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Abstract
Background  Rebleeding after endoscopic treatment for esophagogastric varices (EGVs) in cirrhotic patients remains 
a significant clinical challenge, with high mortality rates and limited predictive tools. Current methods, relying on 
clinical indicators, often lack precision and fail to provide personalized risk assessments. This study aims to develop 
and validate a novel, non-invasive prediction model based on CT radiomics to predict rebleeding risk within one year 
of treatment, integrating radiomic features from key organs and clinical data.

Methods  123 patients were enrolled and divided into rebleeding (n = 44) and non-bleeding group (n = 79) within 
1 year after endoscopic treatment of EGVs. The liver, spleen, and the lower part of the esophagus were segmented 
and the extracted radiomics features were selected to construct liver/spleen/esophagus radiomics signatures 
based on logistic regression. Clinic-radiomics combined models and multi-organ combined radiomics models were 
constructed based on independent model scores using logistic regression. The model performance was evaluated by 
ROC analysis, calibration and decision curves. The continuous net reclassification improvement (NRI) and integrated 
discrimination improvement (IDI) indices were analyzed.

Results  The clinical-liver combined model had the highest AUC of 0.931 (95% CI: 0.887–0.974), which was followed 
by the liver-based model with AUC of 0.891 (95% CI: 0.835–0.74). The decision curves also showed that the clinical-
liver combined model afforded a greater net benefit compared to other models within the threshold probability of 
0.45 to 0.80. Significant improvements in discrimination (IDI, P < 0.05) and reclassification (NRI, P < 0.05) were obtained 
for clinical-liver combined model compared with the independent ones.

Conclusion  The independent and combined liver-based CT radiomics models performed well in predicting 
rebleeding within 1 year after endoscopic treatment of EGVs.
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Introduction
Esophagogastric (EGVs) are significant clinical manifes-
tations of cirrhosis progression, affecting approximately 
50% of cirrhotic patients, with a cumulative 10-year inci-
dence rate of around 44% [1]. Esophagogastric variceal 
bleeding (EGVB) poses a substantial mortality risk, rang-
ing from 10 to 20%, due to its acute onset, severe clinical 
presentation, and substantial hemorrhage [2]. Currently, 
endoscopy remains the gold standard for both diagnosis 
and treatment of EGVs, including endoscopic variceal 
ligation, injection sclerotherapy, and variceal obtura-
tion [3, 4]. Despite these interventions, the persistence 
of portal hypertension contributes to a high rebleeding 
rate, with up to 60% of patients experiencing rebleeding 
within the first year post-treatment, and mortality reach-
ing as high as 30% [5]. Therefore, early identification of 
patients at high risk for rebleeding is critical for timely 
and effective secondary prevention and personalized 
treatment strategies.

Previous research has highlighted the utility of various 
non-invasive tests, such as laboratory assessments, radio-
logical imaging, and ultrasound examinations, in predict-
ing post-treatment prognosis of varices [6, 7]. However, 
these modalities are limited in their ability to directly 
visualize EGVs. In contrast, computed tomography (CT) 
offers a comprehensive depiction of the portal venous 
system and portosystemic collateral vessels. Importantly, 
CT imaging can visualize varices embedded deep within 
the mucosa, which are often indistinguishable from gas-
tric mucosal folds on endoscopy [8, 9]. Assessing porto-
systemic collaterals, feeding vessels, and variceal volume 
via CT may enhance the prediction of rebleeding risk 
after endoscopic treatment and provide critical insights 
that inform subsequent therapeutic decisions [10–12].

Radiomics is an emerging field in medical imaging that 
offers the potential to quantitatively analyze radiological 
data. Radiomic features mathematically describe regions 
of interest (ROI), providing valuable quantitative insights 
into the spatial heterogeneity of tissues, which tradi-
tional imaging modalities may not capture [13]. It has 
shown excellent performance in various aspects, includ-
ing cancer diagnosis, prognosis prediction, treatment 
response evaluation, and disease classification [14–16]. 
The application of radiomics is not limited to cancer; 
it also shows potential in the diagnosis and prognosis 
evaluation of cardiovascular diseases, neurodegenerative 
diseases, and cranial malformations [17–19]. Addition-
ally, radiomics plays an increasingly important role in 
texture analysis, image annotation, and machine learning 
in medical imaging [20–22]. However, to the best of our 
knowledge, few studies have evaluated the utility of CT 

