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Abstract

Background: Computational analysis of tissue structure reveals sub-visual differences in tissue functional states by
extracting quantitative signature features that establish a diagnostic profile. Incomplete and/or inaccurate profiles
contribute to misdiagnosis.

Methods: In order to create more complete tissue structure profiles, we adapted our cell-graph method for
extracting quantitative features from histopathology images to now capture temporospatial traits of three-
dimensional collagen hydrogel cell cultures. Cell-graphs were proposed to characterize the spatial organization
between the cells in tissues by exploiting graph theory wherein the nuclei of the cells constitute the nodes and
the approximate adjacency of cells are represented with edges. We chose 11 different cell types representing
non-tumorigenic, pre-cancerous, and malignant states from multiple tissue origins.

Results: We built cell-graphs from the cellular hydrogel images and computed a large set of features describing
the structural characteristics captured by the graphs over time. Using three-mode tensor analysis, we identified the
five most significant features (metrics) that capture the compactness, clustering, and spatial uniformity of the 3D
architectural changes for each cell type throughout the time course. Importantly, four of these metrics are also the
discriminative features for our histopathology data from our previous studies.

Conclusions: Together, these descriptive metrics provide rigorous quantitative representations of image
information that other image analysis methods do not. Examining the changes in these five metrics allowed us to
easily discriminate between all 11 cell types, whereas differences from visual examination of the images are not as
apparent. These results demonstrate that application of the cell-graph technique to 3D image data yields
discriminative metrics that have the potential to improve the accuracy of image-based tissue profiles, and thus
improve the detection and diagnosis of disease.

Background
Errors in the structural organization and function of
tissues are a major cause of many devastating human
diseases, including cancer. Currently, clinicians use diag-
nostic profiles to distinguish between varying degrees of
tissue health and disease. These profiles typically contain
a combination of quantitative (e.g., expression of mole-
cular markers, epidemiology) and qualitative (e.g.,

image-based assessment) data. The primary means of
diagnosing most cancers is histopathological examina-
tion of a biopsy, and the resulting diagnostic profile
serves as the “gold standard” in almost all cases. This
examination focuses on the following traits [1]:
1. Nuclear atypia: The morphological atypicality of a

cell (such as polymorphism, multinucleated cells, and
gigantic cells) often but not always implies cancer.
2. Cytoplasmic changes: Higher values of the ratio of

the surface area of the nucleus to that of the cytoplasm
may imply cancer.
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3. presence of other changes such as increased vascu-
larity and necrosis.
4. Cellularity: An increase in the number/density of

cells within a tissue may indicate proliferation of a can-
cer, or simply an increase in inflammatory processes.
5. Cell distribution: The location and organization of

cells relative to each other is used to identify cancer.
For example, cancerous brain tissues have more ran-
domly distributed cells, whereas areas of inflammation
have more evenly distributed cells. The diagnostic pro-
file for prostate cancer includes digital rectal examina-
tion, expression levels of prostate serum antigen (PSA),
and numerous image-based approaches (e.g., magnetic
resonance imaging, ultrasound, CT scan, conventional
biopsy/Gleason score) (reviewed in [2]). Both the inci-
dence and mortality of prostate cancer have declined in
the US and UK since the addition of PSA levels to this
profile, yet the diagnostic value of the PSA test is still
debated [3]. Many other molecular markers for prostate
cancer are now appearing in the literature [4], though
the functional roles of many are unknown. A similar
situation exists for diagnosing breast cancers, such that
the rate of misdiagnosis varies widely between clinicians
and is nearly 40% in some cases [5].
Much of the classification errors in diagnosing solid

tumors stems from incomplete tumor profiles, i.e. under-
standing the relationship between the functional state of
a tissue and its structural organization. For example, the
imaging methods used to grade the severity of solid
tumors rely largely on the observations of the pathologist
and qualitative metrics such as the thickness of an
epithelial cell layer, atypical cell morphology, and relative
uptake of contrast agents [6]. Even expression of most
molecular markers is measured qualitatively, e.g., by the
degree of staining with an antibody [7]. While these
methods can enrich diagnostic profiles, they largely fail
to address the underlying structural malfunctions that
form the basis for the disease. Development of quantita-
tive tools for image analysis and predictive modeling is
thus a rapidly expanding field, showing great promise for
improving diagnostic accuracy [6,8,9].
We recently developed a graph theoretical-based

method, called cell-graphs, for capturing structural char-
acteristics of histopathological images that enabled dis-
tinguishing healthy, damaged, and cancerous states of
brain, breast, and bone tissues [10-12]. Our earlier stu-
dies relied on modeling functional state via the spatial
organization of cell nuclei within standard histological
biopsy images, and achieved accuracy equivalent to cur-
rent diagnostic standards. For example, despite the
visual resemblance between damaged and diseased brain
tissues (both display a high cell density), the features
extracted from the cell-graphs were able to distinguish
between them with greater than 95% accuracy[10].

