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Abstract

Background: This study outlines an image processing algorithm for accurate and consistent lung segmentation in
chest radiographs of critically ill adults and children typically obscured by medical equipment. In particular, this work
focuses on applications in analysis of acute respiratory distress syndrome – a critical illness with a mortality rate of 40%
that affects 200,000 patients in the United States and 3 million globally each year.

Methods: Chest radiographs were obtained from critically ill adults (n = 100), adults diagnosed with acute respiratory
distress syndrome (ARDS) (n = 25), and children (n = 100) hospitalized at Michigan Medicine. Physicians annotated the
lung field of each radiograph to establish the ground truth. A Total Variation-based Active Contour (TVAC) lung
segmentation algorithm was developed and compared to multiple state-of-the-art methods including a deep
learning model (U-Net), a random walker algorithm, and an active spline model, using the Sørensen–Dice coefficient
to measure segmentation accuracy.

Results: The TVAC algorithm accurately segmented lung fields in all patients in the study. For the adult cohort, an
averaged Dice coefficient of 0.86 ±0.04 (min: 0.76) was reported for TVAC, 0.89 ±0.12 (min: 0.01) for U-Net, 0.74 ±0.19
(min: 0.15) for the random walker algorithm, and 0.64 ±0.17 (min: 0.20) for the active spline model. For the pediatric
cohort, a Dice coefficient of 0.85 ±0.04 (min: 0.75) was reported for TVAC, 0.87 ±0.09 (min: 0.56) for U-Net, 0.67 ±0.18
(min: 0.18) for the random walker algorithm, and 0.61 ±0.18 (min: 0.18) for the active spline model.

Conclusion: The proposed algorithm demonstrates the most consistent performance of all segmentation methods
tested. These results suggest that TVAC can accurately identify lung fields in chest radiographs in critically ill adults
and children.
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Background
Lung segmentation, the process of accurately identifying
regions and boundaries of the lung field from surround-
ing thoracic tissue, is an essential first step in pulmonary
image analysis of many clinical decision support systems.
Correct identification of lung fields enables further com-
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putational analysis of these anatomical regions [1], such as
extraction of clinically relevant features to train a machine
learning algorithm for detection of disease and abnormali-
ties. These computational methodologies can assist physi-
cians with making a timely, accurate medical diagnosis to
improve quality of care and outcome for patients.
Although many methods exist in the literature [2–8],

they are primarily designed and evaluated on high qual-
ity, standardized chest radiographs from controlled stud-
ies or outpatient settings that may not be representative
of more complex chest x-rays (CXR) from hospitalized
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patients. This is problematic for many patient popula-
tions, especially the critically ill, whose CXRs tend to
have characteristics of varying image quality (e.g. dynamic
range, sharpness), presence of introduced medical devices
[9], diverse body habitus [10], and manifestation of dis-
ease [11]. As a result, these methods may not generalize
and perform as well on chest x-rays (CXR) obtained from
other clinical settings.
We therefore hypothesize that it may be possible to

use image processing techniques to handle heterogeneous
characteristics of CXRs to facilitate better, more gener-
alizable lung segmentation. The aim of this study was to
develop such an algorithm capable of robust and reliable
performance on multiple patient populations, including
critically ill patients. Our proposed hierarchical method
first uses total variation denoising to remove irrelevant
details and artifacts from medical equipment obscuring
the lung fields. The image is then binarized with recur-
sive thresholding to identify the left and right lung fields.
Finally, a stacked active contour model is used to refine
the final shape of the segmentation mask. The proposed
method also incorporates systematic quality checks by
using various assessment criteria at each step to ensure
consistent, successful segmentation. It is especially impor-
tant that these clinical decision support systems are highly
reliable to ensure healthcare providers that the algorithm
will consistently perform as expected, even in the most
rigorous tasks.
We evaluate this method on multiple datasets, including

two publicly available CXR repositories and data from
MichiganMedicine comprising of critically ill patients with
respiratory failure. Furthermore, we compare the pro-
posed algorithm’s performance to multiple state-of-the-
art lung segmentation methods, including a deep learning
approach [12], standard computer vision algorithms [13],
and conventional image processing techniques [14].