radiomics in predicting rebleeding following endoscopic 
treatment of esophageal and gastric varices (EGVs). This 
study aims to develop and internally validate CT-based 
radiomic signatures by independently or simultaneously 
analyzing the liver, spleen, and lower esophagus, and 
to assess their prognostic value for patients undergoing 
endoscopic treatment for EGVs. The use of CT radiomics 
directly addresses this challenge by identifying subtle 
imaging biomarkers related to increased rebleeding risk, 
such as changes in liver and vascular structure. By lever-
aging these radiomic features, our model enhances the 
early identification of high-risk patients, allowing for 
more personalized secondary prevention strategies and 
improving overall patient outcomes.

Materials and methods
Patients
This retrospective study was performed according to the 
Helsinki Declaration and approved by the ethics com-
mittee at the Affiliated Hospital of Southwest Medi-
cal University (ID: KY2020202). Patient consent for the 
study was waived as it was retrospective and anonymous. 
Cirrhotic patients with EGVs admitted to our hospi-
tal from January 2015 to December 2019 who received 
endoscopic therapy for the first time were enrolled and 
followed up for 1 year by telephone calls and a review of 
the hospital’s medical record system. According to the 
follow-up results, patients were divided into a bleeding 
group (n = 44) within 1 year after endoscopic treatment 
and a non-bleeding group (n = 79). Inclusion criteria 
were: (1) CT examination before endoscopic treatment, 
and the interval not exceeding 2 months; (2) com-
plete medical records and 1-year follow-up results; (3) 
patients included were those who experienced EGVB 
and subsequently underwent endoscopic treatment. (4) 
patients with esophageal varices only, GOV1 or GOV2 
types according to Sarin typing were included [23]. The 
specifics of Sarin classification are in the supplemental 
document.

Exclusion criteria included: (1) liver and spleen/esoph-
ageal tumors; (2) surgical history of liver and spleen/
esophageal. All of the enrolled patients underwent 
contrast-enhanced CT scans and serum tests. CT and 
laboratory examinations were performed just before the 
endoscopic treatment.

Image acquisitions
All patients underwent abdominal contrast-enhanced CT 
with a 256-detector CT scanner (Brilliance iCT, Philips 
Healthcare Systems, The Netherlands) and a 64-detector 
CT scanner (LightSpeed VCT, GE Healthcare Systems, 
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USA). The following parameters were used: tube volt-
age,120 kVp; tube current, 400–600 mA; and slice thick-
ness, 5.0  mm. All patients received an intravenous, 
nonionic contrast medium (iodine concentration, 300–
370 mg/mL; volume, 0.5–2.0 mL/kg of body weight; con-
trast medium type, Iohexol Injection, GE Healthcare) at a 
rate of 3–5 mL/s. A volume of 20 mL saline was injected 
after the injection of the contrast medium. Upper gas-
trointestinal endoscopy (GIF-HQ290, Olympus Tokyo, 
Japan) was performed after the CT examination. The 
treatment methods were selected according to the EGVs 
characteristics and CT findings.

Image segmentation and feature extraction
All the patients’ image data were anonymized before 
analysis. An experienced radiologist blinded as to the 
patients’ characteristics delineated the ROI in portal 
venous-phase CT images (hepatic hilum and splenic 
hilum planes, the most obvious layer of varicose veins 
in the lower esophagus) by using MaZda 4.6.2.0. Image 
intensity was firstly normalized into the range (µ – 3 
SD, µ + 3 SD; µ, mean intensity; SD, standard deviation 
of intensity) to minimize the influence of contrast and 
brightness variations. Next, six common textural fea-
ture groups (histogram, absolute gradient, gray-level 
co-occurrence matrix, run length matrix, autoregres-
sive model, and wavelet transform) were extracted from 
MaZda, and a flow chart of the study is illustrated in 
Fig.  1. A total of 300 textural features were extracted 
from each ROI [23].

