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Abstract

Background: This paper considers automatic segmentation of the left cardiac ventricle in short axis magnetic
resonance images. Various aspects, such as the presence of papillary muscles near the endocardium border, makes
simple threshold based segmentation difficult.

Methods: The endo- and epicardium are modelled as two series of radii which are inter-related using features
describing shape and motion. Image features are derived from edge information from human annotated images. The
features are combined within a discriminatively trained Conditional Random Field (CRF). Loopy belief propagation is
used to infer segmentations when an unsegmented video sequence is given. Powell’s method is applied to find CRF
parameters by minimizing the difference between ground truth annotations and the inferred contours. We also
describe how the endocardium centre points are calculated from a single human-provided centre point in the first
frame, through minimization of frame alignment error.

Results: We present and analyse the results of segmentation. The algorithm exhibits robustness against inclusion of
the papillary muscles by integrating shape and motion information. Possible future improvements are identified.

Conclusions: The presented model integrates shape and motion information to segment the inner and outer
contours in the presence of papillary muscles. On the Sunnybrook dataset we find an average Dice metric of
0.91 ± 0.02 and 0.93 ± 0.02 for the inner and outer segmentations, respectively. Particularly problematic are patients
with hypertrophy where the blood pool disappears from view at end-systole.

Background
Properties of the cardiac left ventricle, such as volume,
ejection fraction and wall thickness are important indi-
cators for the diagnosis of many heart-related problems.
Many of these are conveniently extracted from Mag-
netic Resonance Imaging (MRI). Calculating these prop-
erties requires accurate annotation of the left ventricle
to isolate it from its surrounding structure. Figure 1
illustrates the cardiac structure and human annotated
inner and outer contours of the left ventricle in an
MRI image.
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Manual annotation is a tedious process and lacks
consistency between human annotators [1,2] and even
between separate annotations by the same annotator.
Various properties of magnetic resonance images, such

as intensity inhomogeneities, z-shift due to respiration
and imaging acquisition artifacts, can make segmenta-
tion difficult. One of the most severe problems arises
from judging to what extent the papillary muscles influ-
ence and, possibly, obscure the endocardium border. For
research on the effects that discrepancies in annotations
of the papillary muscles can have on the calculation of left
ventricle function and mass see e.g. [2-4]. In this work we
primarily focus on mitigating the effect of the papillary
muscles.
The examples in Figure 2 illustrate the presence of pap-

illary muscles close to the endocardium border and a
human annotator’s segmentation. When modelling the
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Figure 1MRI short axis view.MRI short axis view of ventricles with
human annotated (inner and outer) contours shown in yellow.
Surrounding tissue is omitted for illustrative purposes.

structural properties of the ventricle wall, it is often desir-
able to include these muscles inside the inner contour.
From an inspection of the human annotations, it is clear
that the presence of the endocardium border is inferred
from information other than only a strong intensity gra-
dient, possibly from prior knowledge of the motion and
shape of the ventricle. Such considerations are difficult
to integrate into a simple intensity threshold-based tech-
niques of a single image, in particular when there is little
difference between the intensity of the endocardium and
surrounding structure.
A number of automated techniques have been devel-

oped for the segmentation of the left ventricle from its
surrounding structure (see e.g. [5,6]). For a review of
snakes and deformable models in medical image analy-
sis see e.g. [7]. We will briefly discuss the most popular
techniques.
Active Shape Models (ASMs, [8]) track the edges in

a video sequence by modelling the contour shape using
methods such as Principal Component Analysis. This
is often combined with a Kalman filter to incorporate

Figure 2 Papillary muscles obscuring edge. Presence of papillary
muscles obscure the edge of the inner contour due to its similar
intensity to the cardiac wall. Human annotated inner and outer
contours are shown in yellow. Surrounding tissue is cropped for clarity.

temporal smoothing in an online tracking framework.
Typically only past information is used and future images
ignored, often with adverse consequences if the object
being tracked disappears from view or becomes very
small.
Andreopoulos and Tsotsos [9] fit a 3D Active Appear-

ance Model (AAM) and investigate a hierarchical “2D +
time” ASM that integrates temporal constraints by using
the third dimension for time instead of space.
Generative models such as Markov Random Fields

(MRF) are popular in pixel labelling and de-noising prob-
lems [10]. Modelling the image probability can, however,
lead to intractable models with complex dependencies
between local features. This can lead to reduced perfor-
mance if oversimplified [11]. Careful manual design of the
probability distributions is therefore often necessary.
Most image segmentation applications of MRFs also

model the texture within a region and are constructed
to favour spatially smooth regions. We refer to these
models as Surface MRFs. Surface MRFs are often used
to isolate homogeneous objects from their backgrounds.
The left ventricle, however, contains papillary muscles
(see Figures 1 and 2), rendering this approach less effec-
tive. As surface MRFs do not model the edge explicitly,
they do not directly encode any shape information. There
have been attempts to unify models of the edge and sur-
face: specifically, Huang et al. [12] propose coupling sur-
face MRFs with a hidden state representing a deformable
contour.
Cordero-Grande et al. [13] construct an MRF model of

the inner and outer contours, using a purely generative
model. They use the Gibbs sampling algorithm to extract
segmentations and parameters.
Also of interest is the approach by Jolly [14], in which

the segmentation problem is set in log-polar space where
the least cost path in a single frame (calculated by dynamic
programming) is defined as the desired contour. A cost
function, which they relate to an initial labelling of blood
pool pixels, is required to determine the correct contour.
This is similar to our approach in that if we limit our
model to a single frame (i.e. remove temporal linkage)
belief propagation also reduces to estimating the least cost
path via dynamic programming.
In summary, a number of methods are available, with

the main challenge being integration of temporal and
spatial constraints.
In an earlier study, Dreijer et al. [15] investigated mod-

elling the endocardium edge using a semi-conditional
MRF with mostly heuristically chosen features. Although
this approach showed promise, practical experiments
indicated a tendency to “snap” onto the epicardium, partly
due to the epicardium’s stronger edge with respect to sur-
rounding tissue. In the present study, the outer contour is
explicitly included in the model, establishing a statistical
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dependency between the two contours. We also train
discriminative feature functions from human annotated
images as opposed to the heuristically chosen functions
used previously.

Methods
Conditional random field
A Conditional Random Field (CRF, [16]) models the con-
ditional probability of a set of unobserved/latent variables,
y, given a set of observations x, i.e. P

(
y|x). This is different

from a generative Markov random field which models the
probability distribution of the observed variables, given
different configuration of the latent variables, i.e. P

(
x|y).

A CRF represents the modelling probability as a prod-
uct of local potential functions, defined over subsets of the
latent variables,

P
(
y|x) = 1

Z
∏
c⊂y

ψc
(
yc, x

)
(1)

where the normalizing partition function Z = ∑
y
∏

c⊂y
ψc

(
yc, x

)
sums over all possible configurations of y.

The main advantage of a CRF is its discriminative
nature, i.e. it does not require a detailed model of the
observed information, instead, computational resources
are dedicated to describing the latent variables.

Problem formulation
We refer to the left ventricle endocardium as the inner
contour and the left ventricle epicardium together with
the right ventricle’s endocardium (bordering the septum)
as the outer contour, see Figure 1.
We are primarily interested in segmenting a video

sequence of T grayscale images, I(0), . . . , I (T−1), that
is synchronised with a single cardiac cycle so that the
first image I(0) is before systole (contraction) and the last
image, I (T−1), after diastole (relaxation). End-systole
(maximum contraction) thus occurs in the middle of the
video sequence at approximately I (T/2). We refer to the

grayscale value of a pixel within a single image at the x, y
coordinate p as I (t,p).
Assuming an annular shape, an inner or outer contour

in a frame at time t, can be represented by a sequence of
N radii, rn(t), at uniformly spaced angles, n=0, . . . ,N−1
around a shared centre point, c(t). Figure 3 illustrates
coordinates on the inner and outer contours using a small
number of radii. In our implementation we use N = 128
angular directions.
We prefer to work in the discretised log-space of the

radii, i.e.

