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Introduction
The evaluation of tumor response is of significant impor-
tance in both clinical trials and standard cancer treat-
ments. The Response Evaluation Criteria in Solid Tumors 
(RECIST) criteria has been widely adopted for evaluating 
response in solid tumors [1]. Recently, RECIST 1.1 has 
emerged as the gold standard for evaluating treatment 
response in solid tumors [2].

Nevertheless, it is worth noting that significant varia-
tions exist among individuals when utilizing the RECIST 
criteria for tumor response evaluation [3]. The potential 
instability of evaluation results can be attributed to dif-
ferences in the training, supervision, and quality control 
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Abstract
Purpose The objective of this study was to evaluate the feasibility of using Artificial Intelligence (AI) to measure the 
long-diameter of tumors for evaluating treatment response.

Methods Our study included 48 patients with lung-specific target lesions and conducted 277 measurements. 
The radiologists recorded the long-diameter in axial imaging plane of the target lesions for each measurement. 
Meanwhile, AI software was utilized to measure the long-diameter in both the axial imaging plane and in three 
dimensions (3D). Statistical analyses including the Bland-Altman plot, Spearman correlation analysis, and paired t-test 
to ascertain the accuracy and reliability of our findings.

Results The Bland-Altman plot showed that the AI measurements had a bias of -0.28 mm and had limits of 
agreement ranging from − 13.78 to 13.22 mm (P = 0.497), indicating agreement with the manual measurements. 
However, there was no agreement between the 3D measurements and the manual measurements, with P < 0.001. The 
paired t-test revealed no statistically significant difference between the manual measurements and AI measurements 
(P = 0.497), whereas a statistically significant difference was observed between the manual measurements and 3D 
measurements (P < 0.001).

Conclusions The application of AI in measuring the long-diameter of tumors had significantly improved efficiency 
and reduced the incidence of subjective measurement errors. This advancement facilitated more convenient and 
accurate tumor response evaluation.
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measures implemented by radiologists across different 
centers [4]. The evaluation can also be influenced by the 
subject’s clinical information, potentially introducing 
bias. Moreover, factors such as off-duty periods, turn-
over, sick leaves, and other circumstances that necessitate 
the replacement of radiologists at the center might affect 
its consistency.

A Blinded Independent Review Committee (BIRC) has 
been proposed as an effective solution to the aforemen-
tioned issues. However, it is essential to acknowledge 
that using a BIRC might introduce bias due to informa-
tive censoring, which occurs when unconfirmed locally 
determined progressions are censored [5]. Additionally, 
the process of reading films in batches at the individual 
subject level during the trial can result in a longer dura-
tion. Randomized clinical trials have shown a substantial 
discrepancy rate between BIRC and local reviews [6–8]. 
Therefore, while a BIRC might be considered as an audit-
ing tool, its universal implementation can not be recom-
mended [5].

The development of a tumor evaluation method that is 
stable, uniform, and efficient while minimizing subjective 
bias is an urgent issue in clinical practice. Notably, the 
implementation of Artificial Intelligence (AI) products 
is anticipated to automate measurements and replace 
subjective evaluation, thereby reducing bias. There are 
a plethora of software tools currently available, how-
ever, a significant number of them lack clinical valida-
tion and have not undergone multi-institutional external 
validation.

This study seeks to evaluated the feasibility of utiliz-
ing artificial intelligence for 2D measurements and their 
comparability to manual 2D measurements, an area 
that remains underexplored in real-world clinical prac-
tice with AI tools. To this end, we utilize a commercially 
available advanced AI-driven tool designed to rapidly 
and accurately identify potentially suspicious lesions in 
lung CT images. The system employs sophisticated AI 
algorithms not only to identify these lesions but also to 
provide a qualitative analysis of lesion characteristics, 
including size, location, density, and nature. Further-
more, the selected AI system automatically calculates 
parameters defined by the RECIST 1.1 criteria, such as 
the long-diameter of tumors in both the axial plane and 
three-dimensional (3D) space. This feature enables an 
in-depth comparison between 3D tumor volume mea-
surements and traditional two-dimensional (2D) mea-
surements, which facilitated further investigation into 
the potential advantages and limitations of AI in clinical 
imaging.

Methods
Patient cohort
Between July 2018 and March 2023, we conducted a com-
prehensive screening of patients participating in clinical 
trials at Jinan Central Hospital, Shandong First Medical 
University. In order to be eligible for inclusion, patients 
had to meet specific criteria, including the availability of 
complete data and the presence of target lesions confined 
to the lungs. Exclusion criteria encompassed patients 
who declined enrollment or opted out of treatment after 
successful enrollment, as well as those unable to obtain 
tumor response evaluation results. This study received 
approval from both the Research Council and Ethics 
Committee. All patients provided written informed con-
sent to use of their imaging data.