Methods
Dataset and study population
The Institutional Review Board approved this study with
a waiver of informed consent. We retrospectively iden-
tified three cohorts of patients hospitalized in adult and
pediatric intensive care units at Michigan Medicine in
2016 and 2017. The first cohort was a random sample
of 100 adult patients (mean age 58 years ±16 [standard
deviation], 48% female) with acute hypoxic respiratory
failure (PaO2/FiO2 ratio of <300 mm Hg while receiv-
ing invasive mechanical ventilation), stratified such that
50 of the patients met the criteria for the Acute Respi-
ratory Distress Syndrome (ARDS) after review by clinical
experts. The second cohort included chest radiographs
from 25 additional adult patients (mean age 55 years ±17
[standard deviation], 44% female) with “high confidence
ARDS” by multiple physicians [15]. Chest radiographs
from this cohort would be expected to have intense,
widespread bilateral opacities that would be more difficult
for segmentation algorithms. The third cohort included
100 chest x-rays from pediatric patients (mean age 7 years
±5 [standard deviation], 39% female) hospitalized in the
Pediatric Intensive Care Unit. Children age 14 days to 19
years with an endotracheal tube onmechanical ventilation
were eligible for inclusion; this cohort was stratified such
that 50 of the patients met criteria for pediatric ARDS.
Additional details of these patient groups are provided in
Table 1.
A total of 225 anterior-posterior chest radiographs were

exported fromMichigan Medicine’s picture archiving and
communication system then stored in the Digital Imaging
and Communications in Medicine format prior to anal-
ysis. Annotations for ground truth of the lung regions
on the two adult patient groups were performed by a
pulmonary critical care physician with 4 years of clini-
cal experience. Annotations for the pediatric cohort were

Table 1 Patient Demographic of Michigan Medicine Cohorts

n Age Non-ARDS ARDS

Adult Cohort

Total 100 58 ±16 50 50

Male 52 60 ±16 30 22

Female 48 54 ±16 20 28

Adult Severe ARDS Cohort

Total 25 55 ±17 0 25

Male 14 56 ±16 0 14

Female 11 53 ±19 0 11

Pediatric Cohort

Total 100 7 ±5 50 50

Male 61 9 ±5 31 30

Female 39 6 ±6 19 20
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performed by a pediatric critical care intensivist with 5
years of clinical experience.
Chest radiographs from two publicly available datasets

were also used to validate the algorithm in other patient
populations. The Japanese Society of Radiological Tech-
nology (JSRT) [16, 17] is comprised of 247 posterior-
anterior chest x-rays: 154 containing a pulmonary lung
nodule and the remaining 93 without any nodules. The
second external dataset from Montgomery County, made
available by the U.S. National Library of Medicine [18],
contains 138 posterior-anterior chest x-rays: 58 are cases
with manifestations of tuberculosis and the remaining 80
are representative of normal, healthy lungs. A summary of
these patient groups is provided in Table 2.

Proposedmethod: total variation-based active contour
(TVAC)
The proposed algorithm, Total Variation-based Active
Contour (TVAC), is comprised of three primary steps.
Total variation denoising was employed to delineate and
remove various medical equipment visually obscuring the
lung fields. A recursive binarization method was used
to systematically identify the lungs and a stacked active
contour model was utilized to improve lung bound-
ary formation. Prior to execution, chest radiographs are
first normalized with contrast-limited adaptive histogram
equalization (CLAHE) [19] to adjust contrast locally while
limiting the amplification of noise to ensure that x-rays in
the dataset are generally represented within the same pixel
intensity range.