ρn(t) = ⌊
M · rinit · log rn(t)

⌋
(2)

where�x� is the floor function of x and rinit = 50 is exper-
imentally chosen such that, for most segmentations in the
training set, ρn(t) ≈ M/2 at end-diastole. The radius is
discretised as ρn ∈ {0, . . . ,M−1} where M = 256 pro-
vides a resolution sufficient for human segmentation of
the transformed image. One advantage of the log-space is
that it provides a better spatial resolution at smaller radii.
Figure 4 illustrates the log-polar transformed image,

D(t), of a single image, I(t). We denote image values in a
radial direction (i.e. a row in the log-polar image), n, as the
vector dn(t). The grayscale value of a pixel in the log-polar
space is then referred to as dn (t, ρ).
The two segmentation contours in a single frame are

thus fully represented as two vectors of log-radii,

ρin(t) = {
ρin
0 (t), . . . , ρin

N−1(t)
}

(3)

ρout(t) = {
ρout
0 (t), . . . , ρout

N−1(t)
}
, (4)

around the centre point c(t). The segmentation of a video
sequence of frames is represented by ρ = {

ρin, ρout}
around a series of centre points c = {c(t)}t=0,...,T−1 where

ρin = {
ρin(0), . . . , ρin(T−1)

}
(5)

ρout = {
ρout(0), . . . , ρout(T−1)

}
. (6)

Figure 3 Cartesian and polar coordinates. A representation of coordinates on the inner and outer contours in Cartesian and polar coordinates.
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Figure 4 Log-polar transform. Log-polar transform with human
annotated inner and outer contours in yellow. The centre point is
chosen near the middle of the blood pool. Ground truth inner and
outer contours are indicated with solid yellow lines.

Note that the position of the centre point is different for
each frame. Partly due to the non-symmetrical contrac-
tion of the heart, the ventricle centre point can undergo
significant translation.
Our segmentation process first determines a series

of centre points, after which relative radial values are
inferred. In the next section we turn our attention to
finding suitable centre points.

Centre point estimation
Our CRF model requires the centre points to be placed
near the middle of the inner contour allowing the model
to restrict the spatial and temporal variability of the
radii. As a semi-automatic clinical tool, a human oper-
ator could annotate the centre point in every frame
of the video sequence. In our work towards a fully-
automatic technique we describe a semi-automated pro-
cedure that requires only annotating the centre point in
one frame, after which the other centre points are esti-
mated. Fully-automatic techniques are especially valuable
when analysing significantly large datasets.
A number of heuristic techniques (e.g. [5]) are available

for estimating the centre points. Most of these perform
adequately when the papillary muscles are absent and
there is high contrast between the blood pool and cardiac
wall. This is generally the case for the first few frames,
but not at the end of systole when the ventricle is at its
smallest.
The procedure described below requires the user to

provide the centre point c(0) of the first frame when
the left ventricle blood pool is clearly visible and the
papillary muscles minimally obstruct the inner contour.
The robustness against variations in c(0) is discussed
in Section “Sensitivity to initial centre point placement”.
With an appropriate user interface the annotation of the
center point in the first frame of all spatial slices would
only take the user a few seconds.

Since each video sequence from our dataset contains
a single heart beat, and due to its periodic nature, we
assume the last frame has the same centre point as the
first, i.e. c(T−1) = c(0). This is not a severe restriction
since the algorithm is robust against variations in c(t), as
demonstrated in Section “Sensitivity to initial centre point
placement”.
To find centre points in the intermediate frames,

c(1), . . . , c (T−2), we minimize a weighted between-
frame alignment error,

error (c)=
T−1∑
t=1

∑
p

wc(t) (p)·
(
Ic(t) (t,p)−Ic(t−1) (t−1,p)

)
2,

(7)

where Ic(t)(t) is the image I(t) centred at c(t) such that
Ic(t) (t,p) = I (t,p − c(t)) and zero when indexed out of
bounds, p is, again, the x, y coordinates and I(t) the frame
at time t before a log-polar transform is applied.
The weight wc(t) (p) = e

(−‖c(t)−p‖2/σ 2) locally enhances
the error around the frame’s centre point. The width,
σ , is experimentally chosen from a training dataset so
that the inferred centre points closely resemble the mean
of the ground truth inner contours. For computational
efficiency we only calculate values within a 2σ radius
of c(t) as the contribution becomes negligible further
away.
Note that (7) is a nonlinear function of the sequence of

centre points, but is efficiently solved using an optimiza-
tion strategy such as dynamic programming. In addition,
in order to reduce computational cost a beam search is
implemented, effectively assuming the centre point trans-
lates less than three pixels between frames. Backtracking
is initiated at the centre of the last frame c(T − 1). In
order to constrain c(0) to the value provided by the user,
during dynamic programming, the cumulative cost func-
tion for the first frame is set to zero at that value and 1
otherwise.
We pose the centre point estimation problem as one

that can be solved within the same belief propagation
framework as our radial inference. However, since this is
independent of the radial inference fast heuristic methods
could be considered in the future.

The CRFmodel
Representing a temporal sequences of log-polar images as
D = {D(t)}t=0,...,T−1, and assuming appropriately trained
parameters θ we model the conditional probability
P (ρ|θ ,D) of a segmentation ρ. This is done through a
log-linear CRF,

P (ρ|θ ,D) = 1
Z (θ ,D)

exp (−E (ρ|θ ,D)) . (8)
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The energy E (ρ|θ ,D) is defined as the weighted sum of
local feature functions f defined over all cliques q ∈ Q in
its graphical model

E (ρ|θ ,D) =
∑
q∈Q

θq fq
(
ρq,D

)
. (9)

In this formulation, smaller energies indicate better seg-
mentations, while bad segmentations are penalized with
larger energies.
The partition function

Z (θ ,D) =
∑
ρ

exp (−E (ρ|θ ,D)) (10)

sums over all possible configurations of ρ, normalizing the
exponentiated energy into a probability.
Note that there are no significant theoretical restrictions

to the feature functions in a random field. Any further
restrictions and choices of feature functions are design
choices made to improve performance.

Feature functions
We restrict ourselves to positive feature functions f where
small values are more desirable (i.e. smaller values should
correlate with “better” segmentations). Positive param-
eters, θ , determine the relative weights of the feature
functions. In order to minimize the clique size, we also
restrict ourselves to features that couple at most two radial
values in space and time, as computational cost grows
exponentially with increasing clique size.
A partial factor graph [17] in Figure 5 illustrates the tem-

poral and spatial relationships between radius variables, ρ,
in a single contour and rows in the log-polar transformed
image, dn(t). The spatially circular nature (i.e. there is a

feature connecting ρ0(t) and ρN−1(t)) and the relation-
ships between the inner and outer contours are omitted
for clarity.
We derive the feature functions from discriminative

properties of human annotated images as described
below. Selection of the relative weights, θ , is discussed in
Section “CRF parameter estimation”.