Cell-graphs are generalizations of Delaunay Triangula-
tions that were previously used to model the spatial dis-
tribution of cells in a tissue by encoding a pair-wise
relationship between two vertices [13]. In a cell-graph,
nodes (or vertices) represent the cell nuclei and pairs of
nodes are connected by a link (or edge) based the che-
mical, physical or spatial, biological relationship between
them. Distance-based construction of edges was most
commonly used in previous studies [10-12,14-17]. Appli-
cation of graph theory to these cell-graphs provides a
rich set of computational metrics that represent the
structural characteristics of the underlying tissue sam-
ples. Utilization of machine learning techniques then
allows us to classify different functional states of tissues.
We elected to use graph theory-based methods because
they have an impressive record of modeling complex
relationships in numerous contexts. Real-world graphs
of varying types and scales have been extensively investi-
gated [18] in technological [19-21], social [22-28] and
biological systems [29-31]. In spite of their different
domains, such self-organizing structures unexpectedly
exhibit common classes of descriptive spatial (topologi-
cal) features [17,18,21,23,32]. These features are quanti-
fied by definition of computable metrics.
The major novelties of this study include: 1) cell-graph

analysis of three-dimensional tempero-spatial tissue sam-
ples with various origins and functional states, 2) differ-
entiation between the tissue samples based on unique
structural formations relative to functional state, 3)
exploitation of multi-way analysis to identify the most
influential signatures that capture most of the variation
in the data, and 4) establishing a correspondence between
cell-graph features for in-vitro and in-vivo histology sam-
ples. The previous cell-graph work was confined to two-
dimensional histology samples stained with haematoxylin
and eosin. In this study we expanded our analysis to tem-
poral analysis of 3D hydrogel models of the three most
common types of tissues that develop solid tumors
(epithelial, connective, and neural), to explore additional
temporospatial information currently inaccessible in con-
ventional histology samples. 2D and 3D cell culture mod-
els form the foundation for virtually all drug screening
regimens and remain valid in vitro representations of
human tissues[33]. Furthermore, 3D cell culture is widely
used in the fields of biology and medicine to study the
organization of cells in native extracellular matrix (ECM)
constructs [34-36]. Likewise, cell lines with varying mole-
cular mechanisms and protein characteristics are often
used to represent a range of functional health states.
Although there are limitations to in vitro studies, the cell
lines used in this study represent a range of tissue types
allowing us to directly compare the structural profiles of
various functional states through analysis of cell-graph
metrics. The resulting sets of cell-graph metrics that

McKeen-Polizzotti et al. BMC Medical Imaging 2011, 11:11
http://www.biomedcentral.com/1471-2342/11/11

Page 2 of 14



evolved over time yielded a distinct profile for each cell/
tissue type, and thus have potential to identify structure-
function relationship changes in a three-dimensional cell
culture system. The long term goal of this study is to
further understand cancer models by interpreting
changes in metrics in terms of underlying changes in
molecular mechanisms of cancer progression. To
uncover these mechanisms, it is necessary to simplify the
model in order to isolate specific cell-collagen-I
interactions.

Methods
Cell Culture Techniques
The different cell types and their respective culture con-
ditions are listed in Table 1. The functional categories
of each cell type are listed in Table 2.

Flourescence Imaging
Gels were fixed using 3% paraformaldehyde at 6 differ-
ent time points (hours): 10, 16, 24, 72, 120, 168. Each
was washed with PBS, then stained with nucleic acid
dye (sytox green). Images of cells encapsulated within
collagen-I hydrogels were captured using a Zeiss LSM
510 META confocal microscope with a 10X dry objec-
tive. Representative Z-stack images of 100 μm thickness
with 900 μm × 900 μm cross-section area were collected
for five samples of each time point.

Segmentation of Nuclei
To segment the cell nuclei, we first binarize the images.
Binarization separates the image values into foreground
and background classes. In our context, the foreground
class represents the cell nuclei, whereas the background

class represents the combination of cells and extracellu-
lar proteins. Binarization is accomplished by comparing
the image values against a threshold function. Consider-
ing the large number of images that need to be pro-
cessed, we employ Otsu’s simple but effective automatic
threshold selection algorithm[37] that determines a glo-
bal (single) threshold for the image based on the histo-
gram of image values. Each connected component in
the resulting binary image corresponds to a nucleus and
the coordinates of the centroids of these nuclei are cal-
culated to identify the coordinates of the node (vertex)
set for cell-graph generation.