Total variation denoising
Total Variation Denoising is a method to remove noise
from images using a model of Rudin, Osher and Fatemi
(ROF) [20]. If f : � → R is a grayscale image, where � is
a rectangle in R

2, then the total variation of f is:

‖f ‖TV =
∫

�

|∇f | (1)

To denoise an image f, we find an approximation u of f
for which ‖u‖TV is small by minimizing:

λ‖u‖TV + 1
2

∫
�

(f − u)2 (2)

Here λ is a regularization parameter. The level sets of
an optimal solution u have a small perimeter (relative
to their area) (see for example [21, §2.2.2]). This means
that boundaries of the level sets tend to be smooth and
round. ROF denoising removes local details in images,
while maintaining and smoothing the boundaries of larger
areas.
There are many algorithms for solving the optimiza-

tion problem in the ROF model. We use an algorithm
and implementation of Zhu and Chan [22] that uses the
Primal-Dual Hybrid Gradient method (PDHG).
ROF denoising is used to remove irrelevant details and

artifacts (e.g. electrocardiographic leads and prosthetic
devices) from chest radiographs. Unlike blurring, total
variation denoising preserves sharp edges such as the
boundary of the lungs. The processed image retains most
of the structurally large, well-defined regions of the orig-
inal image while removing unwanted objects of fine scale
and discontinuous variations. This workflow is illustrated
in Fig. 1a and b.

Binarizationwith recursive thresholding and lung field
identification
After denoising, the lung fields are localized through
binarization of the image with a recursive threshold. Bina-
rization assumes that an image contains two classes of
pixels following a bi-modal distribution, where the fore-
ground (region of interest) and background pixels can be
distinguished by finding an optimal threshold separating
the two classes. To determine this optimal threshold for
global binarization, θk , the Iterative Self-Organizing Data
Analysis Technique (ISODATA) [23] is used.

Table 2 Patient Demographic of JSRT and Montgomery Datasets

n Normal Abnormal

JSRT

Total 247 93 154

Male 119 n/a n/a

Female 128 n/a n/a

Montgomery

Total 138 80 58

Male 64 n/a n/a

Female 74 n/a n/a

Individual patient age and gender information were not available for these two publicly available databases. In the JSRT dataset, “abnormal” refers to the presence of lung
nodules. In the Montgomery dataset, “abnormal” refers to the manifestation of tuberculosis.
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Fig. 1 General outline of the proposed total-variation based active contour (TVAC) method. (a) An example source image containing a few wires
from a patient diagnosed with acute hypoxic respiratory failure is shown. This image is normalized with contrast-limited adaptive histogram
equalization (CLAHE) at this step. (b) Total variation denoising is used to diffuse wires while preserving edges of the lungs. (c) The denoised image is
binarized with recursive thresholding and initial lung segments are extracted. (d) Convex hulls are generated from the extracted lung regions to
enclose the lung fields and capture regions lost during binarization. (e) Lungs are partitioned into quadrants; each is individually processed with the
stacked active contour model to better capture “difficult” regions such as the apex and costophrenic recess. (f) Final output of the lung
segmentation algorithm. Green represents the ground truth, magenta shows the algorithm’s segmentation output, and white illustrates overlap of
the two – indicating regions that are correctly segmented. This example has a Dice coefficient of 0.9407

First, the histogram is initially segmented into two
parts using a starting threshold (θ0) at half the maxi-
mum dynamic range. The mean of the values associated
with the foreground pixels

(
μf ,θ0

)
and background pix-

els
(
μb,θ0

)
is calculated. An updated threshold value θ1

is calculated as the average of these two sample means.
This method is repeated until the updated threshold value
doesn’t change anymore. This process is formalized as:

θk = μf ,θk−1 + μb,θk−1

2
until θk = θk−1 (3)

The denoised image is then binarized with threshold θk .
After binarization, morphological area opening is per-

formed to remove small objects corresponding to artifacts
from binarization. To extract the left lung, an object
whose centroid is nearest to the upper right half of the
image is selected; to extract the right lung, another object
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whose centroid is nearest to the upper left half of the
image is selected. The binary masks (regions contain-
ing the object of interest) extracted from this process are
shown in Fig. 1c. Both objects are assessed for quality of
segmentation and similarity comparison, summarized in
Algorithm 1, to ensure that they accurately correspond
to the two lung fields. The parameters utilized in Algo-
rithm 1 can be varied as needed to implement this method
for similar applications. The specific values used for this
experiment are provided in Table 3. These values gen-
erated reasonable results and demonstrated robustness
to variations in analysis. In particular, we increased and
decreased these values by 10% and observed that these
changes did not have a significant impact on the results. If
the masks violate more than 1 of these criteria, threshold
θk is reduced by 5% and binarization is repeated. This pro-
cess of recursively reducing threshold θk is repeated until
all but one quality criteria are satisfied.
Convex hulls are then generated from both masks to