Feature function based on edge classifiers
For a log-polar frame (such as in Figure 4) at time t, con-
sider a window of height 1 and width w = M

4 = 64
around a radius ρ in the radial direction n. This win-
dow is equivalent to a circular sector in the original
image before the log-polar transform is applied. We
refer to the pixel values in this window as the vector
vρ = dn

(
t,

[
ρ − w

2 , . . . , ρ + w
2
])
. A feature vector κ (v) is

derived from the window and is described below.
We train an artificial neural network, with two nodes in

a hidden layer, to model the presence of the cardiac edge.
A window extracted from the training set is considered to
contain an edge if the centre of the window is no more
than 2 radial distances away from the ground truth edge,
otherwise it is considered a “non-edge” training example.
The feature vector, κ (v), consists of the concatenation

of four expressions of the gradient in the radial direc-
tion, ∂v

∂ρ
, that we suspect the classifier might find useful in

discriminating between edges and non-edges,

κ (v) =
(

∂v
∂ρ

,
∣∣∣∣ ∂v∂ρ

∣∣∣∣ , sign
(

∂v
∂ρ

)
,
[∣∣∣∣ ∂v∂ρ

∣∣∣∣ > ε

])
. (11)

The expression
[∣∣∣ ∂v

∂ρ

∣∣∣ > ε
]
is a binary value indicating

the presence of a gradient.
From the short-axis view in Figure 1, it is worth noting

that the gradient’s sign on the left and right sides of the
outer contour’s edge differ, due to the intensity of the right

Figure 5 Partial factor graph. A partial factor graph of the temporal and spatial relationships between radius variables, ρ , in a single contour and
rows in the log-polar transformed image, dn(t). Factor labels and some variable labels are omitted for clarity.



Dreijer et al. BMCMedical Imaging 2013, 13:24 Page 6 of 23
http://www.biomedcentral.com/1471-2342/13/24

ventricle’s blood pool. We therefore train eight classifiers
for different parts of the contour, i.e. instead of training a
single classifier over all angular directions (n = 0..N − 1)
we treat groups of angles separately (n = 0, . . . , 15, n =
16, . . . , 31 etc.) and thus train direction dependent classi-
fiers. This allows the classifiers to exploit features that it
might find relevant in that direction.
We repeat the process for the classifiers of the inner

contour’s edges as the endocardium’s edge behaviour also
differs between the left and right sides of the ventricle due
to the presence of the papillarymuscles onmostly one side
(see Figure 4).
Heiberg [6] identifies the edges of the inner and outer

contours as two classes: Concordant, where edge gra-
dients have a similar sign, and Discordant, areas where
the edge gradient sign differ. Accordingly, he explicitly
includes the gradient sign for the inner contour and
ignores the sign for the outer. Because our edge model is
trained on annotated ground truth images, our classifier
automatically differentiates between the signs when they
are relevant to edge detection.
To fit within the framework of energy minimization, the

response of the neural network to an image is transformed
into a cost by subtracting its output value from one. The
minimum cost in the radial direction is subtracted to avoid
negative feature values and is normalized by the sum.
We construct these networks for the inner and outer

contour edges and so derive the features f in
(
ρin
n (t),dn(t)

)
and f out

(
ρout
n (t),dn(t)

)
.

It should be noted that the typical neural network
training techniques attempt to minimize a classification
error, however we are not so much interested in the
classification as using the output to penalise non-edges
while at the same time minimally penalising edges. Effec-
tively, we would prefer a classifier that rejects very few
edges. To mitigate unintended penalisation, the outputs
of the constructed features are “smoothed” by applying a
small minimum-filter (erosion), in the angular direction.
This will cause an area to have a high feature response
(i.e. penalised) only if its neighbouring areas (in the angu-
lar direction) also have high responses.
Figures 6 and 7, respectively, show the resulting inner

and outer features’ responses to the frame in Figure 4.
Note that the response is relatively low in the area of
the ground truth. Recall that more desirable segmenta-
tions have smaller feature values. It should be emphasized
that these response images have been obtained without
taking into account any temporal behaviour or continu-
ity requirements. We now investigate how to incorporate
these properties into our model.

Spatial and temporal feature functions
Figure 4 shows that there are strong gradients at some
non-contour positions and relatively weak gradients at

Figure 6 Inner edge feature function. Response of the feature
function for the inner edges to the image in Figure 5. The ground
truth inner contour is indicated with a solid yellow line and the outer
with a broken line.

some contour positions, especially when papillarymuscles
are close to the endocardium border, resulting in the fea-
ture responses of Figures 6 and 7. This is undesirable as
inference from these features alone would cause incorrect
segmentations in these areas.
We now proceed to introduce spatial continuity, as

well as temporal information directly into the model by
introducing the following feature functions,

fr (ρn(t), ρn−1(t)) =
(

ρn(t) − ρn−1(t)
M

)2
, (12)

ft (ρn(t), ρn (t − 1)) =
(

ρn(t) − ρn (t − 1)
M

)2
, (13)

where M is again the discretisation value, used here to
scale the feature values to the same order of magnitude as
the features described previously. From direct inspection,
few contours violate the properties |ρn(t) − ρn(t − 1)| ≤
25 and |ρn(t) − ρn−1(t)| ≤ 2. This can be exploited
during inference by applying a beam search and thereby
significantly reducing the search space.

Figure 7 Outer edge feature function. Response of the feature
function for the outer edges to the image in Figure 5. The ground
truth outer contour is indicated with a solid yellow line and the inner
with a broken line.
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We also detect and penalize contour growth dur-
ing systole and shrinkage during diastole by assum-
ing end-systole (maximum contraction) is reached at
time tES,

f ′
t (ρn(t), ρn (t − 1)) =

{
[ρn (t − 1) < ρn(t)] if t < tES
[ρn(t) < ρn (t − 1)] otherwise.

(14)

For simplicity, we have chosen a fixed tES = 8 from
inspection of the training annotations. The correct selec-
tion of tES is sensitive to patient pathology. A more robust
choicemight depend on detecting when the optical flow in
the images are suspended and reversed. A full discussion
is, however, beyond the scope of this article. Again, these
features are constructed separately for both the inner and
outer contours.
Additionally, we assume that the “angular gradient” of

the cardiac wall just inside the outer contour remains
small over time and space through,

f ′′
t

(
ρout
n (t), ρout

n (t − 1)
) = ∣∣dn

(
t, ρout

n (t) − ερ

)
− dn

(
t, ρout

n (t−1)−ερ

)∣∣ ,
(15)

and

f ′′
r

(
ρout
n (t), ρout

n−1(t)
) = ∣∣dn

(
t, ρout

n (t) − ερ

)
− dn

(
t, ρout

n−1(t) − ερ

)∣∣ , (16)

where ερ = 2 is an experimentally chosen radial offset.
Similar feature functions are constructed for the intensity
just outside the inner contour.

Inner-outer radius feature functions
Information on the cardiac structure can further be
exploited by using the relationship between the inner and
outer contours. The ratio between the inner and outer
radii, rinn (t)/routn (t), (and thus the difference in log-space,∣∣ρout

n (t) − ρin
n (t)

∣∣) is found to contain information on the
temporal behaviour, as can be seen in Figure 8. This ratio
is related to the wall thickness but is invariant to scaling,
which can occur due to differences in patient physiology
and MRI magnifications.
A probability distribution of the log-radial distance

between the inner and outer contours, P
(
ρout
n (t)−

ρin
n (t)

)
, is derived from annotations in a training dataset

and used to construct the feature function (see Figure 9),

f cross1
(
ρin
n (t), ρout

n (t)
) = − logP

(
ρout
n (t) − ρin

n (t)
)
.
(17)

Figure 8 Inner-outer ratio histogram. Histogram of relationship
between inner and outer radii, rinn (t)/routn (t), against time, generated
from a training dataset.

The relative homogeneity of the cardiac wall can also
be exploited by minimizing the variance in intensity of the
area between the inner and outer contours through,

f cross2
(
ρin
n (t), ρout

n (t),dn(t)
)= 1

W

ρout
n (t)∑

ρ=ρin
n (t)

(dn (t, ρ)−μn)
2

(18)

with the mean wall colour

μn = 1
W

ρout
n (t)∑

ρ=ρin
n (t)

dn (t, ρ) , (19)

and the wall width

W = ρout
n (t) − ρin

n (t). (20)

Figure 9 Inner-outer feature function. Response of feature, f cross1 :
difference between inner and outer log radii,

∣∣ρout
n (t) − ρ in

n (t)
∣∣

against time.
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Segmentation
Given a video sequence and trained parameters, we esti-
mate the most probable radii from

ρ	 = argmax
ρ

P (ρ|θ ,D) , (21)

or equivalently the radii with the smallest energy,

ρ	 = argmin
ρ

E (ρ|θ ,D) . (22)

Belief propagation is a popular technique for inferring
values for the latent variables in a graphical model. Mes-
sages representing cumulative belief are passed between
variables and updated according to a specific order or
schedule. Backtracking is used to recover a solution. For a
tutorial on belief propagation see e.g. [17]. When applied
to chains or tree structures, belief propagation is equiva-
lent to dynamic programming, however our model con-
tains many loops and thus requires the iterative loopy
belief propagation. For more detail, specifically as applied
to this type of edge model, see e.g. [15]. we have chosen
a sequential propagation schedule which allows for faster
convergence.