Intra- and inter-observer reliability assessment
Intra- and inter-observer reliability analyses were con-
ducted to assess the repeatability of ROI segmentation 
and the extracted textural features. Thirty samples were 
randomly chosen from the final enrolled data in a blinded 
manner and evaluated by two radiologists. To evalu-
ate the intra-observer agreement, the first radiologist 
delineated the ROI within 2 weeks following the same 
procedure. To assess the inter-observer agreement, the 
ROI segmentation was simultaneously performed once 
by the second radiologist with no discussion with the 
first radiologist. The intraclass correlation coefficient 
(ICC) was used to evaluate the intra-observer and inter-
observer agreement for the extracted features based on 
the segmented ROIs. The feature reliability was clas-
sified as poor (ICC < 0.5), moderate (0.5 ≤ ICC < 0.75), 
good (0.75 ≤ ICC < 0.9), or excellent (ICC ≥ 0.9) [24]. The 
features with simultaneous intra- and inter-observer 
ICC > 0.75 were used for further analysis.

Feature selection and model construction
There were eight representative models shown in the 
current study. The clinical model was constructed based 
on the clinical and CT radiographic characteristics, and 
the model risk score was derived to be further com-
bined with the different radiomics models. In brief, the 
independent radiomics Radscore for each organ-based 
radiomics model (liver, spleen, and lower esophagus) 
was first derived. ModelClinical+liver, ModelClinical+spleen, and 
ModelClinical +lower esophagus were, respectively, a combina-
tion of the clinical risk score and the liver-, spleen-, and 
lower-esophagus-based radiomics Radscores. Model-
Liver +spleen was constructed by combining the liver-based 

Fig. 1  Image segmentation and extracting data through MaZda software (A) and workflow of the key steps in the study (B). Based on the ROI segmen-
tation for the liver, spleen, and lower esophagus in the CT images, about 300 textural features were extracted per organ. After feature selection, several 
independent and combined models were established based on the selected clinical and textural features
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and spleen-based radiomics Radscores. Radscore is a 
numerical score that combines multiple radiomics fea-
tures to create a single predictive index, which simplifies 
the model and enhances its interpretability [25, 26].

For the clinical model, the candidate features among 
the clinical factors and CT radiographic features were 
selected by using univariate and backward stepwise mul-
tiple logistic regression analysis according to the mini-
mum Akaike information criterion. Then, the model 
score was calculated by the logistic regression method 
based on the retained features. In order to derive the 
three organ-based radiomics signatures or Radscores 
(liver, spleen, and lower esophagus), the same radiomics 
feature preprocessing, feature selection, and model con-
struction procedure was sequentially performed, which 
was summarized in the supplementary material. All of 
the combined models were constructed from the model 
score or the Radscore of each independent model by 
directly using the logistic regression method.

Model evaluation and validation
The discrimination of the models was evaluated by the 
concordance (C)-statistic, which is equal to the area 
under the ROC curve when assessing two-class differ-
entiation problems [27]. Meanwhile, sensitivity, specific-
ity, and accuracy could also be derived to evaluate the 
model performance at the cut-off value determined as 
the Youden index reached the maximum. Delong’s test 
was applied to examine the statistical difference in AUC 
values between paired models [28]. The model calibra-
tion, the agreement between the actual and predicted 
probability, was evaluated by calibration analysis [29]. 
The continuous net reclassification improvement (NRI) 
and integrated discrimination improvement (IDI) indices 
were analyzed to assess the added value of each indepen-
dent model compared with the combined models [30]. 
The optimism-corrected estimation of AUC performance 
was also derived during 1000-times bootstrapping [31]. 
In addition, the clinical benefit brought by each model 
was also evaluated by decision curve analysis (DCA) [32].

Statistical analysis
The derived model risk score and the Radscores of 
the radiomics models were continuous variables. The 
remainder of the continuous variables among the clini-
cal or CT manifestation predictors were categorized 
by using the cut-off value determined at the maximum 
Youden index in single-variable ROC analysis. All of the 
statistical analysis was performed using IBM SPSS statis-
tics (version 25.0) and R software (version 3.5.3; http://
www.r-project.org). The following R packages were 
mainly applied: “icc” – ICC calculation by setting a model 
of “two-way” and type of “agreement”, “mRMRe” package 
– mRMR analysis, “glmnet” package – logistic regression 

including LASSO regression; “pROC” package – ROC 
analysis; “PredictABEL” package for continuous NRI 
and IDI indices calculation; and “rmda” package – DCA 
analysis.

Results
Patient characteristics
A total of 123 patients were recruited, and the baseline 
features of all patients are shown in Table  1. The study 
sample was divided into a rebleeding group consisting 
of 44 patients and a non-bleeding group consisting of 79 
patients after endoscopic treatment. The rate of rebleed-
ing was 35.77%.