Generation of Cell-Graphs
After obtaining the set of vertices in the images, we con-
struct the cell-graphs based on the pairwise nuclei dis-
tances [10-12,14-17]. We assume that a biological
relation exist between two nuclei, i.e. a link (or edge)
between two nodes is established, if the Euclidean dis-
tance between the corresponding centroids are less than
a threshold D. We tested 3 thresholds: D = 60, 75, and
90 μm. The graphs corresponding to 60 and 90 μm
turned out to be too sparse and dense, respectively.
Therefore, we decided to use 75 μm as the threshold.
Figure 1 illustrates the steps involved in extracting

cell-graph features in 3D. Figure 1a shows an example

Table 1 Cell Culture Conditions

Name Cell Type Media

MCF10A Precancerous Human Dulbecco’s Minimum Essential Media (DMEM)/F12,

Breast Epithelial 5%Horse Serum (HS), 1% Penicillin Streptomycin (PS), 20 ng/ml
Epidermal Growth Factor (EGF), .05 μg/ml Hydrocortisone, 10 μg/ml
Insulin-bovine, 100 ng/ml Cholera Toxin

AU565 Human Breast Cancer HER2+/ER- Roswell Park Memorial Institute-1640 Medium (RPMI), 10%Fetal Bovine Serum (FBS), 1%Ps

MCF7 Human Breast Cancer HER2-/ER+ Minimum Essential Media (MEM)a, 10%FBS, 1%PS, 0.01 mg/ml Insulin- bovine

MDA- MB231 Human Breast Cancer HER2+/ER2+ DMEM, 10%FBS, 1% PS

hDFB Human Dermal Fibroblasts DMEM, 10%FBS, 1%PS

NHA Normal Human Astrocytes NHA media from Lonza

U118MG Human Glioblastoma DMEM, 10% FBS, 1%PS

NHOst Normal Human Osteoblast NHOst media from Lonza

MG63 Human Osteosarcoma DMEM, 10%FBS, 1%PS

RWPE-1 Non-tumorigenic Human Prostate Keratinocyte serum free media from Gibco

DU145 Human Prostate Carcinoma DMEM, 10%FBS, 1%PS

The eleven human cell lines and the corresponding culture media used in our experiments are listed in Table 1. These cells were chosen to represent connective,
epithelial and neural tissue shown in Table 2. All cells were grown in conventional 2D cell culture flasks at 37°C in a humidified incubator containing 5% CO2.
Upon reaching 80% confluency, cells were collected by treatment with trypsin-EDTA (SAFC Biosciences), washed in phosphate buffered saline (PBS), counted with
a hemocytometer, and suspended in 1% collagen solution (1 × 106 cells/ml) to form hydrogels as described previously [14]. Gels were maintained under the
same conditions as the 2D cultures.

Table 2 Cell Line Categories

Connective Epithelial Neural

Non-
tumorigenic

NHOst,
hDFB

MCF10A, RWPE-1 NHA

Cancer MG63 AU565, MDA-MB-231, MCF7,
DU145

U118MG
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of MG63 osteosarcoma cells, one of the eleven different
types of cells representing various tissue functional
states (listed in table 1), encapsulated in a collagen-I
hydrogel at time 0. Figure 1b shows a two-dimensional
slice of stained nuclei in a confocal fluorescence Z-stack
from the hydrogel in Figure 1a. The nuclei were then
identified with the application segmentation algorithm
described earlier (Figure 1c) to establish nodes within the
graph. We applied our cell-graph algorithm to define
edges between nodes (Figure 1d) within a distance-based
threshold of 75 μm resulting in a 3D cell-graph.

Calculating Features from Cell-Graph Metrics
On each cell-graph, Gi (Vi (t),Ei(t)),where Vi(t) and Ei(t)
represents the list of vertices and nodes at time point t
and i represents the index for the cell line, we calculated
20 metrics as listed in Table 3 based on the structural
features of the graphs. We then conducted an analysis
in the following section to determine the metrics that
have the most discriminative power between the differ-
ent tissue types over time.