enclose the lung fields. This geometric representation of
the lung fields, shown in Fig. 1d, is the smallest convex
polygon shaped by vertices of the previous mask and is
designed to capture interior regions that weren’t included
during binarization.

Stacked active contourmodel
Following denoising and lung field segmentation the two
convex hulls are then further refined to better capture
the shape of the lungs. A standard active contour model
(ACM) [24] is able to use these templates as a deformable
spline, allowing the convex hulls to “stretch” and better
fit to the pleural lining of the lung. However, we found
that using the lung field as the template yielded unfa-
vorable results and incomplete segmentation, particularly
with respect to the costophrenic recess and in periph-
eral regions. To overcome this obstacle, we developed a
stacked active contour model where the lung quadrants,
rather than the whole lung field, are used as templates to
better capture these peripheral regions. Standard ACM
uses a pre-defined number of consecutive iterations to
expand or contract based on minimization of energy
and other constraint forces. The proposed ACM model
sequentially “stacks” 50 iterations of parameterized con-
tour expansions, followed by 50 iterations of parame-

Table 3 Parameters for Algorithm 1

α 0.98

β 135

γ 1/3

δ 1/100

Although a wide range of parameters were tested, these are the specific values
used in this experiment. These values generated reasonable results and
demonstrated robustness to variation in analysis - even when the values were
increased or decreased by 10%.

Algorithm 1: Pseudocode for Binarization with Recur-
sive Thresholding and Lung Field Identification
Input : Denoised Chest X-Ray

1 calculate global threshold (θ0) with ISODATA
2 repeat
3 perform global binarization denoised image at

threshold θ0
4 exclude artifacts > imageArea/4 and artifacts <

imageArea/100
5 identify leftLung as the connected component with

minimal Euclidean distance from its centroid to the
upper left half of the image; check for individual
assessment:

6 check Eccentricity > α

7 check Equivalent Diameter > β

8 check Filled Area > γ of total image
9 check Filled Area < δ of total image

10 check ROI is adjacent to image borders
11 identify rightLung as the connected component with

minimal Euclidean distance from its centroid to the
upper right half of the image; check for individual
assessment:

12 check Eccentricity > α

13 check Equivalent Diameter > β

14 check Filled Area > γ of total image
15 check Filled Area < δ of total image
16 check ROI is adjacent to image borders
17 merge the two lung masks; check for similarity

assessment:
18 checkMajor Axis Length >1.5x of each other
19 check Convex Area > 1

3 of total image
20 if ≥2 failure from individual assessment and ≥1 failure

from similarity assessment then
21 θ0 = θ0 ∗ 0.95

22 until quality of segmentation is satisfactory;
23 generate convex hulls from leftLung and rightLung

Output: convex hulls as binary masks for each lung

terized contractions. This process is repeated 20 times,
resulting in a total of 1000 iterations.
The two masks from the upper and lower quadrants of

each side are then combined to reconstruct the lung fields.
This final step is shown in Fig. 2c and d for reconstruc-
tion of the right lung field. A smoothing filter is applied to
remove jagged edges on the mask boundary.