Feature selection and model construction
For clinical model construction, there were seven fea-
tures retained, and the logistic regression clinical model 
which derived the risk score ScoreClinical summarized in 
Tables 2 and 3.

For each organ-based radiomics model, by using the 
same feature selection procedure, there were respec-
tively four, one, and two features retained for the liver, 
spleen, and lower esophagus. The feature selection pro-
cedure for independent organ-based radiomics models 
was described in supplementary information. The logis-
tic regression coefficients and the odds ratios for each 
selected feature in each independent model are summa-
rized in Table 2.

The derived radiomics Radscores for the indepen-
dent liver-, spleen-, and lower-esophagus-based logistic 
regression models and the combined model scores based 
on their combination with the clinical model or with each 
other are summarized in Table 3. The other combinations 
of different models are summarized in the supplementary 
information (Table S1).

The boxplot of each derived model score distributed in 
the non-rebleeding and rebleeding groups are shown in 
Fig. 2, all of which presented statistically significant dif-
ferences between groups (P < 0.0001).

Model performance evaluation
The ROC analysis results for each independent model 
or combined model are summarized in Table  4 and 
illustrated in Fig.  3(a). The AUC of the clinical model 
was 0.818 (95% CI: 0.740–0.895), and the accuracy was 
77.2%. Among the independent radiomics models, the 
liver radiomics model had a better AUC of 0.891 (95% 
CI: 0.835–0.947) and an accuracy of 83.7%. Among the 
combined radiomics models, the clinical-liver model 
gave the highest AUC and accuracy of 0.931 (95% CI: 
0.887–0.974) and 85.4%, respectively. Considering model 
overestimation during radiomics model construction, 
1000-times bootstrapping was used for AUC optimism 
correction of the model. The overall performances of the 

http://www.r-project.org
http://www.r-project.org
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radiomics models among the 1000-times bootstraps are 
summarized in Table  5. The respective optimism-cor-
rected AUCs (ModelLiver 0.849, ModelSpleen 0.835, Mod-
elLower esophagus 0.737) and average optimism (ModelLiver 
0.042, ModelSpleen 0.002, ModelLower esophagus 0.03) repre-
sented the relatively good reliability of the models estab-
lished from the selected features. At the same time, by 
combining the radiomics model with the clinical model, 
the model performance could be further enhanced com-
pared with the independent clinical model or radiomics 
model (Delong’s test with P < 0.05). The combination of 
the liver-based radiomics model and the clinical model 
had an AUC of 0.931 (95% CI: 0.887–0.974), which 
was better than the spleen-based (AUC: 0.888, 95% CI: 
0.819–0.956) or the esophagus-based (AUC: 0.867, 95% 
CI: 0.803–0.932) combined model.

As shown in Table S1, a significant improvement in 
discrimination (IDI, P < 0.05) and reclassification (NRI, 
P < 0.05) could be obtained by combining the clinical 
model with each organ-based radiomics model (liver 

or spleen) compared with the independent clinical or 
radiomics model. An obvious extent of model classifi-
cation improvement was observed for the clinical-liver 
combined model when it was compared with the inde-
pendent clinic model. The ROC curves in Fig.  3(a) also 
indicated the improved AUC performance for the com-
bined model. The calibration curves in Fig. 3(b) showed 
that the liver-based models ModelLiver and Model-
Liver +clincal had a better agreement between the predicted 
and observed probabilities, which were much closer to 
the 45-degree line with a slope of 1. Compared with other 
models, a higher net benefit for the clinical-liver com-
bined model could be obtained in the threshold prob-
ability range 0.45–0.80 in the DCA curves as shown in 
Fig. 3(c).

However, no other combinations of the liver, spleen, 
esophagus, and clinical models significantly enhanced 
the AUC (Delong’s test with P > 0.05). The performance 
of all of the models and Delong’s tests for the AUCs of 

Table 1  Baseline clinical characteristics of enrolled patients
Rebleeding within 1 year Non rebleeding within 1 year P