Three-Way Data Modeling and Analysis of Feature-Time-
Cell line Joint Relationships
The data is organized to a third-order tensor with fea-
tures, time, and cell-line modes whose dimensions are I,
J, and K, respectively. An entry Tijkin the cube corre-
sponds to the value of metric i at time point j for cell-
line k where i = 1,...,20; j = 1,..., 6; and k = 1, ..., 11. Two
common models in multi-way data analysis are Tucker3
[38-40] and Parallel Factor Analysis (PARAFAC) [41]. A
three-way tensor T Î ℝI×J×K, where ℝ denotes the set of
reel numbers, is decomposed using a (P,Q,R)-component
Tucker3 model [42] as

T−
ijk

=
∑R

r=1

∑Q

q=1

∑P

p=1
GpqrAipBjqCkr + Eijk,

where P, Q, and R indicate the number of components
extracted from the first, second and third modes (P ≤ I,
Q ≤ J, and R ≤ K, respectively, AÎℝI×P, BÎℝJ×Q, and

CÎℝK×R, and are the component matrices, GÎℝP×Q×R is
the core tensor, and EÎℝI×J×K represents the error term.
Parallel Factor Analysis (PARAFAC) [41] or Canonical

Decomposition (CANDECOMP)[43] represents a tensor
by the linear combination of rank-one tensors. An
R-component PARAFAC model on a third-order tensor
TÎℝI×J×K is given by

Tijk =
R∑

r=1

ar ◦ br ◦ cr + Eijk

where ar, br, and cr are the rth columns of the compo-
nent matrices AÎℝI×R, BÎℝJ×R, and CÎℝK×R, respec-
tively, EÎℝI×J×K is the error term, and ◦ denotes the
vector outer product.
Prior to the model fitting, the tensor is normalized by

first centering across the time and cell-line modes and
then scaling within the features mode by the standard
deviations[44]. In order to capture most of the variation
in data, we first unfolded the tensors in each mode and
determined the number of principal components that
explains at least 95% of the variation in the data. The
Tucker3 model was fit with 6 × 5 × 8 core tensor and
the PARAFAC model was fit using 8-components to the
normalized tensor where 93.7% and 89.6% of the varia-
tions in the data are captured, respectively. The analysis
then focused on the feature mode in order to identify a
subset of the cell-graph metrics that are more influential
than the others to explain the variation in the three-way
data. For this purpose, we used the Hotelling’s T2 statis-
tics and the sum of squared residuals of each mode.
The larger the value of these statistics, the easier it is to
distinguish between the different metrics and, therefore,
they are useful indicators of the influence of metrics as
outliers to explain the variation in the data. These statis-
tics are built in the MATLAB PLS Toolbox 4.0 and
MATLAB Tensor Toolbox 2.4 [45]. Figure 2 shows the
Hotelling’s T2 values versus the sum of squared resi-
duals and Figure 3 shows only the Hotelling’s T2 values
of each metric. From these figures, the most influential

Figure 1 Cell-graphs uncover hidden tissue architecture generated from 3D in vitro collagen-I hydrogels. 1a shows a macroscopic image
of an MG63 collagen I hydrogel following fixation. 1b displays a two-dimensional slice from 3D confocal image of hydrogel (green = nuclei). 1c
is a computer generated representation of confocal image after application nuclei segmentation algorithm to identify cell location in 3D space.
1d shows how cell-graphs are built by applying graph theory to computer-generated confocal image representation.
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metrics are chosen as number of central points, cluster-
ing coefficient D, percentage of isolated points, standard
deviation of edge lengths, and number of connected
components.

Two-Way Data Modeling and Analysis of Feature-Tissue
Joint Relationships
Our histology data set contains 329 malignant and 210
benign brain samples, 128 malignant and 195 benign
breast samples, and 49 malignant and 20 benign bone
samples. The average of the 20 cell-graph metrics over
the samples of each tumor-type is taken to construct 6
× 20 two-way data matrix. In order to determine the
influence of a metric to describe the variations in the
data, a singular value decomposition (SVD) -based tech-
nique is employed. First, the data is normalized by

centering across the tumor-type and scaling within the
features mode. Next, the data is decomposed into its
factor scores and loadings using SVD. Finally, the influ-
ence of a metric is measured by the sum of absolute fac-
tor scores corresponding to the first K factor loadings
where K is the number of principal components that
explains at least 95% of the variation in the data. K is
determined to be three, reflecting the number of differ-
ent tissue types.

