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Abstract

Background: Deep learning algorithms are increasingly used for automatic medical imaging analysis and cardiac
chamber segmentation. Especially in congenital heart disease, obtaining a sufficient number of training images and
data anonymity issues remain of concern.

Methods: Progressive generative adversarial networks (PG-GAN) were trained on cardiac magnetic resonance
imaging (MRI) frames from a nationwide prospective study to generate synthetic MRI frames. These synthetic
frames were subsequently used to train segmentation networks (U-Net) and the quality of the synthetic training
images, as well as the performance of the segmentation network was compared to U-Net-based solutions trained
entirely on patient data.

Results: Cardiac MRI data from 303 patients with Tetralogy of Fallot were used for PG-GAN training. Using this
model, we generated 100,000 synthetic images with a resolution of 256 × 256 pixels in 4-chamber and 2-chamber
views. All synthetic samples were classified as anatomically plausible by human observers. The segmentation
performance of the U-Net trained on data from 42 separate patients was statistically significantly better compared
to the PG-GAN based training in an external dataset of 50 patients, however, the actual difference in segmentation
quality was negligible (< 1% in absolute terms for all models).

Conclusion: We demonstrate the utility of PG-GANs for generating large amounts of realistically looking cardiac
MRI images even in rare cardiac conditions. The generated images are not subject to data anonymity and privacy
concerns and can be shared freely between institutions. Training supervised deep learning segmentation networks
on this synthetic data yielded similar results compared to direct training on original patient data.
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Background
Deep learning technology is currently in the process of
revolutionizing medical diagnostic services [1]. Convolu-
tional networks are matching or surpassing human oper-
ators in image classification and are increasingly
proposed as an adjunct to human medical decision mak-
ing [2]. Beyond diagnostic classifiers, cardiac chamber
segmentation as well as assisted or fully automatic meas-
urement of cardiac function have been developed and
are being implemented [3, 4]. Most applications, cur-
rently under development require a supervised learning
set-up and are thus dependent on labelled medical data
for training purposes. While some common disorders
should impose virtually no limit on available training
material (except for obvious logistic and financial restric-
tions), in rare medical conditions obtaining an adequate
volume of training data may be challenging. Further-
more, in rare disease conditions even pooling actual pa-
tient data from multiple institutions may be difficult due
to privacy concerns and restrictive local legal regula-
tions. The current project was inspired by the recent de-
velopment in the field of unsupervised deep learning.
Karras and colleagues improved generative adversarial

networks (GAN), allowing them to generate naturally
looking human faces at a resolution of 1024 × 1024
pixels [5]. Many of the images generated by these novel
progressive GANs (PG-GAN) are visually undistinguish-
able from actual human faces. We adopted this innova-
tive approach to the field of cardiac magnetic resonance
imaging (MRI). Specifically, we aimed to test the utility
of PG-GANs to generate accurate synthetic equivalents
to MRI frames from patients with Tetralogy of Fallot (a
form of congenital heart disease in need of regular MRI
follow-up). Building on our experience with convolu-
tional segmentation networks we also investigated
whether these synthetic images could be used to train
downstream deep learning segmentation networks with-
out the need for actual patient data [3, 6].

Methods
Overview of the study
Fig. 1 illustrates the overall study design. Cardiac MRIs
obtained from patients with Tetralogy of Fallot were
split into three groups. One part (n = 303 patients) was
used to train progressive GAN networks, which in turn
produced synthetic MRI frames that were utilized to

Fig. 1 Study overview illustrating the use of original cardiac magnetic resonance (CMR) images for generation of synthetic short axis (SAX) and
long axis (LAX) images using a progressive generative adversarial network (PG GAN). The resulting images were subjected to visual inspection by
CMR experts and general cardiologists. In addition, deep learning segmentation networks (with U-Net design) were built based, both, on PG GAN
and actual CMR frames. The accuracy of the resulting segmentation networks was finally compared on a separate data set not used for training
of either network
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manually produce segmentation maps for the training of
downstream U-Net segmentation models. A second part
(n = 42 patients) was utilized to train U-Nets directly on
patient frames. The performance of these two U-Net
models was subsequently compared with a third (inde-
pendent) fraction of the data (n = 50 patients), not used
for training either U-Net models. In addition, the quality
of the synthetic PG-GAN images was assessed visually,
and the degree of similarity to original MRI images was
quantified using a statistical similarity index (for details
see below).