General Characteristics
  Male 32(72.727%) 56(70.886%) 0.256
  Female 12(27.272%) 23(29.113%)
  Age (years) 50.47 ± 8.66 52.06 ± 11.37 0.814
Clinical Presentation
  Ascites 26(59.090%) 29(36.708%) 0.017*
  Hepatic encephalopathy 1(2.273%) 0(0%) 0.178
Laboratory Parameters
  ALT(U/L) 28.750(20.500,39.600) 25.700(16.500,42.600) 0.438
  AST(U/L) 38.300(31.025,63.340) 36.500(24.930,59.500) 0.246
  TBIL(umol/L) 20.850(16.275,39.300) 22.700(14.500,33.200) 0.734
  ALB(g/L) 31.700(28.500,35.3500) 32.500(29.500,37.500) 0.205
  GGT 49.600(25.025,129.900) 44.100(27.700,99.500) 0.700
  ALP 90.350(64.250,165.550) 82.800(65.400,124.800) 0.433
  PT 16.900(14.950,18.300) 15.800(14.500,18.700) 0.179
  INR 1.370(1.243,1.538) 1.280(1.180,1.570) 0.135
  PLT(×109) 67.500(42.000,90.250) 69.000(54.000,100.000) 0.283
  RBC(×1012) 2.643 ± 0.643 2.924 ± 0.790 0.046*
  NEU(×109) 3.380(1.780,5.790) 3.070(1.900,4.780) 0.650
  LYM(×109) 0.730(0.540,1.365) 0.720(0.480,1.050) 0.200
  WBC(×109) 4.955(2.775,7.563) 4.300(3.120,6.270) 0.521
CT radiographic characteristics
  Portal vein diameter 1.641 ± 0 0.378 1.576 ± 0.332 0.331
  Splenic vein diameter 1.630(1.475,1.833) 1.510(1.400,1.770) 0.931
  Anterior and posterior diameter of spleen 13.955(11.965,14.918) 14.2000(12.390,15.870) 0.283
  Left and right diameter of spleen 5.109 ± 1.026 5.214 ± 0.947 0.571
  Upper and lower diameter of spleen 14.345(12.025,17.375) 15.000(13.400,17.600) 0.646
  Portal vein or/and superior mesenteric vein thrombosis 7(15.909%) 17(21.518%) 0.438
  Gastrorenal shunt 2(4.545%) 10(12.658%) 0.256
NotesALB albumin, ALP alkaline phosphatase, ALT alanine aminotransferase, AST aspartate aminotransferase, GGT γ-glutamyl transpeptidase, INR international 
normalized ratio, LYM lymphocyte count, PLT platelet count, PT prothrombin time, RBC red blood cell count, TBIL total bilirubin, WBC white blood cell count. Continuous 
variables are presented as the mean ± SD for a normal distribution or median (interquartile range) for a non-normal distribution. Categorical variables are presented 
as the frequency (%). *P < 0.05, statistically significant level
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the paired models are summarized in the Supplementary 
information (Table S2 and Table S3).

Discussion
Rebleeding represents a critical emergency, associated 
with substantial mortality and significant healthcare 
costs. In this study, the incidence of rebleeding follow-
ing endoscopic treatment was 35.77%. The objective of 
this research is to develop non-invasive models based 
on CT radiomics features of various organs, enabling the 
identification of patient groups at high risk of rebleed-
ing post-endoscopic intervention, and facilitating early 
intervention to improve prognosis. Among the organ-
based CT radiomics models, the liver-based model 

demonstrated superior performance compared to the 
spleen- and esophagus-based models. Predictive accu-
racy was further enhanced by integrating the clinical 
model with the liver-based CT radiomics model. Some 
previous studies have shown that some laboratory data 
and imaging findings are associated with bleeding [33, 
34] and rebleeding [35] of EGVs. To our knowledge, 
the higher the portal vein pressure the greater the risk 
of rebleeding [36]. In our study, factors that indirectly 
reflect portal vein pressure, such as portal vein diameter 
and upper and lower spleen diameters, were also found 
to be associated with rebleeding. Additionally, red blood 
cell (RBC) count and lymphocyte (LYM) count were 
identified as significant clinical indicators through multi-
variate logistic regression analysis and were incorporated 
into the predictive model. This may be attributed to the 
relationship between infection, anemia, and rebleed-
ing risk [37, 38]. Furthermore, rebleeding was correlated 
with elevated alkaline phosphatase (ALP) levels, sug-
gesting that patients with cholestasis may have a higher 
likelihood of rebleeding. The clinical model developed in 
our study demonstrated an area under the curve (AUC) 
of 0.818 and an accuracy of 77.2%. Some studies have 
proved that a CT radiomics model can noninvasively 
detect portal hypertension and predict the first bleeding 
[39–41]. Unlike previous models that focused on a single 
organ, our model integrates multiple organs, enhancing 
predictive accuracy. Portal hypertension is the primary 
cause of varices, indicating that CT radiomics offers a 
viable method for predicting rebleeding within one year 
following endoscopic treatment of EGVs. In this study, 
three independent organ-based radiomics models were 
constructed based on features extracted from CT images 
of the liver, spleen, and lower esophagus. Compared to 
the clinical model, the liver- and spleen-based radiomics 
models demonstrated superior diagnostic performance. 
In chronic liver disease, portal hypertension and EGVs 
result from increased resistance to portal blood flow due 
to significant structural changes in the liver vasculature, 