Lung segmentation from chest x-rays obtained from
critically ill patients
Comparison with state-of-the-art lung segmentation
algorithms
Adeep learning approaching using U-Net, a convolutional
neural network (CNN) architecture designed for biomed-
ical image segmentation [12], was included as a “state-of-
the-art” benchmark. A widely-used algorithm based on
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Fig. 2 Segmentation with the stacked active contour model. (a) An example source image is shown for reference. (b) When the final segmentation
mask is processed with a standard active contour model, areas of incorrect segmentation can be systematically observed – most commonly, at the
right lung’s costophrenic recess and regions adjacent to the diaphragm. (c) Quadrant-based processing with a stacked active contour model shows
better deformation and contouring to peripheral boundaries. (d) Final output for segmentation of the right lung after combining the upper and
lower quadrants and applying a smoothing filter

random walks [13] and another established shape-based
“active spline” model [14] were also included for compar-
ison with conventional image processing methods. These
algorithms were selected on the basis of having excellent
performance results on publicly available databases, being
widely cited, and having an available codebase.
The U-Net CNN was implemented with Keras [25]

using the TensorFlow backend and trained on both
the JSRT and Montgomery datasets with 5-fold cross-
validation. To further extend this analysis, additional
experiments were conducted with the U-Net trained on
JSRT, Montgomery, and 50% of Michigan Medicine data
(including adult ARDS, adult severe ARDS, and pediatric
ARDS) to “fine-tune” the model so that it encounters an
even greater variety in patient population and heterogene-
ity of disease in the target dataset.
We used a modified implementation of the random

walker algorithm designed for unsupervised lung segmen-
tation. This version relies on extracting horizontal inten-
sity profiles to intuitively match a pre-designed template
to identify anatomical regions of the x-ray and accord-
ingly place seed points for segmentation. The active spline
model used in this study is a combined point distribu-
tion model and centripetal-parameterized Catmull-Rom
spline for lung segmentation. This “template matching”
method uses a fixed set of points resembling a generalized
shape of the lungs and adapts this template to capture the

lung fields from chest x-rays. Additional details for these
methods are published in previous works [12–14].

Evaluation metric
We used the Sørensen–Dice coefficient, a statistical val-
idation method based on spatial overlap to measure the
degree of similarity between the algorithm’s segmentation
and ground truth reference as annotated by multiple clin-
icians [26, 27]. Given two sets X and Y representing the
segmentation output and ground truth, respectively, the
Dice coefficient is defined as:

Dice(A,B) = 2TP
2TP + FP + FN

(4)

For this study, a Dice coefficient under 0.70 is recog-
nized as failed lung segmentation. This value is deter-
mined, through our experience from similar studies, as
the lowest acceptable level of segmentation correctness
for effective feature extraction and sufficient for machine
learning.

Violin plot
In addition to reporting summary statistics, we also
present our experimental results with a violin plot gen-
erated by a kernel density estimate of all the results [28].
These plots are essentially mirrored density plots and
enables a comparison of algorithm performance, in terms
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of Dice coefficient, across patient populations. The thicker
part of a violin plot indicates higher frequency, and the
thinner part implies lower frequency. Violin plots with
“longer tails” represent algorithms that more often failed
to accurately segment a patient’s lungs within a popula-
tion.

Results
Summary statistics of lung segmentation performance
(mean, min, and standard deviation of Dice coefficient)
on the entire Michigan Medicine dataset, stratified by
different patient cohorts, from all four algorithms are
reported in Table 4. The results in Table 5 provide sum-
mary statistics from 50% of the Michigan Medicine (held-
out) dataset, when the other 50% is used for “fine-tuning”
the U-Net algorithm. Violin plots are also provided in
Fig. 3 to better visualize the distribution and density of the
reported results. On all critically ill patient cohorts, TVAC
and U-Net outperformed the random walker and active
spline model. Although the TVAC model and U-Net
show comparable mean Dice coefficients, the TVAC algo-
rithm maintained more consistency in standard deviation
and reliable performance (higher lowest Dice coefficient)
across all 3 patient groups.