Image data acquisition
Contrast-enhanced CT examinations were conducted 
using a dual-source CT scanner (SOMATOM Force, Sie-
mens, Germany). The layer thickness was set at 5  mm, 
with thin layer reconstruction at 1  mm. Specifically, we 
chose the images from the arterial phase (with a layer 
thickness of 1 mm) and uploaded them to the AI CT lung 
workflow (R12.9). Within approximately 5–10  min, the 
main interface displayed the attribute information of the 
lesions in the form of a focal list. As shown in Fig. 1, the 
primary interface featured a focal list that presented attri-
bute information pertaining to the lesions. Upon select-
ing a specific lesion, additional information regarding the 
lesion, such as the long-diameter in axial imaging plane 
identified by artificial intelligence, the long-diameter of 
the tumor in 3D view, tumor volume, tumor weight, sur-
face area, CT value, solid proportion, compactness, sphe-
ricity, entropy and other parameters.

Data collection
The long-diameter measured by AI and the long-diame-
ter observed in the 3D view, along with the tumor vol-
ume measured by AI, were recorded. Additionally, the 
patient’s age, gender, manually measured long-diameter, 
tumor response evaluation results for the target lesions, 
and overall tumor evaluation results were obtained from 
the tumor response evaluation record tables. Each inter-
pretation of the diameter measurement was conducted 
by an independent radiologist possessing a minimum of 
10 years of experience.

Statistical analysis
Bland-Altman plots were used to evaluate the agreement 
between various measurement methods. Spearman cor-
relation analysis was conducted to assess the correla-
tion among the different measurements methods. Paired 
t-tests were employed to identify discrepancies between 
the different measurement methods. Bland-Altman plots 
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and correlation analyses were generated using MedCalc 
Software (version 11.4.2.0), while SPSS 27.0 software 
was used for paired t-tests, and scatter charts. GraphPad 
Prism software (v8.0) was used to generate heatmaps. A 

significance level of P < 0.05 was considered statistically 
significant.

Results
Study population
A total of 48 patients who met the inclusion criteria were 
included in the study, as shown in Table 1. Among these 
patients, 20 were below the age of 70 while 28 were aged 
70 years or older. The gender distribution consisted of 26 
males and 22 females. Regarding the tumor category, 39 
patients were diagnosed with non-small cell lung can-
cer (NSCLC), one patient with small cell lung cancer 
(SCLC), four patients with breast cancer, one patient 
with esophageal cancer, and three patients with colorec-
tal cancer. Atelectasis was observed in 11 patients, while 
the remaining 37 patients did not exhibit this condition. 
Additionally, seven patients were identified as having 
received immune checkpoint inhibitors (ICIs).

Correlation and agreement of different measurement 
methods
According to the findings presented in Fig. 2A, the long-
diameter measured by manual, AI and 3D showed a 
strong correlation with the tumor volume, as indicated by 
correlation coefficients of 0.845, 0.876, and 0.888, respec-
tively, and all with P < 0.001. These results suggested a 

Table 1 Patient characteristics
Patients Number

N = 48
%

Age
 < 70 20 41.67%
 ≥ 70 28 58.33%
Gender
 Male 26 54.17%
 Female 22 45.83%
Tumor types
 NSCLC 39 81.25%
 SCLC 1 2.08%
 Breast cancer 4 8.33%
 Esophageal cancer 1 2.08%
 Colorectal cancer 3 6.25%
Atelectasis
 With 11 22.92%
 Without 37 77.08%
Immunotherapy
 Included 7 14.58%
Not included or unknown 41 85.42%

Fig. 1 The interface displayed of the AI CT lung workflow. This AI software can automatically measure of various parameters, including the long-diameter 
in the axial imaging plane, long-diameter in the three-dimensional view, tumor surface area, tumor volume, CT value, tumor weight and others. Since the 
software was originally in simplified Chinese, we provided an English translation for the figure
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close relationship between those three measurement 
methods and tumor volume. Additionally, the correla-
tion analysis in Fig. 2B demonstrated a strong correlation 
between manual measurements and AI measurements 
(r = 0.946, P < 0.001). There was a significant agreement 
observed between manual measurements and AI mea-
surements, as determined by Bland-Altman analysis 
(P = 0.497). The analysis revealed a bias of -0.28 mm, with 
limits of agreement ranging from − 13.78 to 13.22  mm. 
Furthermore, the paired t-test also confirmed no statis-
tical difference between the two measurements meth-
ods (P = 0.497). As shown in Fig.  2C, although manual 
measurements and 3D measurements exhibited a strong 

correlation (r = 0.948, P < 0.001), and there was no statis-
tical agreement between manual measurements and 3D 
measurements, as determined by Bland-Altman analysis 
(P < 0.001). The Bland-Altman plots revealed a bias of 
-6.50 mm, with limits of agreement ranging from − 19.73 
to 6.73 mm. In addition, there was a statistical difference 
between the two measurement methods (P < 0.001).