Table 2  The characteristics of each involved feature in each 
independent model during the multivariate logistic regression
Clinical characteristics Coef. Odds ratio (95% CI) P
Diameter_PV 1.352 3.866(1.404–11.927) 0.012*
Spleen_UD 1.291 3.635(1.128–13.035) 0.036*
ALP 1.794 6.015(1.884–21.883) 0.004*
INR 0.806 2.238(0.804–6.708) 0.132
PLT 1.244 3.47(1.168–10.985) 0.028*
RBC 0.938 2.555(1.021–6.658) 0.048*
LYM 0.842 2.321(0.79–6.964) 0.126
Liver radiomics 
characteristics

Coef. Odds ratio (95% CI) P

X_MaxNorm -2.165 0.115(0.048–0.229) < 0.0001*
WavEnLH_s.6 -0.844 0.430(0.217–0.776) 0.009*
WavEnHH_s.7 -0.565 0.568(0.311–0.996) 0.054
X45dgr_GLevNonU -0.665 0.514(0.268–0.938) 0.035*
Spleen radiomics 
characteristics

Coef. Odds ratio (95% CI) P

X_MaxNorm -1.525 0.218(0.115–0.375) < 0.0001*
Lower esophagus ra-
diomics characteristics

Coef. Odds ratio (95% CI) P

Perc.99 -0.545 0.580(0.332–0.973) 0.045*
Variance -0.851 0.427(0.208–0.808) 0.013*
*P < 0.05, statistically significant level. Coef the logistic regression 
coefficient.95%CI 95% Confidence interval

Table 3  The scores of eight models
Model Score
Clinical ScoreClinical= -3.649 + 1.352×DiameterPV + 1.291×spleen_UD + 1.794×ALP + 0.805×INR + 1.244×PLT + 0.938×RBC + 0

.842×LYM
Liver RadscoreLiver = − 1.141 − 2.165 × X_MaxNorm − 0.844 × WavEnLH_s.6–0.565 × WavEnHH_s.7 − 0.665 × 

X45dgr_GLevNonU
Spleen RadscoreSpleen = − 0.852 − 1.525 × X_MaxNorm
Lower esophagus RadscoreLower esophagus = − 0.820 − 0.545 × Perc.99 − 0.851 × Variance
Clinical + liver RadscoreClinical+liver = 0.465 + 0.868×RadscoreLiver +0.77×ScoreClinical

Clinical + spleen RadscoreClinical+spleen= 0.35 + 0.789×RadscoreSpleen+0.744×ScoreClinical

Clinical + lower esophagus RadscoreClinical +lower esophagus= 0.394 + 0.728× RadscoreLower esophagus+0.864×ScoreClinical

Liver + spleen RadscoreLiver +spleen= 0.041 + 0.917× Radscoreliver+0.132×ScoreSpleen

Notes Clinic independent clinical model, Liver independent liver radiomics model, Spleen independent spleen radiomics model, Esophagus independent esophagus 
radiomics model, Clinic + Liver combination of clinical and liver radiomics models, Clinic + Spleen combination of clinical and spleen radiomics models, Clinic + Esophagus 
combination of clinical and esophagus radiomics models, Liver + Spleen combination of liver and spleen radiomics model
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including fibrosis, nodule formation, angiogenesis, and 
sinusoidal remodeling [42]. These pathophysiological 
alterations in the liver directly contribute to the devel-
opment of EGVs, and the texture features of the liver 
can effectively capture changes in the liver’s microenvi-
ronment [43]. In this study, the texture feature X_Max-
Norm extracted from the liver and spleen, and Perc.99 
and Variance extracted from the lower oesophagus could 
indicate the degree of change in brightness and pixel 
intensity values in CT imaging. These features may indi-
cate that the degree of enhancement of the portal venous 
phase in the liver and spleen, as well as the brightness of 
the vessels in the lower oesophagus, are associated with 
rebleeding after endoscopic treatment. In addition, the 
texture roughness and complexity reflected by features 
WavEnLH_s.6, WavEnHH_s.7, and X45dgr_GLevNonU 
extracted from the liver may indicate the degree of struc-
tural remodelling within the liver.The irreversible micro-
structural changes within the liver are better represented 
by CT radiomics, making the liver-based model the most 
effective for predicting rebleeding. Of the three organ-
based models, the lower esophagus model performed 
the least effectively, which may be due to the esophagus 
being in motion during CT scans, with the lower esoph-
agus alternating between systolic and diastolic states. 
Additionally, our study utilized 2D images, which may 
not fully capture the varices in three dimensions. Future 
studies should consider incorporating 3D imaging to 
improve the comprehensiveness of these assessments.