Propagation schedule
In a parallel propagation schedule all messages are
updated simultaneously after each iteration. However, in
our experience, the effects from a feature function prop-
agate relatively slowly through the model if a parallel
schedule is followed. This is in line with Goldberger and
Kfir [18]. For this reason we have chosen a sequential
propagation schedule which allows for faster convergence.
For variables representing the inner contour, messages

are first propagated in an angular direction (n = 0, . . . ,
N −1) and reversed (n = N −1, . . . , 0) before being prop-
agated to the next temporal frame (t = 0, . . . ,T − 1) and
back (t = T − 1, . . . , 0). Similar steps are then repeated
for the outer contour, taking into accountmessages passed
from the inner contour. This process is repeated for three
iterations.
Propagating over the angular direction first places more

emphasis on contour continuity than the other radial rela-
tionships. The same reasoning is used in the selection of a
backtracking order, as discussed below.

Message normalization
As features in an undirected graphical model are allowed
to take on arbitrary values, propagated messages do not
represent marginal probabilities, as is the case in directed
graphs. If loopy belief propagation is applied without mes-
sage normalization, numerical overflow can occur after
only a few iterations.
We normalize our messages by subtracting the smallest

value in each message before it is propagated, effectively
assuring that the minimum value in each message is zero.

For a max-product setting this is equivalent to normaliz-
ing each message so that the largest value in the message
is one.

Convergence and optimality
We briefly discuss issues of convergence of message pass-
ing and on the choice of an appropriate backtracking
order.
Belief propagation is guaranteed to yield a globally opti-

mal result when applied to a tree structured graph [17].
It also converges to a stable fixed point (which is glob-
ally optimal) or periodically oscillates when applied to
graphs with a single loop [19]. Due to the temporal and
inner-outer radius feature functions our graphical model
contains many loops (Figure 5).
Convergence for graphs with this many loops is not

guaranteed, although if convergence is reached there are
theoretical results regarding its optimality. Weiss and
Freeman [19] describe the neighbourhood within which
the result is optimal.
Through experimentation we find that the inferred seg-

mentation is sensitive to the order of backtracking. We
choose to backtrack over all nodes in the inner and outer
contours independently. We find that this increases the
probability that the inferred inner and outer contours in a
single frame form continuous loops.
We have not observed divergence or significant oscilla-

tion between configurations in our application.

CRF parameter estimation
Maximum likelihood estimation
Before performing segmentation of a newly observed
video sequence, suitable CRF model parameters θ are
needed. One popular approach is to search for parame-
ters that maximize the likelihood of the training anno-
tations, i.e.

θ	 = argmax
θ

∏
i
P

(
ρ(i)|D(i), θ

)
, (23)

where D(i) is a video sequence from a training dataset and
ρ(i) is its human annotated segmentation.
Often an iterative gradient-based method is used to find

adequate parameters. Calculating the probability (or its
derivatives) for a specific θ , requires evaluation of the par-
tition function (or its moments). The partition function’s
derivative is given by,

∂Z
(
θ ,D(i)

c
)

∂θc
=−

∑
ρ

(
exp

(
−

∑
c′

θc′ fc′
(
ρc′ ,D

(i)
c′

))

· fc
(
ρc,D(i)

c

)⎞
⎠ .

(24)
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Here the sum is over all configurations of ρ which
requires O

(
M2NT)

operations. This is one of the sig-
nificant challenges in applying CRF/MRFs to practical
problems as the complexity quickly becomes intractable
in general.
Attempts have been made by others to approximate the

partition function [20,21], which implies an approxima-
tion to the original distribution P that we refer to as the
distribution P̃.
Apart from these computational difficulties, also note

that the approximate nature of loopy belief propaga-
tion causes inference to yield a segmentation that is the
optimal configuration to a different probability distribu-
tion (that we refer to as Q) than the one described in
Section “The CRF model” (referred to as P). The relation-
ship between these distributions is discussed byWeiss and
Freeman [19].
The effect of using parameters that maximize the likeli-

hood of the training data under P̃, to infer values from the
distribution Q is unclear.
However, since we are primarily interested in obtaining

parameters that yield good segmentations under inference
and less with estimating the “true” model distribution,
we investigate an alternative that avoids calculating the
partition function.

Parameter estimation
Consider a video sequence D(i) from a training dataset
and its human annotated segmentation ρ(i). We are inter-
ested in obtaining parameters that would lead to a seg-
mentation, ρ	(i), of the video sequence, that does not
significantly differ from the annotated segmentation, ρ(i).
Moreover, we wish to find parameters that minimise the

errors over the entire training dataset

θ	 = argmin
θ

(∑
i
ei

(
ρ(i), ρ	(i)

))
(25)

where the inferred segmentation of a video sequence from
loopy belief propagation is

ρ	(i) = argmax
ρ

Q
(
ρ|θ ,D(i)

)
. (26)

The function ei is a measure of the differences between
two segmentations (i.e. the ground-truth and inferred
contours). The landmark error, i.e. the average of the
shortest distance between each point on the ground
truth contour and the inferred contour, is used by
Andreopoulos et al [9] in their evaluation. Due to its non-
symmetry, i.e. ei

(
ρA, ρB) 
= ei

(
ρB, ρA)

, we have observed
that inferred contours that minimize this error tend to
be very jagged. For this reason we use the average of

Figure 10 York automatic segmentations. Selection of images and their automatically segmented contours (inner contour is blue and outer is
green) inferred from a testing set. The blue dot in the middle of the blood pool is the estimated centre point.
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the “ground truth to inferred” error and the “inferred to
ground truth” error during training, i.e. ei

(
ρA,ρB)+ei

(
ρB,ρA)

2 .
Powell’s method [22] is a popular technique for search-

ing for the local minimum of a function and is used here
to find suitable parameters. Powell’s method avoids calcu-
lating a gradient through a bidirectional line search along
a vector in a list of vectors. The list is updated by the
displacement after each improving iteration. In our case
convergence requires about 300 iterations.
To compensate for the approximate nature of inference

and avoid calculating the partition function, a gradient-
free approach is thus followed where the segmentation
error is treated as a “black box”. This allows us to integrate
the approximate inference process into the training stage.

Implementation
Themajority of the software is implemented in the Python
programming language with belief propagation imple-
mented in C. Cordero-Grande et al. [13] reported segmen-
tation of a single 4D video sequence in approximately 56
minutes on a single 800MHz CPU with 4MB cache from
their MRF. For a similar number of images (12 slice posi-
tions with 20 frames each) on a single 3400MHz CPUwith
8MB cache we can report a radial segmentation time of
~2 minutes. We have not included the time to estimate

the centre point positions, which is approximately an
additional minute for each 20 frame video sequence.
Our radial inference technique is thus approximately six

times faster (taking into account the faster CPU), which
can be attributed to their use of a Gibbs sampler. Note
also that the number of radial points we use to represent
a contour and its radial discretisation are 128 and 256,
respectively. This is significantly larger than the values of
7 and 31 used by Cordero-Grande et al., especially when
comparing the size of the resulting configuration space.