The difference in long diameters of different measurement 
methods
The study presented in Fig.  3 depicted difference ratios 
between manual measurements, AI measurements, 
and 3D measurements. The corresponding formulation 

Fig. 2 Correlation and agreement of three measurement methods. A) Analysis of correlation between long-diameter measured by different methods 
and tumor volume. (B) Correlation and agreement between manual measurements and AI measurements. Spearman correlation analysis showed a close 
correlation between manual measurements and AI measurements. Bland-Altman plots represented the degree of agreement between manual and AI 
measurements. The paired t-test showed no statistical difference between the two measurement methods. (C) Correlation and agreement between 
manual measurements and 3D measurements. Although correlation analysis showed a strong correlation between manual and 3D measurements, 
Bland-Altman plots and the paired t-test revealed a statistical difference
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was long diameter (AI)− long diameter (manual)
long diameter (manual)  (difference ratios 

between manual measurements and AI measurements) 
or  long diameter (3D)− long diameter (manual)

long diameter (manual)  (difference ratios 
between manual measurements and 3D measure-
ments). In comparison to manual measurements, the 
median difference ratio of AI measurements was found 
to be 4.70% ± 18.30%. Out of the 277 manual measure-
ments, 115 (41.52%) yielded larger long-diameters than 
AI measurements, while 5 (1.81%) resulted in the same 
long-diameter, manual measurements exhibited smaller 
long-diameters in 157 (56.68%) measurements. However, 
the utilization of the 3D measurements method gener-
ally resulted in greater long-diameters when compared 
to manual measurements. There were 244 (88.09%) mea-
surements of larger long-diameters and only 33 (11.91%) 
measurements of smaller long-diameters, with a median 
value of 24.66% ± 27.00%.

The horizontal axis represented the number of mea-
surements (ordered by difference ratios), and the vertical 
axis represented the difference ratios.

Tumor response evaluation results with different 
measurement methods
The objective of measuring the long-diameter was to 
evaluate the tumor response in accordance with the 
RECIST criteria, we examined whether variations were 
present in the evaluation of the tumor based on differ-
ent measurement methods. The tumor response evalu-
ation, as depicted in Fig.  4, demonstrated variations in 
measurements methods. When evaluated using the AI 
measurement method, 19 (6.86%) measurements exhib-
ited inconsistencies compared to manual measurements, 
whereas 44 (15.88%) measurements displayed inconsis-
tencies between the 3D measurement method and man-
ual measurement method.

Fig. 3 The difference ratios in the long-diameter measurements between manual, AI and 3D methods, The waterfall plot depicted the difference ratios 
between the long-diameter measured manually and measured by AI (A) or 3D methods (B)
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Fig. 4 Tumor response evaluation results by different measurement methods. The heatmap showed the tumor response evaluation by different mea-
surements. The columns from left to right represented manual measurements of target lesions response evaluation, AI measurements of target lesions, 
3D measurements of target lesions and overall tumor response. The evaluation of target lesions involved measuring their size, while the overall evalua-
tion encompasses monitoring for the progression of non-target lesions or the emergence of new lesions. PD: progressive disease; SD: stable disease; PR: 
partial response
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Correlation and agreement between different 
measurement methods for patients with atelectasis
Notably, the Bland-Altman plot revealed a discrepancy 
between manual measurements and AI measurements 
(P = 0.019) in a patient with atelectasis. The plot reveals a 
bias of -1.09 mm, with limits of agreement ranging from 
− 8.20 to 6.02  mm. Additionally, there was a significant 
disagreement between manual measurements and 3D 
measurements (P < 0.001), with a bias of -7.04  mm and 
limits of agreement from − 14.70 to 0.62  mm (Fig.  5A). 
The scatter plot distribution indicated that both AI mea-
surements and 3D measurements exhibit greater long-
diameters than manual measurements (Fig. 5B).

.

Discussion
Our research demonstrated that the utilization of this 
AI assistant detection system could effectively evaluate 
tumor response. This could reduce human error, improve 
standardization, and increase efficiency.