Results
We extended our previously published cell-graph
method of feature extraction into three dimensional col-
lagen-I hydrogel cultures that remodel over time. We
extracted the set of 20 quantitative features (table 3)
from the generated cell-graphs. We then applied tensor

Table 3 Cell-graph metrics, interpretations, and categories

Index Metric Label Metric Interpretation Metric
Category

1 Average Degree Number of edges per node Compactness

2 Clustering Coefficient C Ratio of total number of edges among the neighbours of the node to the total number of edges
that can exist among the neighbours of the node per node

Clustering

3 Clustering Coefficient D Ratio of total number of edges among the neighbours of the node and the node itself to the total
number of edges that can exist among the neighbours of the node and the node itself per node

Clustering

4 Clustering Coefficient E Ratio of total number of edges among the neighbours of the node to the total number of edges
that can exist among the neighbours of the node per node excluding the isolated nodes

Clustering

5 Average Eccentricity Average of node eccentricities where the eccentricity of a node is the maximum shortest path
length from the node to any other node in the graph

Compactness

6 Diameter Maximum of node eccentricities Compactness

7 Radius Minimum of node eccentricities Compactness

8 Average Path Length Average distance between the nodes of a graph, where the distance between two nodes is the
number of edges in the shortest path that connects them

Compactness

9 Hop Plot Exponent Slope of the line fitted to the hop plot values in log-log domain, where the hop plot value for hop
h is the number of node pairs for which the path length between the pairs is less than or equal to
h

Compactness

10 Giant Connected
Component Ratio

Ratio between the number of nodes in the largest connected component in the graph and total
the number of nodes

Clustering

11 Number of Connected
Components

Number of clusters in the graph excluding the isolated nodes Clustering

12 Average Connected
Component Size

Number of nodes per connected component Clustering

13 Percentage of Isolated
Points

Percentage of the isolated nodes in the graph, where an isolated node has a degree of 0 Compactness

14 Percentage of End
Points

Percentage of the isolated nodes in the graph, where an isolated node has a degree of 1 Compactness

15 Number of Central
Points

Number of nodes within the graph whose eccentricity is equal to the graph radius Compactness

16 Percentage of Central
Points

Percentage of the central points in the graph Compactness

17 Average of Edge
Lengths

18 Standard Deviation of
Edge Lengths

19 Skewness of Edge
Lengths

Statistics of the edge length distribution in the graph Spatial
Uniformity

20 Kurtosis of Edge
Lengths
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analysis to the extracted features using Tucker3 and
PARAFAC models to identify the features that contri-
bute the most to discriminating between different cell/
tissue temporospatial architectures over time. Figure 2a
and 2b show the influence of each metric according to
Hotelling’s T2 and sum of squared residuals scores for
Tucker3 and PARAFAC models, respectively. The most
important metrics are located in the upper right triangu-
lar region of these figures. Figure 3a and 3b shows

Hotelling’s T2 scores only for Tucker3 and PARAFAC
models, respectively. The metrics are displayed in
increasing importance from the lower left corner to the
upper right corner in this figure. We determined the
five most important metrics for distinguishing between
different hydrogel architectures over time based on their
nuclear organization using the combination of results
from Figures 2 and 3: number of central points, percentage
of isolated points, number of connected components,

Figure 2 Influence of cell-graph metrics to explain the variation in data according to the Hotelling’s T2 values and sum of squared
residuals of each metric. 2a and 2b show the Hotelling’s T2 values versus the sum of squared residuals of each metric in Tucker3 and
PARAFAC model fitted data, respectively. Note that the highly influential metrics appear in the upper triangular portion of the plot.
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clustering coefficient D, and standard deviation of edge
lengths.
To validate our findings, we used the cell-graphs for

the histology data that we analyzed using a similar fra-
mework in our earlier studies [10-12]. The discrimina-
tory power of the extracted cell-graph metrics was
successfully shown for the malignant and benign histol-
ogy samples of brain [10], breast [11], and bone [12] tis-
sues. Since these samples were surgically removed
histopathology samples no temporal information is
available. Thus, our histology data has two modes: tissue

samples and features extracted on these samples. These
data sets are obtained from 2D imaging of tissue sam-
ples from pathology department archives thus they do
not have the depth information. Figure 4 shows the
influence of cell-graph metrics to describe the variations
in the histology data.
Figure 5 shows the Venn diagram of the five most sig-

nificant metrics for the histology and the in-vitro data.
We found considerable overlap between the two sets of
discriminative metrics as displayed by the Venn diagram
in Figure 5c. This confirms that our 3D hydrogels

Figure 3 Influence of cell-graph metrics to explain the variation in data according to the Hotelling’s T2 values of each metric. 3a and
3b show the Hotelling’s T2 values of each metric in Tucker3 and PARAFAC model fitted data, respectively. This figure displays the metrics with
increasing importance from lower left to upper right corner to discriminate between in vitro samples.
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maintain important structural properties found in histo-
logical samples.
We grouped the metrics into subcategories that

describe particular aspects of structural organization.
The percentage of isolated points and number of central

points reflect the overall compactness of a cell-graph, as
shown in Figure 6. The compactness metrics can quantify
changes in cell density over time that we represented in
the biological images in the top right of Figure 6. The
change in cell density from low to high results in higher

Figure 4 Influence of the cell-graph metrics to describe the variations in the histology data. This figure displays the metrics with
increasing importance from lower left to upper right corner to discriminate between histology samples.