Results
In this section we analyse the segmentations produced by
our process and compare them to those of a few exist-
ing techniques. The reader is urged to view the video
sequences in Additional file 1 or on our website at http://
dip.sun.ac.za/~janto. Additional file 2 contains the auto-
matic segmentations of all end-systole and end-diastole
frames for the Sunnybrook evaluation dataset.
We evaluate our model on two datasets. Our segmen-

tation process is trained and analysed on the York dataset
[9] with respect to segmentation behaviour and its sensi-
tivity to placement of the initial centre point. This dataset
contains ground truth annotations for all frames and
therefore contains important temporal information. For

Figure 11 Bad quality York automatic segmentations. Selection of incorrectly segmented contours (inner contour is blue and outer is green)
inferred from a testing set. The blue dot in the middle of the blood pool is the estimated centre point.

http://dip.sun.ac.za/~janto
http://dip.sun.ac.za/~janto


Dreijer et al. BMCMedical Imaging 2013, 13:24 Page 11 of 23
http://www.biomedcentral.com/1471-2342/13/24

Figure 12 Disappearing blood pool. Incorrect automatically segmented contours (inner contour is blue and outer is green) of Subject 8 due to a
disappearing blood pool. The blue dot in the middle is the estimated centre point.

comparison with other authors our technique is evaluated
on the Sunnybrook [5] MRI dataset. This dataset is not
annotated for all frames, but has the advantage that more
authors have used this set to report their results.
In addition to the landmark distance, we use two other

similarity measures that have gained widespread use: the
Dice metric and Average Perpendicular Distance (APD).
The Dice similarity represents the percentage of overlap
between two segmented surfaces and the Dice error is the
percentage of non-overlap, i.e. one minus the Dice simi-
larity. The APD is calculated as the average of the perpen-
dicular distance from each point on the reference contour
to the target contour. The APD is therefore similar to the
non-symmetric landmark distance.

York cardiac segmentation dataset
In this section we evaluate our model on the MRI York
dataset [9] provided by the Department of Diagnostic
Imaging of the Hospital for Sick Children in Toronto
and annotated by Andreopoulos of York University. The
dataset contains video sequences from 33 subjects, all
under the age of 18, displaying a variety of heart abnor-
malities such as cardiomyopathy, aortic regurgitation,
enlarged ventricles and ischemia. We split the dataset
into three cross-validation sets: 11 subjects for training

of the edge classifier, 11 subjects for CRF parameter esti-
mation and 11 subjects for evaluation. Each set effectively
contains approximately 100 video sequences and each
video contains 20 frames at different z-axis slice positions.
The inner and outer contours are manually annotated
for all frames and are used as the ground truth in our
experiments.
For efficiency we only use video sequences of the sixth

z-axis slice of each patient to estimate the CRF parame-
ters. These slices do not necessarily coincide with the mid
ventricle for all patients. The number of slices where the
ventricle is visible differs between patients and is likely
dependent on patient pathology. A different choice of
training data is thus likely to have a significant effect on
the results of patients with, for example, hypertrophy.

Segmentation analysis
Figure 10 illustrates our results on a selection of images
from the testing dataset. A visual inspection indicates
that, for the majority of video sequences, our automated
annotations are in line with expected behaviour with
regard to shape, position and motion. Of particular inter-
est is the inclusion of the papillarymuscles inside the inner
contour. In many of these cases the segmentation pro-
cess is able to use local shape and temporal behaviour to

Table 1 Comparison of contour errors

Authors Technique Inner contour Outer contour

error [mm] error [mm]

Our method CRF 1.57 1.78

Our method (without subjects 8 and 27) CRF 1.49 1.74

Andreopoulos and Tsotsos [9] AAM 1.43 1.51

Üzümcü [23] Landmark tracking 1.86 1.77

Jolly [14] Shortest path 2.44 2.05

Cordero-Grande et al. [13] Edge MRF 1.37 1.22

Lorenzo-Valdés et al. [24] Surface MRF 2.99 2.21

Average segmentations errors as reported by different authors. These results are not strictly comparable since they are based on different datasets and the error
criteria differ. Refer to the individual papers for more detail.
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Figure 13 Inner contour areas. Areas inside inner contours of human annotation against the areas inside automated segmentation of testing data.

identify the inner contour even though the edge is weak or
absent.
We also observe robustness to some noisy images.

These examples suggest that in some of these images
where the automatic segmentation differs from the
ground truth, the automatic segmentation is superior to
the manual approach. This is attributed to the fact that the
automated system is able to integrate temporal behaviour,
something that is an arduous task for a human.

Figure 11 contains a selection of images that are
incorrectly segmented. These are primarily due to a disap-
pearing blood pool, centre point initialization outside the
endocardium, or low contrast between the endocardium
and cardiac wall.
On further inspection of the York dataset, the blood

pool disappears from view in some video sequences of
Subject 8 (refer to Figure 12) which is diagnosed with ven-
tricular hypertrophy (enlarged cardiac wall thickness). It

Figure 14Outer contour areas. Areas inside outer contours of human annotation against the areas inside automated segmentation of testing data.
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Figure 15 Inner Dice errors over time. Inner contour Dice errors over time. For illustrative purposes, a random real value between zero and one
was added to each frame number. The geometric mean for each frame number is indicated by a black line.

is also noted by the annotator of the dataset [9] that this
yields bad segmentations in their work. Images of Subject
27 also has relatively low contrast between the endo-
cardium and the cardiac wall. We therefore regard Subject
8 and 27 as outliers and remove them from the dataset.
This significantly improves inner contour accuracy as
indicated in Table 1.

The areas inside the contours of the automatic
annotations are plotted against the areas inside the human
annotated ground truth in Figures 13 and 14. For small
inner contours our technique often yields segmentations
larger than the ground truth. This can be attributed to
the automated segmentations being more “inclusive” of
the papillary muscles, which can significantly effect small

Figure 16 Outer Dice errors over time. Outer contour Dice errors over time. For illustrative purposes, a random real value between zero and one
was added to each frame number. The geometric mean for each frame number is indicated by a black line.
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Figure 17 Inner Dice errors over slices. Inner contour Dice errors over different slices. For illustrative purposes, a random real value between zero
and one was added to each slice depth. The geometric means for the slice positions are indicated by the black line.

contours. Our technique also provides slightly smaller
outer contours. A comparison with the ground truth indi-
cates that our segmentation is often temporally smoother.
This is attributed to the human annotator segmenting one
frame at a time, and thereby largely disregarding temporal
behaviour.
Figures 15, 16, 17 and 18 show frame Dice errors

against time and slice position for the inner and outer

contours. The vertical axes of these graphs are logarith-
mically scaled. The geometric means (arithmetic mean
in the log-scale) in these figures are indicated by solid
black lines. We observe that the majority of incorrect
segmentations occur during end-systole (t ≈ 8) and spa-
tially lower slices (depth > 9) where the blood pool is
at its smallest (sometimes completely disappearing from
view). In these frames papillary muscles are most visible,

Figure 18 Outer Dice errors over slices. Outer contour Dice errors over different slices. For illustrative purposes, a random real value between zero
and one was added to each slice depth. The geometric means for the slice positions are indicated by the black line.
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obscuring not only the border, but a significant part of the
endocardium.
Table 1 contains segmentation errors of the inner and

outer contours as reported by a selection of different
authors. We report our results as the landmark error
[9], i.e. the average of the shortest distances between the
points on the ground truth contour and the inferred con-
tour. These results are, however, from different datasets
and there are also subtle, but important, differences in
the error criteria. Refer to the individual papers for more
detail. This table should therefore only be used as a rough
comparison to other techniques. For a more comprehen-
sive summary of reported errors see [25]. The Sunnybrook
dataset is used in a later section to more fairly compare
our technique to others.