Experimental results on critical care patients (Michigan
Medicine dataset)
The TVAC algorithm was able to successfully segment
lungs from chest radiographs of all critically ill patient
cohorts; the lowest Dice coefficient reported was 0.75
from the pediatric cohort.Without fine-tuning, the U-Net
has a total of 12 lung segmentation failures from the entire
Michigan Medicine test set: the algorithm was unable to
segment 4% of the adult cohort, 8% of the adult severe
ARDS cohort, and 6% of the pediatric cohort. With fine-
tuning and exposure to a subset of Michigan Medicine’s
data in its training set, the U-Net has a total of 12 lung
segmentation failures from the 50% held-out test set: the
algorithm was unable to segment 8% of the adult cohort,
15% of the adult severe ARDS cohort, and 12% of the
pediatric cohort.
In comparison, the random walker algorithm was

observed to have 83 unsuccessful lung segmentations, fail-
ing 26% of the adult cohort, 44% of the adult severe ARDS
cohort, and 46% of the pediatric cohort. The most fail-
ures were observed from the active spline model, which
reported a total of 130 failures from 55% of the adult
cohort, 56% of the adult severe ARDS cohort, and 58% of
the pediatric cohort.

Lung segmentation from chest x-rays obtained from
critically ill patients
In Fig. 4, all four algorithms and their final lung segmen-
tation from chest x-rays of critically ill patients in the

Michigan Medicine dataset are shown. These examples
were selected to present common pathological findings
and characteristics of more complex chest x-rays from
hospitalized patients. These visually qualitative results are
presented to provide insight into the difficulty of this task
and why these algorithms may fail.
Nearly all segmentation methods performed well on

lung fields that were clearly defined, unobscured by med-
ical equipment, and absent or with minimal manifesta-
tion of any pathological conditions. In the presence of
abnormalities, such as pulmonary infiltrate in Fig. 4a or
lung opacities in Fig. 4b, U-Net and the random walker
algorithm both failed to produce acceptable results on
these examples. Patients suffering from traumatic injury
may also present with multiple abnormalities from these
comorbidities. An example of extracorporeal abnormal-
ity in the abdomen is shown in Fig. 4c. These types of
issues may be problematic for deep learning approaches,
which are rigorously trained to identify a specific pattern
representation and may struggle when present with an
unexpected example outside of what the algorithm has
been trained on.
The presence of medical equipment present through-

out the chest x-ray is also problematic. Figure 4d shows
an example with electrocardiographic leads and wires,
which have visual characteristics comparable to the lung
field boundaries (e.g. edges that are well-defined, bright,
and elongated). In this example, U-Net recognizes the
wires as an extension of the lung boundary and overex-
tends the final segmentation mask of the right lung field
into the patient’s shoulder region. The random walker
algorithm identifies the wire as lung boundary and pro-
duces two lung segmentation masks truncated at where
the wires overlay the lung fields. Additional examples of
obscuring medical equipment are shown in Fig. 4e and f,
we observe that both the random walker algorithm and
active spline model fails for similar reasons as previously
mentioned.

Experimental results on JSRT andMontgomery datasets
Summary statistics of lung segmentation performance
on both the JSRT and Montgomery datasets from our
proposed algorithm (TVAC), the U-Net CNN, Random
Walker, and Active Spline Model are reported in Table 6.
On these two datasets containing standardized chest
radiographs from previous studies, all four algorithms
perform relatively well. The U-Net CNN reports the
best performance (Dice: 0.98 ±0.01 for JSRT, 0.97 ±0.03
for Montgomery) of lung segmentation from these two
datasets, followed by our proposed TVAC method (Dice:
0.95 ±0.03 for JSRT, 0.96 ±0.03 for Montgomery), the
Random Walker algorithm (Dice: 0.88 ±0.06 for JSRT,
0.88±0.07 forMontgomery), and the Active SplineModel
(Dice: 0.88 ±0.08 for JSRT, 0.87 ±0.08 for JSRT).
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Fig. 3 Violin plot of segmentation results from the Michigan Medicine dataset for (a) the adult ARDS data, (b) the adult ARDS dataset comprising of
only severe cases, and (c) pediatric ARDS dataset

Fig. 4 Lung segmentation from chest radiographs of hospitalized patients at Michigan Medicine. This figure illustrates the qualitative difference
among algorithms and focuses on how they fail in different clinical scenarios, including (a) manifestations of unilateral infiltrate (b) bilateral lung
opacities (c) extracorporeal abnormality from an unrelated comorbidity in the abdomen (d) electrocardiographic leads overlying the lung fields (e) a
prosthetic device obscuring the outer boundary of the lungs and (f) a prosthetic device interfering with the inner boundary of the lungs
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Table 6 Lung Segmentation Accuracy for the JSRT and Montgomery Dataset