In recent years, there had been a growing utilization 
of AI systems to assist radiologists in their interpreta-
tions and mitigate reader inconsistencies. Additionally, 
several studies had explored the application of AI tech-
nology for tumor evaluation. For instance, one study 
employed Picture Archiving and Communication Sys-
tem (PACS) and Lesion Management Solutions System 
(LMS, Median Technologies, Valbonne Sophia Antipo-
lis, France) software to identify intra- and inter-observer 
variability in measuring target lesions [9]. Furthermore, 
the Autocontour software from GE Healthcare was 

Fig. 5 Correlation and agreement of three measurement methods in patients with atelectasis. (A) The Bland-Altman plot demonstrated the disagree-
ment between manual measurements and AI measurements, and 3D measurements. (B) The scatter plot indicated long-diameters of 3D and AI measure-
ments were significantly larger than those measured manually
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used for semi-automated volume analysis of malignant 
liver tumors [10]. Meanwhile, Myrian Intrasense artifi-
cial intelligence software (Paris, France) was trained to 
accurately measure mesothelioma tumor volume using 
CT images [11]. The CT lung assistant detection system 
implemented in our hospital was initially designed for 
the identification of benign and malignant tumors. This 
system possesses the capability to automatically mea-
sure the long-diameter of tumors, a feature developed 
by us for tumor response evaluation. Our investigation 
indicated that this system had the potential to evaluated 
tumor response stably.

The limitations of RECIST 1.1 attributed to its inher-
ent design [12–15] and the presence of intra-observer 
and inter-observer measurements errors [16–19]. In an 
effort to evaluate the variability of lung tumor measure-
ments, Oxnard et al. evaluated variability of lung tumor 
measurements using repeat CT scans performed within 
15  min, they found median increase and decrease in 
tumor measurements were 4.3% and 4.2%, respectively 
[16]. The other study explored intra- and inter-observer 
variability of tumor responds. It was be found that 40% 
of major disagreements (PD or Non-PD) occurred and 
minor disagreements (disagreements between complete 
response (CR), PR, or SD) in 10.5% of the reviewed files 
[19]. They believed errors in tumor measurements was 
one reason for disagreements occurred. Reducing intra- 
and inter-observer measurements errors was an impor-
tant method to maintain the stability of tumor evaluation 
results. This CT lung artificial intelligence system had the 
potential to address both intra-observer errors, which 
occur when a radiologist makes different measurements, 
and inter-observer errors, which arise from discrepancies 
between measurements taken by different radiologists.

This study determined that the long-diameter in the 
axial imaging plane measured by AI was a more effective 
alternative to manually measured than the long-diameter 
measured by 3D methods, although it was worth noting 
that the long diameter in 3D exhibited a strong correla-
tion with tumor volume. As emphasized in the RECIST 
1.1 update and clarification [1], it was advised to utilize 
the axial imaging plane in all instances of CT scans for 
the sake of uniformity and convenient measurements, 
particularly in situations where reconstructions or 
advanced workstations may not be universally accessible. 
It was acknowledged that alternative planes might accu-
rately depict the tumor’s long axis, but due to potential 
challenges in consistently and reliably measuring across 
different CT acquisition parameters over time, utilizing 
the axial plane was recommended.

There were some limitations in this study. Firstly, as 
we mentioned, it became apparent that this commer-
cial AI detection system demonstrated its inadequacy 
for individuals diagnosed with atelectasis, as the AI 

measurements of the long-diameter were significantly 
greater than those obtained through manual measure-
ment due to the inclusion of atelectasis components 
within the target lesion. This discrepancy had the poten-
tial to complicate the accurate evaluation of tumor 
response. In addition to atelectasis, AI measurements 
were constrained by the presence of fibrosis or necrotic 
tissue, particularly in cases where non-viable residual 
masses persisted following treatments such as radio-
therapy and ablation, resulting in an underestimation 
of treatment response [20]. This commercial AI detec-
tion system was a traditional artificial intelligence, the 
alternative form of artificial intelligence was deep learn-
ing, which could automatically learn feature representa-
tions from data without the need for prior definition by 
human experts [21], which had the ability to recognize 
atelectasis and necrosis. Secondly, this study just evalu-
ate the consistency between manual measurements and 
AI measurements, without evaluating the consistency 
of decision-making processes. Specifically, the tumor 
evaluation still required manual calculation of the total 
sum of diameters, which was then interpreted in accor-
dance with the RECIST 1.1 criterion, not full automation. 
Thirdly, this AI software was exclusively designed as an 
artificial intelligence system for the interpretation of lung 
lesions, thereby lacking the capability to evaluate lesions 
in other body organs, which constituted a significant 
constraint.

In addition to measuring long-diameter of the tumors, 
this AI algorithm successfully acquired various other 
variables, including lesion surface area, lesion weight, CT 
value, compactness, sphericity, and firmness ratio, and 
others. Integrating these parameters with tumor diame-
ters had the potential to enhance the precision of evaluat-
ing tumor response following treatment.

Conclusions
Our investigation demonstrated the potential of employ-
ing AI as a substitute for tumor response evaluation. This 
approach could enhance the efficiency of tumor evalua-
tion while mitigating intra-observer and inter-observer 
errors, thereby warranting consideration for broader 
implementation in clinical practice.
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