Sensitivity to initial centre point placement
Figure 19 illustrates the sensitivity of the segmentation to
incorrect placement of the initial centre point, c(0). For
each video sequence, an initial centre point is generated
at a fractional distance, d, between the ground truth cen-
tre and a randomly selected point on the ground truth
inner contour. The CRF parameters are not retrained on
these imperfectly placed centre points, which would pos-
sibly allow the system to weigh shape information less and
thus improve results.
As can be seen from Figure 19, the segmentations

of the inner and outer contours remain relatively sta-
ble while c(0) is within the inner 20% of the endo-
cardium. When placed at approximately 50% between the

ground truth centre point and inner contour, the spa-
tial continuity assumption of (12) is violated enough that
the quality of the inferred contours begin to deteriorate
significantly.

Sunnybrook cardiac segmentation dataset
The Sunnybrook Cardiac MR Database [5] is provided
by the Sunnybrook Health Sciences Centre and was used
for the 2009 MICCAI Cardiac MR Left Ventricle Seg-
mentation Challenge. The dataset contains 45 subjects,
with an average age of 61, with diverse morphologies
(Heart failure with and without infarction, LV hypertro-
phy, and healthy subjects) and is manually segmented by
a cardiologist. The inner contours are annotated only at
end-diastole and end-systole, while the outer contours are
annotated only at end-systole. A ground truth segmenta-
tion of the intermittent frames is therefore not available,
making extraction of temporal information for this dataset
difficult.
Due to the sparsity of annotations in this dataset, all

feature functions are re-used as derived from the York
dataset. The model used to segment the Sunnybrook
data therefore includes features derived from the trained
edge classifiers, temporal behaviour and inner-outer rela-
tionships of the York dataset. Only the CRF parameters
(i.e. the relative importance of the features) are retrained
on a training subset of the Sunnybrook data. To further
compensate for the relatively few examples, and thus avoid
over-fitting, a very weakly weighted L1-norm parameter
regularization term (

∑
d
∣∣log θd

∣∣) is added to the objective

Figure 19 Centre point robustness. Sensitivity of segmentation with regard to incorrect centre point in first frame. The distance d is the fractional
position between the ground truth centre point and the ground truth inner contour. See Section “Sensitivity to initial centre point placement” for
more detail.
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function. Since this term is applied to the log of the param-
eters, it effectively penalizes the specialization on features
by the optimizer. A detailed analysis of the effects of
parameter regularization in our application is beyond the
scope of this article.
A notable difference from the York dataset is the pres-

ence of images of patients with heart failure, where the
cardiac wall is exceptionally thin, as indicated by the yel-
low arrows in Figure 20. To compensate we modified the
belief propagation beam search by reducing the minimum
allowed difference between the inner and outer variables
(i.e. wall thickness) from 10 to 2. We also reduced the
radial offset used in the features described by (15) and (16)
from ερ = 2 pixels to ερ = 1, to adequately capture the
wall colour when very thin.
This modification suggests that there are important

model parameters that are dependant on the patient
pathology. A practical segmentation tool could allow the
operator the option to provide a prior diagnosis or more
fine grained control over some settings.
During training of the edge classifier from the York

dataset, it was assumed that the extracted radial win-
dow, vρ , contains an edge if the annotated edge is within
two radial distances from the middle of the window.
This assumption is problematic if used to train the edge
classifier on the Sunnybrook dataset. A small wall thick-
ness, as is common in this dataset, would cause both
the inner and outer contours to fall within this crite-
ria, resulting in inconsistencies in the training examples
and thus weakening the resulting edge detector. To train
a classifier on this dataset it would thus be necessary
to be more strict with regard to the minimum radial
distance.

Segmentation analysis
Figure 21 contains a selection of images from this dataset
and their automatic segmentations. See also Additional

file 2. A qualitative examination of the results suggests
that segmentations are generally of good quality; the
papillary muscles are included even if they obscure the
endocardium border.
Bland-Altman plots of end-diastole volume, end-

systole volume, ejection fraction and mass are shown in
Figures 22, 23, 24 and 25, respectively. The end-diastole
volumes, as predicted by our technique and as annotated
by the human specialist, agree with a small bias and vari-
ance (−3.35 ± 7.61 ml). End-systole volumes agree with
a small bias, but a relatively large variance (1.75 ± 20.21
ml). This leads to a relatively small bias, but relatively
large variance in the agreement of the calculated ejection
fractions (−4.66 ± 10.73%). The calculated left ventricle
mass has a small bias and variance (−0.95 ± 11.58 g).
The end-diastole volume in Figure 22 and Bland-Altman

plot of end-diastole inner contour area in Figure 26
also illustrate the algorithm’s tendency to yield contours
smaller than the ground truth at end-diastole. The Bland-
Altman plot of end-systolic volume in Figure 23 and
end-systolic inner contour area in Figure 27 illustrate
that small volumes are overestimated and large volumes
underestimated.
Table 2 contains a summary of Dice errors and

APD as reported by various authors on the Sunny-
brook dataset during the challenge [5] including our
results, before and after parameter retraining. Prior to
retraining, results are comparable but slightly worse
than the top performing challenge entries. After param-
eter re-estimation on the training subset our results
outperform the entries on the evaluation set in terms
of the inner contours’ Dice metric. Our average Dice
similarity of the outer contours is comparable to the
best performing entries in the challenge. Our average
APD for the inner and outer contours are equal to
or smaller than reported by any of the authors in the
challenge.

Figure 20 Sunnybrook wall thickness. Examples from the Sunnybrook dataset with thin cardiac walls, as indicated by the yellow arrows.



Dreijer et al. BMCMedical Imaging 2013, 13:24 Page 17 of 23
http://www.biomedcentral.com/1471-2342/13/24

Figure 21 Sunnybrook automatic segmentations. Selection of images and their automatically segmented contours (inner contour is blue and
outer is green). The blue dot in the middle of the endocardium is the estimated centre point.

Table 3 provides a more detailed report on the result-
ing segmentations of the patients in the evaluation set,
as generated by the evaluation code provided with the
dataset. The table also indicates the percentage of good
contours for each subject, i.e. those with an APD smaller
than 5 mm.
Our segmentation process performs well on those

subjects in the evaluation set with normal heart func-
tion (SC-N) and those with heart failure with (SC-HF-I)
and without infarction (SC-HF-NI). Our process performs
worst on the inner contour of patients in the evaluation set
with hypertrophy (SC-HYP) as is illustrated in Figure 28.

This effect is also observed in other models by other
authors [25].

Discussion
In this article, the CRF parameters are estimated using
a gradient-free search approach. The time spent search-
ing for parameters can be further reduced by considering
only a subset of the training videos. Due to the relatively
low dimensionality of the parameter search space (≈ 14
dimensions) and relatively informative nature of each
video sequence for all parameters, data scarcity is not a
problem. It is, however, advisable that the training set

Figure 22 Bland-Altman plot of EDV. Bland-Altman plot of automatically determinedminus ground truth end-diastole volume including mean
difference and standard deviation lines.
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Figure 23 Bland-Altman plot of ESV. Bland-Altman plot of automatically determinedminus ground truth end-systole volume including mean
difference and standard deviation lines.

contains a sufficient number of video sequences in which
the papillary muscles obscure the endocardium border.
Note that no image preprocessing is done to compen-

sate for effects such as different intensity settings on the
MRI equipment. Image equalisation before segmentation
would likely result in more robust result.
Inclusion of spatially neighbouring slices into a uni-

fied 3D and time model might also increase segmentation

accuracy. Information at spatially higher slices, where the
papillary muscles are less problematic, could then be used
to improve the accuracy at lower slices. Linking the radial
values between different slices would be relatively simple.
This can be done with appropriate feature functions simi-
lar to those restricting radial continuity in a single contour.
This would, however, require aligning slices to compen-
sate for translation caused by different levels of inhalation

Figure 24 Bland-Altman plot of EF. Bland-Altman plot of automatically determinedminus ground truth ejection fraction including mean difference
and standard deviation lines.
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Figure 25 Bland-Altman plot of LV mass. Bland-Altman plot of automatically determinedminus ground truth LV mass including mean difference
and standard deviation lines.

and expiration between slices. It should also be simple
to extend the segmentation process to include these
additional features by adding them to the propagated
messages.
Ideally, the time of end-systole in (14) should not be

decided before inference, however, this might require
a second order CRF or modelling as an additional

unobserved variable. This would lead to an increase in
segmentation time. Alternatively, techniques based on
detecting temporary suspension and reversal of optical
flow could be useful in detecting end-systole.
A second order system would also make the incorpo-

ration of contour smoothness information possible, as
currently only contour continuity is taken into account.