Adult (n = 247) Montgomery (n = 138)

Dice (mean) Dice (min) Standard Deviation Dice (mean) Dice (min) Standard Deviation

TVAC 0.9501 0.8488 0.0297 0.9569 0.8566 0.0251

U-Net 0.9817 0.9500 0.0012 0.9694 0.8442 0.0267

RandomWalker 0.8809 0.4973 0.0576 0.8783 0.5084 0.0729

Active Spline 0.8790 0.0001 0.0783 0.8672 0.3835 0.0826

Data are mean with minimum and standard deviation reported for each algorithm on different patient populations. TVAC = Total Variation-based Active Contour, Dice =
Sørensen–Dice coefficient, ARDS = acute respiratory distress syndrome

Discussion
In this study, we developed a lung segmentation algo-
rithm that would perform well on both publicly available
datasets from retrospective research studies and on real-
world data obtained from hospital and inpatient care,
especially from critically ill patients. We demonstrate that
our TVAC algorithm is capable of accurate and reliable
lung segmentation from chest x-rays in the Michigan
Medicine dataset comprising of hospitalized patients, of
varying demographics and age groups, diagnosed with
moderate hypoxia, acute hypoxic respiratory failure, or
ARDS. Furthermore, we also evaluated TVAC on pub-
licly available chest x-rays from the JSRT andMontgomery
datasets to benchmark our proposed method with multi-
ple state-of-the-art lung segmentation algorithms.
Many published algorithms and software platforms

capable of lung segmentation exist [2–8]. However, nearly
all of them have only been evaluated on chest radiographs
where the lungs exhibit minimal or no pathological condi-
tions [29]. Segmentation of normal, healthy lungs can be
fairly straightforward, as the black pixels of the lung fields
can be readily delineated from the white pixels of periph-
eral anatomic regions [30]. This task becomes challenging
when segmenting lungs from chest x-rays of critically ill
patients diagnosed with a lung disease or severe condition,
such as ARDS, pneumonia, and pulmonary edema. These
injuries tend to manifest with a white diffuse appear-
ance [31–33] that may be incorrectly recognized by many
algorithms as regions outside the lungs, as these attenuat-
ing characteristics are similar to the soft tissue of nearby
anatomic structures. As a result, consolidation along the
pleural margin of the lungs may generate an erroneous
delineation and incorrect segmentation. These complica-
tions are also present in related applications and orthog-
onal studies (e.g. detection of consolidation) involving
complex chest x-rays from hospitalized patients [11].
Furthermore, medical equipment such as wires, tubes,

pacemakers, and various prosthetic devices can obscure
lung fields on chest x-rays [9]. These objects are charac-
teristic of CXRs obtained from hospitalized patients or
during inpatient care, which may contain a diverse array
of medical equipment used to monitor and treat patients

[34]. These items appear as connected regions of high
pixel intensity with strong edges, often interfering with
edge detection of the lung’s pleural space and resulting
inaccurate boundaries. Because these objects don’t typ-
ically appear in CXRs obtained from outpatient care or
controlled studies, it is therefore essential to include these
types of complex data from clinical and hospital settings
in the evaluation set of any automatic lung segmentation
algorithm. These physiological abnormalities and noise
from medical devices can hinder segmentation methods
using lung models that have been computed on healthy
lungs only [35]. Because of this, we also sought to investi-
gate the efficacy and reliability of these algorithms on our
Michigan Medicine dataset.
Despite the high overall performance of the deep learn-