Progressive GAN (PG-GAN)
To generate realistic images of long and short axis car-
diac MRI frames, two progressive GANs were built as
described in detail by Karras et al. 2018 [5]. The ori-
ginal network was modified for the specific require-
ments of our dataset based on the GANLib GitHub
repository and implemented in TensorFlow [7]. Adap-
tations compared to the original publication included
the reduction of the output dimension to one channel
(to account for grayscale MRI frames) and the reduc-
tion of the maximum image size to 256 × 256 pixels to
account for the available computing power compared
to the published commercial NVIDIA setup. As in the
original publication, the current PG-GAN was grown
progressively, increasing image size from 4 × 4 pixels to
82, 162, 322, 642, 1282 and 2562 pixels, respectively. The
number of filters and the batch size was adjusted ac-
cordingly (for details see below). A latent vector of di-
mension 64 was used as an input to the generator
which consisted of blocks of 4 × 4 and 3 × 3 2-D convo-
lution layers with leaky ReLU (leakiness 0.2) and a 2-D
upscale layer. In analogy to the original model, new
layer-blocks were added to both the generator and the
discriminator incrementally, while existing layers
remained trainable. Additional layers were faded in,
doubling the resolution of the generator and the dis-
criminator but allowing for a smooth transition in the
process. The addition of minibatch standard deviation
into the discriminator and pixel-wise feature vector
normalization in the generator were also implemented
as originally described [5]. The corresponding discrim-
inator had a symmetric design with layer blocks of 3 × 3
and 4 × 4 convolutional layers (including leaky ReLU)
and a 2-D average pooling layer. Filter number was 48,
32, 24, 16, 16, 16 and 16 respectively for the 3-layer
blocks. Adam optimization was employed and the Was-
serstein distance served as distance metric [8]. During
training, the batch size was decreased as the resolution
increased to match available memory constraints from
64 to 16 samples. Training of the model for 124,000
epochs on a Windows i9 PC with an NVIDIA GeForce

RTX 2080Ti graphic processing unit required approxi-
mately 12 h per model.

Dataset for PG-GAN training
Overall, 6400 4-chamber long axis (LAX) MRI frames
from 279 patients and 7015 2-chamber short axis (SAX)
images from 303 patients (57.8% male patients, median
age [IQR] 15.0 years [12.8–19.3 years], height 170 cm
[163–177 cm], weight 54.0 kg [43.0–69.9 kg]) were used
for training the PG-GANs. All patients had a diagnosis
of congenital heart disease with a status post repair for
tetralogy of Fallot - a form of cyanotic congenital heart
disease which accounts for approximately 12% of adults
with congenital heart disease under regular follow at
specialized centers [9]. The patients formed part of a
prospective nationwide study initiated and conducted by
the Investigators of the German Competence Network
for Congenital Heart Defects between 2003 and 2009
(Follow up of Post- Repair Tetralogy of Fallot; www.
ClinicalTrials.gov; unique identifier, NCT00266188). In-
clusion criteria were absence of an implantable
cardioverter-defibrillator and a patient age at the time of
MRI > 8 years. The MRIs were collected at 14 German
centers using a pre-defined protocol. Further details on
the MRI protocol as well as additional exclusion criteria
have been reported by the study consortium previously
[10–12]. All MRI cine loops were saved in DICOM for-
mat in a centralized digital imaging database. These ar-
chived cine loops were made available for the current
study. All patients included are enrolled in the National
Register and approval of the study protocol was obtained
from the appropriate ethics committee. The included
subjects gave appropriate informed consent before the
baseline MRI investigation and study inclusion.

Administrative permissions / ethics approval
All study participants (or their legal representatives) gave
written informed consent before the baseline MRI inves-
tigation and study inclusion, which were approved by
the Ethics Committee (Ruhr University Bochum, Bad
Oeynhausen, Germany, Reg.-No. 14/03). In addition, re-
search within the framework of the National Register for
Congenital Heart Defects is covered by Ethics Approval
by the Charité Ethics Committee, Berlin, Germany.

Visual assessment of the PG-GAN results
To evaluate the quality of the synthetic PG-GAN net-
work frames, a random selection of 200 PG-GAN de-
rived, and 200 original MRI frames were presented to
human investigators head to head. The operator was
presented with two images in a random order arrange-
ment (one PG-GAN based, one original) and was re-
quired to determine which image was of GAN origin.
The number of correct answers is reported as a
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percentage of total pairs presented, representing a meas-
ure of the discriminatory ability of human operators. To
test whether experienced cardiac MRI specialists may
have a superior ability to recognize synthetic images
compared to cardiologists not directly involved in car-
diac MRI reporting the results were compared using the
Fisher exact test and p-values are reported.