Figure 26 Bland-Altman plot of ED area. Bland-Altman plot of automatically determinedminus ground truth end-diastole area including mean
difference and standard deviation lines.
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Figure 27 Bland-Altman plot of ES area. Bland-Altman plot of automatically determinedminus ground truth end-systole area including mean
difference and standard deviation lines.

Alternatively, post-processing of the resultant contours by
fitting them to splines, would improve smoothness.
From a visual inspection of the ground truth it is clear

that there are inconsistencies in the human annotations
with regard to the inclusion of the papillary muscles in
the inner contour. These inconsistencies reduce the dis-
criminative ability of the edge classifier and influences the
optimal CRF parameter values estimated during training.
Also, because the human annotated contours are used
for evaluation, inconsistencies of the human annotations
need to be taken into account when interpreting any
results based on this as ground truth. In short: incon-
sistent examples in the training and evaluation set will

result in an upper limit to the accuracy achievable by any
consistent system.

Conclusion
We present a CRF implementation for the automated seg-
mentation of the left ventricle. Features are derived from
discriminative properties of a human annotated dataset.
The algorithm exhibits robustness against inclusion of
the papillary muscles by integrating shape and motion
information.
Experiments on the Sunnybrook dataset suggests that

our technique would provide segmentations superior to
those reported in the challenge.

Table 2 Comparison of Sunnybrook Dice errors

Authors Dice similarity APD (mm)

Inner Outer Inner Outer

Our method (trained on York) 0.87 0.92 2.70 2.23

Ourmethod (after retraining) 0.91 0.93 1.84 1.95

Marak et al. [26] 0.86 0.93 2.6 3.0

Lu et al. [27] 0.89 0.94 2.07 1.91

Wijnhout et al. [28] 0.89 0.93 2.29 2.28

Casta et al. [29] - 0.93 - 2.72

O’Brien et al. [30] 0.81 0.91 3.73 3.16

Constantinides et al. [31] 0.89 0.92 2.35 2.04

Huang S. et al. [32] 0.89 0.94 2.10 1.95

Jolly [14] 0.88 0.93 2.44 2.05

Average Dice similarity metric and Average Perpendicular Distance (APD) for our segmentation of the Sunnybrook validation set (before and after training) and those
reported by the different challenge entries.
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Table 3 Sunnybrook results

Patient Good (%) APD (mm) Dice similarity

Inner Outer Inner Outer Inner Outer

SC-HF-I-05 100 100 1.52 1.86 0.94 0.95

SC-HF-I-06 100 100 1.66 1.45 0.92 0.95

SC-HF-I-07 100 100 2.37 2.79 0.89 0.90

SC-HF-I-08 95 100 1.68 1.37 0.93 0.96

SC-HF-NI-07 100 100 2.21 2.20 0.91 0.93

SC-HF-NI-11 100 100 1.70 1.25 0.93 0.96

SC-HF-NI-31 100 100 2.06 1.58 0.91 0.95

SC-HF-NI-33 94 100 1.68 1.64 0.91 0.94

SC-HYP-06 92 100 1.67 2.05 0.90 0.92

SC-HYP-07 69 100 1.39 1.83 0.93 0.94

SC-HYP-08 68 100 2.27 2.33 0.90 0.93

SC-HYP-37 69 71 2.21 2.44 0.86 0.91

SC-N-05 93 100 1.67 2.45 0.89 0.89

SC-N-06 100 86 1.76 2.12 0.89 0.91

SC-N-07 100 100 1.79 1.95 0.88 0.90

mean 92 97 1.84 1.95 0.91 0.93

std deviation 12.4 8.0 0.30 0.44 0.02 0.02

Patient specific Average Perpendicular Distance (APD), and Dice similarity between annotations and ground truth of the Sunnybrook validation set.

The most significant segmentation errors are present
in images of patients with hypertrophy, when the blood
pool disappears from view. This limitation is due to the
assumption that the inner contour is present in each
frame. Future work could address these failures, possibly
through the modelling of the right ventricle’s center point

to avoid the LV outer contour from snapping to the outer
edge of the entire heart structure.
Additional modelling of the right ventricle would also

be beneficial, but is complicated by the polar coordinate
space formulation, which allows only for one center point
per frame.

Figure 28 Bad quality Sunnybrook automatic segmentations. Selection of images from validation patient images with hypertrophy and their
low quality automatically segmented contours (inner contour is blue and outer is green). The blue dot in the middle of the endocardium is the
estimated centre point.
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Future work could also include faster and more robust
centre point estimation. As mentioned previously, fram-
ing the centre point estimation in a model that can be
solved with dynamic programming allows us to formulate
its optimization as a belief propagation algorithm. This
has the advantage that the centre point can be estimated as
an additional latent variable in our CRF model, that needs
to be inferred. Alternating between inferring ρ and c is
thus theoretically possible, although insufficient research
has been done as to its practical value.
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Sunnybrook dataset.

Competing interests
The authors declare they have no competing interests.

Authors’ contributions
JD developed the model, wrote the software and wrote most of the paper. BH
and JdP contributed to the analysis of the model and co-authored the paper.
All authors read and approved the final manuscript.

Received: 26 September 2012 Accepted: 25 July 2013
Published: 31 July 2013

References
1. Anderson JL, Weaver AN, Horne BD, Jones HU, Jelaco GK, Cha JA, Busto

HE, Hall J, Walker K, Blatter DD: Normal cardiac magnetic resonance
measurements and interobserver discrepancies in volumes and
mass using the papillary muscle inclusion method. Open Gen Intern
Med J 2007, 1:6–12.

2. Janik M, Cham MD, Ross MI, Wang Y, Codella N, Min JK, Prince MR,
Manoushagian S, Okin PM, Devereux RB, Weinsaft JW: Effects of
papillary muscles and trabeculae on left ventricular quantification:
increased impact of methodological variability in patients with left
ventricular hypertrophy. J Hypertens 2008, 26(8):1677–1685.

3. Burkhard Sievers M, Kirchberg S, Bakan A, Ulrich Franken M, Hans-Joachim
Trappe M: Impact of papillary muscles in ventricular volume and
ejection fraction assessment by cardiovascular magnetic resonance.
J Cardiovasc Magn Reson 2004, 6:9–16.

4. Vogel-Claussen J, Finn J, Gomes A, Hundley G, Jerosch-Herold M, Pearson
G, Sinha S, Lima J, Bluemke D: Left ventricular papillary muscle
mass:relationship to left ventricular mass and volumes by magnetic
resonance imaging. J Comput Assist Tomogr 2006, 30(3):426–432.

5. Radau P, Lu Y, Connelly K, Paul G, Dick A, Wright G: Evaluation
framework for algorithms segmenting short axis cardiac MRI.MIDAS
J - Card MR Left Ventricle Segmentation Challenge 2009. [Sunnybrook
Hospital]http://hdl.handle.net/10380/3070

6. Heiberg E: Automated feature detection in multidimensional
images. PhD thesis, Linkoping University, Sweden, 2004.

7. Mcinerney T, Terzopoulos D: Deformable models in medical image
analysis: A survey.Med Image Anal 1996, 1:91–108.

8. Cootes T, Taylor C, Cooper D, Graham J: Active shape models - their
training and application. Comput Vis Image Unders 1995, 61:38–59.