ing approach, our experimental results demonstrate that
U-Net can be inconsistent and suffers from numerous
lung segmentation failures. Based on the violin plots as
well as results of segmentation on the JSRT and Mont-
gomery datasets, we can infer that U-Net performs very
well on the types of x-rays it has encountered before. How-
ever, when new, unseen examples of disease and noise are
shown, the CNN is unable to generalize pattern recog-
nition for these challenging lung fields. Even when the
U-Net is fine-tuned with 50% of all available Michigan
Medicine so that it encounters an even greater variety
in patient population and heterogeneity of disease in the
target dataset, the same segmentation issues still persist
- namely, failure to recognize the lung boundaries due
to interference from medical equipment or gross abnor-
malities present on the image. These results suggest that
although the U-Net is very capable of excellent segmenta-
tion, robustness of the deep learning approach needs to be
improved before it is practical for clinical use.
The “template matching” active spline model suffers

from similar generalizability issues as U-Net. On chest
x-rays with well-defined lung boundaries, the algorithm
is capable of producing excellent masks. However, when
lung fields and pleural regions are obscured by injury
(e.g. collapsed lung), the template matching attempt usu-
ally fails [29, 36]. When developing TVAC, we also take
into consideration the issues of deployability, usability,



Reamaroon et al. BMCMedical Imaging          (2020) 20:116 Page 12 of 13

and trustworthiness from the perspective of a healthcare
provider. Missing a few pixels is better than missing an
entire lung field – especially if the algorithm is extended
and applied to subsequent clinical tasks (e.g. using lung
segmentation as a preprocessing step for prediction of
acute respiratory distress syndrome, pneumonia, or sep-
sis). Making a clinical decision based on inaccurate infor-
mation could be extremely dangerous for the patient’s
outcome and we believe that healthcare providers would
likely opt for a more consistent system in lieu of one with
a slightly higher mean performance benchmark but less
reliability.
We recognize that there are several limitations to this

study. The cohort sample sizes were relatively small, which
limited the extent of stratified analysis, such as looking at
challenges in segmentation grouped by type of lung injury
or in the presence of a specific treatment/medical device.
Furthermore, due to the limited amount of data available
fromMichigan Medicine, we were not able to train the U-
Net on this dataset. Therefore, the U-Net was trained on
both the JSRT and Montgomery datasets combined (eval-
uated with 5-fold cross validation) and we thus relied on
transfer learning for generalization of this CNN to the
MichiganMedicine dataset. The use of significantly larger
training databases of CXR with heterogeneous character-
istics in future studies may improve the performance of
the U-Net CNN. Another limitation to note is that ground
truth annotations of the lung fields were provided by crit-
ical care physicians instead of radiologists. Although we
don’t believe this has affected our study, we do acknowl-
edge that many similar studies involving ground truth
from radiographs typically relies on a radiologist, or the
supervision of a radiologist, to correctly annotate the
image.

Conclusions
This study introduced a lung segmentation method capa-
ble of robust and reliable performance on multiple patient
populations, including critically ill adult and pediatric
cohorts. By evaluating TVAC and other state-of-the-art
approaches on the Michigan Medicine dataset, we hope
to highlight the advantages and shortcomings of each
approach as well as understand the challenges of lung seg-
mentation within a true inpatient population. Although
the proposed TVAC model and U-Net show comparable
mean Dice coefficients, the TVAC algorithm maintained
more consistency in standard deviation and reliable per-
formance across all 3 patient groups. We also observe that
the other standard lung segmentation algorithms can be
inconsistent and suffer from numerous lung segmentation
failures, especially in the presence of notable pathologi-
cal findings and noise from medical equipment. From a
clinical perspective, it is especially important that these
clinical decision support systems are highly reliable to

ensure healthcare providers that the algorithm will con-
sistently perform as expected, even in the most rigorous
tasks.
We believe this paper makes a significant contribution

towards evaluation of lung segmentation approaches on
real-world, complex chest x-rays and hope our contribu-
tion will supplement the role of clinical decision support
systems by guiding the development of automated meth-
ods for pulmonary analysis. In the future, we plan to
conduct a larger evaluation and include more respiratory
conditions (e.g. pneumonia and chronic obstructive pul-
monary disease) by obtaining additional data fromMichi-
gan Medicine and other hospital systems. We also plan
to implement TVAC with feature extraction techniques
and machine learning algorithms for further downstream
analysis and detection of these aforementioned lung dis-
eases.
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