Figure 5 Histology and In Vitro tissue both have similar as well as unique metrics that can be used to distinguish between tissue
types. The Venn diagram displays the most important metrics found by singular value decomposition and tensor analysis for the histology
tissue and in vitro tissue images, respectively. The most discriminative metrics from the histology samples, in vitro samples and shared
discriminative metrics are shown in figures 5a, 5b and 5c respectively. Numbers refer to feature numbers in Table 3.
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Figure 6 The most significant metrics determined from the normalized tensor analysis describe the compactness, clustering and
uniformity properties of tissue structure. The diagrams on the left illustrate the metrics described in the central column. Representative
images in the right column show variation for the corresponding metrics from the left column. The final row gives examples of the images
analyzed in this study to show how it is difficult to quantify the important metrics by eye.
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compactness and is captured by an increase in number of
central points and a decrease in the percent of isolated
points.
The second subcategory of descriptive metrics, num-

ber of connected components and clustering coefficient D,
capture the extent of cell clustering in a sample. As
seen in the representative biological images in the clus-
tering row of Figure 6, samples with discrete clusters
have a high number of connected components and a
high clustering coefficient. On the contrary, uniformly
distributed cells (non-clustering) have a low number of
connected components and a low clustering coefficient, i.
e. a majority of the cells in the sample are connected
within a single connected component. The standard
deviation of edge lengths describes the consistency in the
distance distribution between the nuclei, thus establish-
ing the level of uniformity in the sample. A sample with
uniform-dense clusters, as shown in the lower right of
Figure 6, results in a low standard deviation edge of
lengths and high uniformity. Alternatively, a sample with
a disperse cell cluster distribution yields a high standard
deviation edge of lengths and a lower uniformity.
The biological images from Figure 6 represent the

extremes of the three subcategories of metrics, compact-
ness, clustering and uniformity. In reality, the hydrogel
architecture of different cell types typically lies between
the extremes of each metric, and changes over time as
the structure develops. The last row in Figure 6 gives
examples of the variety of visually complex patterns of
cell nuclei, from 5 different cell types, analyzed as part
of this study. In these instances, visual inspection of
hydrogel architecture images does not distinguish
between the cell types and time points. Therefore, we
used the cell-graphs and quantified the changes in
metric values over time to differentiate the cell types
from each other.
Figure 7 shows that the data trends from five cell-

graph metrics are sufficient to distinguish between the
hydrogel architectures formed by eleven different cell
types. In Figure 7a, the raw data of the five metrics
(determined by tensor analysis, Figures 2 and 3) were
plotted for each cell type over time. Individual plots for
each metric in Figure 7a can be found in Additional
files 1, 2, 3, 4 and 5. To directly compare the metric
trends between cell type architectures, we generated
Figure 7b as a visual representation of the same data in
Figure 7a. Figure 7b shows that the metrics for each cell
type exhibit a distinct pattern of value changes over
time. The patterns indicate both the direction of change
(i.e. up arrow, down arrow or flat line) and relative
magnitude (i.e. number of arrows). In addition, we per-
formed two-sample Kolmogorov-Smirnov tests between
pairs of cell-lines to investigate if the corresponding
metrics belong to the same probability distribution

function. For each pair of cell-lines, the test is per-
formed over the five most significant features. If the two
cell-lines come from the same probability distributions,
the result of the test is 0, and 1 otherwise. The results
of the five tests are combined by logical OR operation.
Figure 7c shows the results for the 11 cell lines used in
our experiment at 10% significance level. It is clearly
seen that most of the cell-lines belong to different prob-
ability distributions that the influential metrics are effec-
tive in distinguishing between the different cell-types.
From this large set of data, only the data from the clo-
sely related AU565 and MB231 breast cancer cells to
lack statistical significance. This data is capable of discri-
minating all cell lines from each other except between
AU565 and MB231.
The first six cell types listed in Figure 7b are of