Identification of similarities between GAN images and
original patient frames
To identify similarities between the generated PG-GAN
frames and natural MRI frames available in the dataset a
multi-scale statistical similarity index (sliced Wasser-
stein) distance approach at various resolutions is adapted
[5]. To this end, a Laplacian pyramid of the images was
created, and the Wasserstein distance was calculated for
a series of pixels in both the PG-GAN and all the avail-
able original images. The images with the lowest sliced
Wasserstein distance were considered to be the most
similar to the synthetic PG-GAN frame in question.

Segmentation network (U-net)
For segmentation of cardiac chambers, a U-Net setup
was employed [13]. The network is illustrated in Fig. 2.
It accepts individual MRI images at a resolution of
128 × 128 grayscale pixels´ and returns segmentation
maps for the various cardiac chambers (left ventricle
[LV], right ventricle [RV] and right atrium [RA]). For
training, the model was presented with raw images as
well as manually produced masks (RV and LV for the
SAX view or RV, LV and RA for the LAX view). Overall,
1000 pairs of original SAX and LAX images with corre-
sponding maps were produced and were the basis of U-
Net training. These image/mask pairs were derived from

42 ToF patients not used for PG-GAN training. To in-
crease the heterogeneity of the data image augmentation
was applied to all 1000 frames and masks (rotations ±
20°, width and height shifts of 5% as well as shears and
zoom of up to 20 and 10%, respectively, with horizontal
or vertical flipping disabled) resulting in 10,000 aug-
mented image/mask pairs. Training was performed using
Intel i7 and i9 computers equipped with NVIDIA
GeForce GTX 1070 and GeForce RTX 2080Ti graphic
processing units. For training, a validation split of 5%
was employed. The U-Net was implemented in R (Ten-
sorFlow version 1.8; keras package version 2.1.6; CUDA
version 9.0.176) as previously described [3, 13].
In total, two pairs of U-Net models were produced.

One pair (including a SAX and a LAX model) based on
a training data set using original patient MRI frames and
a second pair trained on a random sample of frames
produced by the PG-GAN model.

Comparison of segmentation network (U-net)
performance
To assess performance differences between U-Nets
trained on synthetic PG-GAN derived data from those
trained directly on patient MRI frames, the Dice metric
and percentage area variability (ratio of the area differ-
ence between actual and predicted area, divided by the
actual area) were assessed for both models compared to
ground-truth masks produced manually on a set of
frames from patients not used for model training. Details
on the calculation of Dice metrics and percentage area
variability have been reported in detail in the literature
by us and others previously [3, 4]. Briefly, the Dice
metric assesses the overlap between U-Net derived and
the ground-truth segmentation. The value of the metric

Fig. 2 Illustration of the network design of the U-Net segmentation network. The network accepts a greyscale frame (128 × 128 pixels) and
produces segmentation maps of equal size for the heart chambers involved. The network consists of a contracting path with multiple 3 × 3
convolutions followed by ReLU (Rectified Linear Unit) activation and a max. Pooling operation (2 × 2). The number of channels is doubled at each
step of the contraction path. In the expanding part, the feature maps are upscaled symmetrically, with 2 × 2 up-convolutions. In addition,
channels of the expanding path are combined with the corresponding part of the contracting path through concatenation. The number on top
corresponds to the number of channels, while the dimensions are given on the left of the respective boxes. For details see Ref. [13]
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will bin in the range of 0 to 1, with 0 indicating the
worst possible segmentation (no overlap) and 1 corre-
sponding to a perfect segmentation result. Differences
for these metrics between the PG-GAN and actual pa-
tient MRI-based U-Nets was tested by using (paired)
Wilcoxon’s rank sum tests.

Results
Feasibility of PG-GAN training and visual results
The first aim of the study was to test the feasibility of
training the PG-GANs on the data available. We found
no evidence of training instability in our models. Figure 3
illustrates the progress of image generation as the reso-
lution was increased during training from 42 to 1282 and
2562 pixels. All GANs trained as expected and yielded
visually acceptable synthetic MRI frames. Based on the
results of the multiscale statistical similarity between
PG-GAN generated frames and actual patient MRI
frames, Fig. 4 shows a comparison between three repre-
sentative PG-GAN generated images (top row), and re-
spective actual patient images with the lowest
Wasserstein distance.
Presenting 200 pairs of randomly positioned images

(one from the PG-GAN, one original MRI frame) to
study subjects with various grades of experience showed
that 68.7 and 85.3% of the short axis images generated
by the PG GAN were recognized as such by experienced
cardiologists (GD, AF and UB) and CMR experts (RR
and SO), respectively. For 4-chamber views the correct
recognition rate was 72.2% for non-CMR specialists and
88.0% for the experienced CMR readers. The trained
and experienced CMR-experts performed significantly
better compared to the cardiologists not directly in-
volved in cardiac MRI reporting (p-value < 0.001 for
both short and long axis frames). Overall, however, none
of the PG-GAN derived frames was labelled as anatom-
ically implausible by the reviewers.