9. Andreopoulos A, Tsotsos JK: Efficient and generalizable statistical
models of shape and appearance for analysis of cardiac MRI.Med
Image Anal 2008, 12(3):335–357.

10. Li SZ:Markov, Random Field Modeling in Image Analysis. Secaucus:
Springer-Verlag New York, Inc.; 2001.

11. Sutton C, McCallum A, et al.: Introduction to Statistical Relational Learning,
An Introduction to Conditional Random Fields for Relational Learning.
Cambridge: MIT Press; 2007. chap. 4.

12. Huang R, Pavlovic V, Metaxas DN: A graphical model framework for
coupling MRFs and deformable models. In Proceedings of CVPR 2004.
Washington: IEEE Computer Society; 2004:739–746.

13. Cordero-Grande L, Vegas-Sánchez-Ferrero G, de-la Higuera PC,
San-Román-Calvar JA, Revilla-Orodea A, Martín-Fernández M,
Alberola-López C: Unsupervised 4Dmyocardium segmentation with
a Markov Random Field based deformable model.Med Image Anal
2011, 15(3):283–301.

14. Jolly M: Fully automatic left ventricle segmentation in cardiac cine
MR images using registration andminimum surfaces.MIDAS J - Card
MR Left Ventricle Segmentation Challenge 2009. [http://hdl.handle.net/
10380/3114]

15. Dreijer J, Du Preez J, Herbst B: Edgemodelling MRFs for cardiac MRI
segmentation. Pattern Recognit Assoc S Afr, Proc 2010, 21:81–86.

16. Lafferty J, McCallum A, Pereira F: Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In
Proceedings of the Eighteenth International Conference onMachine
Learning. International Conference on Machine Learning. Morgan
Kaufmann Publishers Inc: San Francisco; 2001:282–289.

17. Kschischang F, Frey B, Loeliger HA: Factor graphs and the sum-product
algorithm. Inf Theory, IEEE Trans 2001, 47(2):498–519.

18. Goldberger J, Kfir H: Serial schedules for belief-propagation: analysis
of convergence time. Inf Theory, IEEE Trans 2008, 54(3):1316–1319.

19. Weiss Y, Freeman WT: On the optimality of solutions of the
max-product belief propagation algorithm in arbitrary graphs. Inf
Theory, IEEE Trans 2001, 47(2):723–735.

20. Besag J: Statistical analysis of non-lattice data. Statistician 1975,
24(3):179–195.

21. Sutton C, McCallum A: Piecewise pseudolikelihood for efficient CRF
training. In International Conference onMachine Learning. NY: ACM Press;
2007:863–870.

22. Powell MJD: An efficient method for finding the minimum of a
function of several variables without calculating derivatives. Comput
J 1964, 7(2):155–162. [http://comjnl.oxfordjournals.org/content/7/2/155.
abstract]

23. Üzümcü M: Constrained segmentation of cardiac MR image
sequences. PhD thesis. Leiden University, Germany, 2007.

24. Lorenzo-Valdés M, Sanchez-Ortiz GI, Elkington AG, Mohiaddin RH,
Rueckert D: Segmentation of 4D cardiac MR images using a
probabilistic atlas and the EM algorithm.Med Image Anal 2004,
8(3):255–265. http://www.sciencedirect.com/science/article/pii/
S1361841504000271.

25. Petitjean C, Dacher JN: A review of segmentation methods in short
axis cardiac MR images.Med Image Anal 2011, 15(2):169–184. http://
www.sciencedirect.com/science/article/pii/S1361841510001349.

26. Marak L, Cousty J, Najman L, Talbot H: 4DMorphological segmentation
and the MICCAI LV-segmentation grand challenge.MIDAS J - Card MR
Left Ventricle Segmentation Challenge 2009. http://hdl.handle.net/10380/
3085.

27. Lu Y, Radau P, Connelly K, Dick A, Wright G: Automatic image-driven
segmentation of left ventricle in cardiac cine MRI.MIDAS J - Cardiac
MR Left Ventricle Segmentation Challenge 2009. http://hdl.handle.net/
10380/3109.

28. Wijnhout J, Hendriksen D, Assen HV, der Geest RV: LV challenge LKEB
contribution: fully automated myocardial contour detection.MIDAS
J - Card MR Left Ventricle Segmentation Challenge 2009. http://hdl.handle.
net/10380/3115.

29. Casta C, Clarysse P, Schaerer J, Pousin J: Evaluation of the dynamic
deformable elastic template model for the segmentation of the
heart in MRI sequences.MIDAS J - Card MR Left Ventricle Segmentation
Challenge 2009. http://hdl.handle.net/10380/3072.

30. O’Brien S, Ghita O, Whelan P: Segmenting the left ventricle in 3D using
a coupled ASM and a learned non-rigid spatial model.MIDAS J - Card
MR Left Ventricle Segmentation Challenge 2009. http://hdl.handle.net/
10380/3110.

31. Constantinides C, Chenoune Y, Kachenoura N, Roullot E, Mousseaux E,
Herment A, Frouin F: Semi-automated cardiac segmentation on cine
magnetic resonance images using GVF-Snake deformable models.

http://www.biomedcentral.com/content/supplementary/1471-2342-13-24-S1.mp4
http://www.biomedcentral.com/content/supplementary/1471-2342-13-24-S2.png
http://hdl.handle.net/10380/3070
http://hdl.handle.net/10380/3114
http://hdl.handle.net/10380/3114
http://comjnl.oxfordjournals.org/content/7/2/155.abstract
http://comjnl.oxfordjournals.org/content/7/2/155.abstract
http://www.sciencedirect.com/science/article/pii/S1361841504000271
http://www.sciencedirect.com/science/article/pii/S1361841504000271
http://www.sciencedirect.com/science/article/pii/S1361841510001349
http://www.sciencedirect.com/science/article/pii/S1361841510001349
http://hdl.handle.net/10380/3085
http://hdl.handle.net/10380/3085
http://hdl.handle.net/10380/3109
http://hdl.handle.net/10380/3109
http://hdl.handle.net/10380/3115
http://hdl.handle.net/10380/3115
http://hdl.handle.net/10380/3072
http://hdl.handle.net/10380/3110
http://hdl.handle.net/10380/3110


Dreijer et al. BMCMedical Imaging 2013, 13:24 Page 23 of 23
http://www.biomedcentral.com/1471-2342/13/24

MIDAS J - Card MR Left Ventricle Segmentation Challenge 2009. http://hdl.
handle.net/10380/3108.

32. Huang S, Liu J, Lee LC, Venkatesh SK, Teo LLS, Au C, Nowinski WL:
Segmentation of the left ventricle from cine MR images using a
comprehensive approach.MIDAS J - Card MR Left Ventricle Segmentation
Challenge 2009. http://hdl.handle.net/10380/3121.

doi:10.1186/1471-2342-13-24
Cite this article as: Dreijer et al.: Left ventricular segmentation from MRI
datasets with edge modelling conditional random fields. BMC Medical
Imaging 2013 13:24.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://hdl.handle.net/10380/3108
http://hdl.handle.net/10380/3108
http://hdl.handle.net/10380/3121

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Conditional random field
	Problem formulation
	Centre point estimation
	The CRF model
	Feature functions
	Feature function based on edge classifiers
	Spatial and temporal feature functions
	Inner-outer radius feature functions

	Segmentation
	Propagation schedule
	Message normalization
	Convergence and optimality

	CRF parameter estimation
	Maximum likelihood estimation
	Parameter estimation

	Implementation

	Results
	York cardiac segmentation dataset
	Segmentation analysis
	Sensitivity to initial centre point placement

	Sunnybrook cardiac segmentation dataset
	Segmentation analysis


	Discussion
	Conclusion
	Additional files
	Additional file 1
	Additional file 2

	Competing interests
	Authors' contributions
	References