epithelial origin (breast and prostate cells) representing
a range of cancer grades from pre-cancerous to meta-
static. Each has a unique metric profile. The standard
deviation of edge lengths metric values distinguish the
MCF10A (pre-cancerous) breast epithelial cells from the
AU565 breast cancer cells because they trend in oppo-
site directions over time. Like the AU565 cells, the
MCF7 cells also show similar trends to the MCF10A
cells for the percentage of isolated points and average
connected component size metrics. However, in addition
to the opposing standard deviation of edge lengths trend
that distinguishes the AU565 from the MCF10A cells,
the MCF7 cells also show an opposing decreasing trend
in the number of central points. The metric trends for
MB231 cells also differ from those for MCF10A. While
the uniformity metric trends for MB231 cells resemble
those for the MCF7 cells, the metrics that capture clus-
tering and compactness show opposite trends. Com-
pared to the other breast cancer cells, the percentage of
isolated points and average connected component size
for MB231 cells show opposite trends. Interestingly, the
non-tumorigenic RWPE1 prostate cells and the
MCF10A breast cells have nearly identical metric trends
with only a slight difference in the magnitude of the
average connected component size. Likewise, the metric
changes between non-tumorigenic RWPE-1 prostate
cells and metastatic DU145 prostate cells are similar to
those seen between the non-tumorigenic MCF10A
breast cells and the breast cancer lines.
The non-tumorigenic NHA cells and the cancerous

U118 cells are glial cells from brain tissue origin. The
brain hydrogels exhibit a pattern of metric trends which
differentiates them from the hydrogels of other cell/tis-
sue types in this study.
Although the pattern of metric trends is similar in

both of the brain hydrogels, the NHA cells are distin-
guishable from their cancerous counterpart (U118) due
to the opposite trend in the number of central points
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and the magnitude change in the percentage of iso-
lated points. Both of the metrics that distinguish
between the non-tumorigenic and cancerous brain
cells are measures of compactness. Similar to the brain
cells, the representative bone hydrogel architecture
(NHOst and MG63) have a distinct set of metric
trends, which differentiate them from the other tissue
types in the study. The NHOst and MG63 are distin-
guishable from each other due to the magnitude of the
average connected component size, a measure of clus-
tering. Interestingly, the DU145 cells (metastatic

prostate epithelial) show similarity between the bone
cells (NHOst and MG63) and the fibroblasts (hDFB).
The only variations between the DU145 and bone cells
are the trends of the standard deviation of edge
lengths. The DU145 compared to the hDFB only show
different trends in the number of central points. Simi-
larly, the MB231 cell line (metastatic breast epithelial)
shows the same pattern of metric trends as the hDFB
(fibroblasts), with differences in magnitude of change
and slight variation in the clustering coefficient D and
standard deviation of edge lengths.

Figure 7 The most significant metrics capture structural differences to generate a unique metric profile for each cell type. 7a plots the
raw data and standard deviation bars of the most important metrics from the generated cell-graphs for each cell type over time. Due to the
scale of the graphs in 7a it is difficult to see small changes in metric values, however these changes are captured by the percent changes
shown in 7b. 7b was generated by first calculating the averages of the data points in 7a at hour 10 and 16 for each sample as well as the
averages for the data points at hours 120 and 168 (the first and last two time points in the graphs, respectively). These averages were then used
to determine the percent change of each metric for each cell type over time. The key to 7b shows how arrows represent varying degrees of
percent change in the table. Figure 7c shows the results of the combination of two-sample Kolmogorov-Smirnov test results for the five most
significant metrics. The cell-line pairs that belong to similar probability distributions are shown with black squares. Note that the cell-lines are in
exact agreement with themselves.
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Discussion
A hallmark of all complex tissues is carefully organized
cell and ECM architecture. We believe this architecture
is determined, at least in part, by a set of organizational
“rules” that determine how cells orient with respect to
each other. According to our model, both damaged and
cancerous tissues exhibit architectures that deviate sig-
nificantly from the non-tumorigenic state dictated by
these rules, but it is very difficult to quantify changes in
these rules by eye. Teasing out the characteristic differ-
ences between different functional states in a tissue thus
benefits from identifying and understanding the biologi-
cal foundation for these rules.
This study represents the first attempt at defining these

rules, by assigning rigorous quantitative metrics to archi-
tectural properties of 3D hydrogels containing distinct cell
types. 3D collagen-I hydrogels provide elements of tissue
structure which are not obtainable in traditional 2D histol-
ogy imaging. In this model system, cells from diverse tis-
sue origins interact differently with the collagen-I ECM
and each other, resulting in a range of tissue architectures
over time. The features extracted from the cell-graphs of
3D confocal images of cell nuclei from the hydrogels are
analyzed using Tucker3 model to extract signature graph
features. While it is very difficult to quantify important
metrics from our images by eye, our computational
approach uncovers hidden relationships in these images to
discriminate between cell types in 3D, over time.
Our method improves upon histopathological image