Results of segmentation training based on PG-GAN data
The performance of trained U-Net models was tested on
a set of 100 MRI frames from patients not used for PG-
GAN or U-Net training and the percentage variation as
well as the Dice metric was quantified. Comparing seg-
mentation networks (U-Net) trained on actual patient
MRIs and those trained entirely on PG-GAN derived
data showed only slight superiority in performance for
the former. As shown in Table 1 while U-Nets trained
on patient data directly had statistically significantly bet-
ter results, the actual values were very similar between
the models. The absolute difference between the models
is less than 1% for comparisons.

Discussion
The current study demonstrates the use of GANs to
generate synthetic cardiac MRI images of patients with
congenital heart disease. As data quantity and quality
are critical for training deep learning models, the pro-
posed method should be useful to assist training down-
stream deep learning networks in the setting of rare
medical conditions. The synthetic GAN images are not
subject to data anonymity issues or privacy concerns
and can be shared freely between medical institutions,
allowing accelerated development of new diagnostic
tools.
Artificial intelligence and deep learning solutions are

revolutionizing interpretation of medical images. It is
hoped that these technologies will not only augment effi-
ciency but also improve diagnostic quality. Most current
implementations use image classifiers or segmentation
networks to this end [14, 15]. These technologies accept
a high dimensional input (generally an image) and yield
a lower dimensional output such as assigning the image
to a limited number of possible diagnostic groups or
classifying image pixels to particular anatomic segments.
The approach presented in the current paper takes the

Fig. 3 Overview over the training of the progressive adversarial network (PG GAN) using increasing image resolution of 4 × 4, 8 × 8, 16 × 16, 32 ×
32, 64 × 64 and 128 × 128 pixels. Finally, a maximal resolution of 256 × 256 pixels is achieved (right panel)
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opposite (and arguably more challenging) approach of
mapping a low dimensional vector to a realistic, anatom-
ically plausible cardiac MRI image. In 2014 Goodfellow
proposed the concept of generative networks to achieve
this goal. The GAN network consists of two distinct parts
that work in synergy: a generator sub-network takes actual
low dimensional (random) vector data and attempts to
construct a plausible high-resolution image. In addition, a
discriminator is added to distinguish between the syn-
thetic images produced by the generator and real images.
These two parts of the model are trained together, thus
improving both their generative and discriminatory ability
in the process. Despite impressive early results, conven-
tional GANs are inherently difficult to train and suffer
from training instability. This is partly explained by the
fact that optimizing GANs resembles a prisoner’s dilemma
type set-up, where generator and discriminator weight
have to be optimized in synergy and are dependent on
each other [16]. While these issues are manageable for
low resolution images, training GANs becomes increas-
ingly challenging with growing image resolution. Intui-
tively this appears plausible, as starting with a high-
resolution image makes the task of classifying the image
as real or synthetic much easier compared to the task of
generating a near-accurate image from scratch. Thus, the
task of the discriminator is more manageable, and it tends
to dominate early in the training process, therefore pre-
venting successful training. The novel approach

Fig. 4 Comparison of synthetic cardiac magnetic resonance (CMR) images (top row) produced by the progressive generative adversarial network
(GAN) with actual CMR images from patients with tetralogy of Fallot with the highest degree of statistical similarity (Wasserstein distance; for
details see Method section)

Table 1 Comparison between the segmentation accuracy

Cardiac Chamber Pg-GAN Actual pat. MRI p-value

Percent Variation

Long axis view:

Left Ventricle 0.021 [0.017–0.027] 0.014 [0.012–0.018] < 0.0001

Right Ventricle 0.019 [0.016–0.024] 0.016 [0.012–0.022] < 0.0001

Right Atrium 0.014 [0.011–0.018] 0.011 [0.009–0.014] < 0.0001

Short axis view:

Left Ventricle 0.013 [0.010–0.019] 0.013 [0.010–0.017] 0.41

Right Ventricle 0.035 [0.025–0.042] 0.036 [0.028–0.050] 0.003

Dice Metric

Long axis view:

Left Ventricle 0.978 [0.973–0.983] 0.986 [0.982–0.988] < 0.0001

Right Ventricle 0.981 [0.976–0.984] 0.984 [0.978–0.988] < 0.0001

Right Atrium 0.986 [0.983–0.989] 0.989 [0.985–0.991] < 0.0001

Short axis view:

Left Ventricle 0.987 [0.982–0.991] 0.987 [0.983–0.990] 0.45

Right Ventricle 0.965 [0.958–0.975] 0.964 [0.951–0.972] 0.002

Comparison between the segmentation accuracy (percent variation and Dice
metric) between U-Net based segmentation models trained entirely on
synthetic frames generated by the generative adversarial network (PG GAN)
and those trained on actual patient magnetic resonance imaging (MRI) frames.
p-values were calculated using a paired non-parametric test
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introduced by Karras et al. was to start with a low-
resolution GAN and increasing image size step by step
during training (hence the name progressive GAN),
thereby supporting the generator and stabilizing the
model [5]. In 2017 the group demonstrated the utility of
this approach by generating a large number of high reso-
lution (1024 × 1024 pixel) synthetic images of human
faces.
Previous applications of GAN models to medical

imaging include increasing the resolution of cardiac
MRI images [17], de-aliasing images [18] as well as
converting imaging appearance from one modality
(e.g. CT) to that of another imaging technique (e.g.
MRI) [19]. In addition, Shin and colleagues, used con-
ventional GANs to generate synthetic images of brain
MRI in patients with Alzheimer disease or brain tu-
mors with a resolution of 128 × 128 pixels [20]. The
authors emphasize the potential of the technology to
increase training data availability as well as overcome
restrictions around data anonymity. To the best of
our knowledge, our study is the first to apply pro-
gressive GANs to generate realistic cardiac MRI im-
ages for patients with congenital heart disease. The
resolution achievable with this approach is at the
upper end of the published medical literature. Even
higher resolution, however, should be possible with
improved technology and especially more powerful
computing capabilities. The main appeal of synthetic
PG-GAN images is the potential to use these anatom-
ically accurate images for training of downstream net-
works, without anonymity concerns. Not surprisingly,
MRI specialists were able to identify most of the syn-
thetic images correctly. However, to the largely un-
trained eye the images look accurate and this was
reflected by the much lower ability of non-specialists
to correctly identify synthetic images. In addition, the
frames are anatomically accurate and training seg-
mentation networks based on the generated data is
feasible. We built on our previous experience with U-
Net segmentation deep learning networks and trained
these models both on PG-GAN images and actual pa-
tient data. While the latter models produced statisti-
cally significantly higher Dice scores and lower area
variation compared to manual ground-truth masks,
the actual difference between the networks is negli-
gible (< 1% in absolute) terms. We, therefore, contend
that segmentation networks should be trainable on
synthetic GAN images and deliver accurate clinical
results. Additional benefits of PG-GAN derived im-
ages include the potentially lower cost of obtaining
these frames as well as possibility to add anatomic
variation or other sources of heterogeneity to the
data, potentially benefiting segmentation network
training (e.g. by reducing overfitting problems).

Limitations
We have not investigated whether dynamic series of im-
ages mimicking cardiac motion could be generated by
adjusting the input vector. It has been reported that ma-
nipulating the latent vector can result is meaningful
transitions between images. Due to the limited reso-
lution and the fact that visually especially the blood pool
is not perfectly modelled by the generator, the images
created are partly distinguishable from actual patient
frames. It is hoped that by optimizing the GAN network
further, increasing computing power and potentially
combining the PG-GAN setup with other downstream
deep learning networks the image quality can be further
improved. We can only speculate on the reasons why no
evidence of training instability was evident for the PG-
GAN in our study. This may be potentially related to the
design of the PG-GAN making it less prone to such ef-
fects compared to conventional GAN setups [5].

Conclusions
The current study illustrates the utility of PG-GANs for
generating large amounts of realistically looking cardiac
MRI images even in rare cardiac conditions. The gener-
ated images are not subject to data anonymity and priv-
acy concerns and can be shared freely between
institutions. As training supervised deep learning seg-
mentation networks on this synthetic data yielded simi-
lar results compared to direct training on original
patient data, we contend that this approach may find ap-
plications for training segmentation networks or improv-
ing accuracy of existing models by additional training on
PG-GAN generated images.
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