shouldn't be. The reason for this could be due to
drift in the speckle tracking, or that the MACI method is
better at capturing the isokinetic movement phase found
in the second component in the left part of Figure 5(b),
before and after the plantar flexion turn.

The movement being performed contains three ele-
ments, or phases, present in all three repetitions: the first
is a concentric activation of the Soleus muscle in the
plantar flexion in which the area in the images of the
Soleus muscle increases (the muscle fibres are con-
tracted). The second phase is an isometric phase contain-
ing the movement's turns, in which the area in the images
of the Soleus muscle is almost constant. The last phase is
an eccentric activation of Soleus in the dorsal flexion
phase, returning to rest, in which the area in the images
of the Soleus muscle decreases again when the muscle
fibres are elongating. The pennation angle was measured
as the angle between three points, as suggested by Figure
7(a), in order to provide a measurement of the muscle
deformation. A representative speckle tracking measure-
ment of the pennation angle in the Soleus muscle during
the movement is presented in Figure 7(b) and Figure 7(c),
together with the first and second PCA score vectors.

The frames at which the isometric phase begins and
ends are visible in the pennation angle plot, Figure 7(b)
and Figure 7(c), as frames at which the angle derivative is
slightly smaller. The start and end frames of the isometric
phase have been marked in Figure 7(b) and Figure 7(c) for
the three repetitions. When the pennation angle is plot-
ted together with the first and second principal compo-
nent it is clear that the concentric and eccentric
contraction phases are mainly caught by the first compo-
nent and that the isokinetic phases are mainly caught by
the second component. This is particularly apparent in
the combined two-component score plot in Figure 5(b),
where the isokinetic phase corresponds to the left-most,
upwards-downwards moving phases of the score trajec-
tory.

Discussion
Ultrasound images of muscles and tendons captured in
real-time during activity carry information about tissue
movements and deformations in several different parts of
the image. Since different muscles cooperate when per-
forming different movements, changes within the images
are usually not independent, but are coordinated
together. The MACI method exploits these dependent
coordination patterns naturally, and uses the whole array
of stacked images when extracting its information. It was
confirmed by speckle tracking that the MACI method
can accurately identify the movement patterns that are
present in ultrasound sequences, which is encouraging.

The MACI method can in fact also be used to find
regions of interest, and not only using them. This is done
by utilising the loading vectors, and reconstructing what
we call loading images [25]. Such images give information
of what areas where important for building for example a
PCA model, and can thus be used to see which areas are
active in different phases of a movement. However, this

Figure 7 A muscle deformation example. The pennation angle in the Soleus muscle was measured over time by using speckle tracking, as illustrat-
ed in (a). A representative pennation angle measurement is plotted together with the (negated) first PCA score vector in (b). Note how similar the 
score vector and the pennation angle are; this means that the muscle deformation that is measured as pennation angle changes in the image se-
quence is also captured by the first score vector. The second score vector is plotted together with the representative pennation angle in (c). It can be 
seen that the isometric phase of the movements begins and ends when there are swift changes in the second score vector and only small changes 
in the first score vector. The isometric phase is thus mainly captured by the second score vector.
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methodology has not yet been properly developed to be
used in muscle tissue application. This is some of the
future work that will be performed in order to improve
the MACI method.

The MACI approach also allows comparative studies to
be made between patients. Different groups of patients,
for example healthy and control, could be modelled indi-
vidually or together and compared for similarities and
differences. That has not been done in this study, how-
ever, but is one of the aims of our future studies.

The MACI method examines image sequences induc-
tively, without being told what to look for. Instead, a data
driven method extracts the information that is the most
important for describing a particular sequence. It is thus
not the analyst who decides what parts of the image con-
tribute the most information, but the method that does
so. This unbiased data exploration approach therefore
has great potential in clinical situations.

Conclusions
The MACI method was able to correctly capture each
passive reference movement and to describe the different
phases of the ROM. It also captured the tissue dynamics
during the different phases, partly in terms of the direc-
tions of the frames in the score plot, and partly in terms
of distance relationships between images during the vari-
ous movement phases. Also, both standardised and func-
tional movements could be analysed with the MACI
method.

To conclude, all sequences were modelled well with the
MACI method and the different phases of the move-
ments (turning phases, dorsal and plantar flexions) could
all be identified and correlated in the three types of ankle
movements. The same kind of pattern also arose when
repeated flexions were compared; the repeatability pro-
vided by the MACI method is thus very encouraging.

Applying multivariate techniques based on whole
image sequences is thus a powerful way to study varia-
tions and relationships between images in an ultrasound
image sequence.

We argue that a multitude of applications are possible.
The functionality of healthy muscles, injured muscles or
training could be a focus. But also neuro-motor related
diseases, such as multiple sclerosis, could be a possible
area of application. Future studies will be made that will
give more insight into what application areas are possible.
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