analysis using nuclear distance-based cell-graphs [13] to
include more aspects of tissue structure-function rela-
tionships. Comparison of the Singular Value Decompo-
sition analysis of our 2D histology data and tensor
analysis of our 3D in vitro feature sets revealed partial
overlap of the most significant discriminating metrics.
In Figure 5a, the average degree metric represents the
connectivity and compactness of the 2D histology sam-
ples is the most significant for distinguishing between
tissue types. The most significant metric in Figure 5b,
number of connected components, characterizes the clus-
tering of the sample. The overlapping metrics in Figure
5c show that histology and in vitro samples share
metrics that characterize the compactness, clustering
and uniformity of cellular structure organization in
order to distinguish between tissue types.
With the metrics determined by tensor analysis, we were

able to distinguish multiple functional states of tissues
based solely on their nuclear organization in a 3D col-
lagen-I hydrogel. Using the metric profiles for each cell
type (Figure 7b), we are able to discriminate different
grades of breast and prostate cancer due to a variety of
characteristic differences in trends between cell types. The
profiles also successfully distinguish non-tumorigenic

brain and bone tissue organization from their cancerous
counterparts. However, it is only a change in magnitude of
the average connected component size that is able to dis-
tinguish between the non-tumorigenic and cancerous
bone cells. In the future, we will seek to identify new
metrics that better distinguish the differences between
mesenchymal tissues.
Our findings present an intriguing possibility, that the

data in this study may be capturing features of the
epithelial to mesenchymal transition (EMT). EMT is
defined as a cellular change from epithelial phenotype
to mesenchymal phenotype, involving a loss of adherens
junctions, change in intermediate filament expression,
and an increase in cell mobility [46-49]. These cellular
changes tend to result in a more aggressive, metastatic
cancer. While EMT is a characteristic of epithelial
tumor progression, it is difficult to quantify using struc-
tural changes or molecular markers[50].
In this study, we have included cell types which repre-

sent varying stages of EMT, based on their protein
expression profile. The breast cancer cell types
(MCF10A, AU565, MCF7, and MB231) represent pro-
gressive cancer grades from precancerous to metastatic
(respectively). Interestingly, our metric profiles capture
differences in metric trends between each cell type. The
first change between MCF10A and AU565 represents a
change in uniformity of cell distribution. The AU565
and MCF7 cell organizations differ by a change in the
trend for the number of central points metric, represent-
ing a change in the clustering of the cells within tissue
architectures. MB231 are further discriminated from the
MCF7 cells by an increase in the compactness of the tis-
sue, as demonstrated by the change in number of central
points and percentage of isolated points. MB231 also
shows a change in average connected component size
trend compared to the other breast cancer lines. In
addition, the MB231 metric profile shares similar trends
as the mesenchymal fibroblast cell line as opposed to
it’s’ breast cancer counterpart, MCF10A. The DU145
cells show remarkably similar metrics to both the osteo-
genic (NHOst, MG63) and fibroblast cells, with a
change in only one metric trend between them. The
resemblance in trends between the MB231 and DU145
cells with the mesenchymal tissue organizations (parti-
cularly the osteogenic lines NHOst and MG63) may
reflect the frequency with which breast and prostate
cancer metastasizes to bone.

Conclusions
Collectively, our findings demonstrate that our three-
dimensional cell-graph methodology is capable of discri-
minating between structural patterns of cellular organi-
zation in model tissues representing different grades of
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tumor progression and tissue origin that cannot be
quantified by eye. The distinguishing features are based
on three-mode tensor analysis of graph theoretical prop-
erties calculated for each cell type over time. By extend-
ing the sensitivity of image analysis and tissue modeling
to uncover diagnostic, hidden, temporospatial relation-
ships between cells in model tissues, we feel this is a sig-
nificant step towards enriching diagnostic profiles for
disease. Such enhanced profiles have the potential to
improve diagnostic accuracy and identify hidden traits
that may suggest new therapeutic interventions.

Additional material

Additional file 1: Figure S1- Raw data plots for the number of
central points metric. Shows the raw data for the number of central
points metric plotted for each cell type individually over time.

Additional file 2: Figure S2- Raw data plots for the clustering
coefficient D metric. Shows the raw data for the clustering coefficient D
metric plotted for each cell type individually over time.

Additional file 3: Figure S3- Raw data plots for number the average
connected component size metric. Shows the raw data for the
average connected component size metric plotted for each cell type
individually over time.

Additional file 4: Figure S4- Raw data plots for the percentage of
isolated points metric. Shows the raw data for the percentage of
isolated points metric plotted for each cell type individually over time.

Additional file 5: Figure S5- Raw data plots for the standard
deviation of edge lengths metric. Shows the raw data for the standard
deviation of edge lengths metric plotted for each cell type individually
over time.
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