Currently, the main scoring algorithms used clinically 
to predict rebleeding of esophagogastric varices include 
Glasgow Blatchford Score, pre-endoscopic Rockall Score, 
and AIMS65 Score, with an AUC value of 0.6–0.74 [44, 
45]. While these scoring systems offer the advantages 
of simplicity and reduced cost, our predictive model 
demonstrates superior performance. This suggests that, 
despite the higher complexity and potential increased 
resource requirements, our model’s enhanced predictive 
capabilities may provide more accurate and reliable out-
comes. Our study on the prediction of esophagogastric 
variceal rebleeding after endoscopic treatment based on 
enhanced CT and Linxiang Liu’s model [46] for predict-
ing esophageal variceal rebleeding based on ultrasound 
Liver stifness measurements performed well, with AUC 
values of 0.8 or higher. However, compared with ultra-
sound liver stifness measurements, enhanced CT of the 
upper abdomen can visualize the anatomy and hemody-
namics of the liver and the portal venous system.

The radiomics-clinic combined models outperformed 
both the standalone clinical and radiomics models. 
Among the combined models, the clinical-liver model 
achieved the highest AUC of 0.931 (95% CI: 0.887–
0.974). In our study, additional combinations of liver, 
spleen, esophagus, and clinical models did not result in 
a significant increase in AUC. Although the extraction 
of imaging features and the construction of combination 
models were complex, these approaches did not dem-
onstrate superior potential for clinical application. This 
highlights the fact that liver CT texture features provide 

Fig. 2  The boxplot of each derived model score (a–h) distributed in the non-rebleeding and rebleeding groups. Notes: (a) based on clinical and CT 
radiographic characteristics; (b) liver-based radiomics model; (c) spleen-based radiomics model; (d) lower esophagus-based radiomics model; (e) com-
bination of clinical with liver-based radiomics model; (f) combination of clinical with spleen-based radiomics model; (g) combination of clinical with 
lower-esophagus-based radiomics model; and (h) combination of liver-based radiomics with spleen-based radiomics model
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an accurate and objective reflection of changes in the 
liver microenvironment. Consequently, both the liver 
radiomics model and the clinical-liver combined model 
are grounded in sound clinical reasoning for predicting 
the likelihood of rebleeding. Moreover, the non-invasive 
CT radiomics model offers a simple and cost-effective 
approach for rebleeding prediction, which may facilitate 
broader patient acceptance. Clinical data and features 
taken from medical imaging are combined to create a 
clinical + radiomics model. This model is highly inter-
pretable and can be advantageous in offering a natural 
understanding of diseases because the chosen features 
are directly correlated with the pathophysiological pro-
cesses of diseases. While deep learning models are capa-
ble of processing a greater variety of input formats, their 
“black box” design prevents logical justifications for the 
features that are chosen [40, 47]. Furthermore, the clini-
cal + radiomics model is easy to develop and utilize in 
clinical settings, and it does not require any specialized 
hardware or software like deep learning models do.

There are some limitations in this study. First, the lim-
ited sample size of the included cases presents a chal-
lenge, as it often leads to data imbalance. This issue arises 
when the model training process involves one category 
with significantly more samples than others, potentially 
causing the model to perform well in the majority class 
while underperforming in the minority classes. As a 
result, the overall predictive accuracy and utility of the 
model may be compromised. In addition to increasing 
the sample size, some studies have addressed this prob-
lem by applying various data balancing techniques, which 
enhance dataset balance and improve the model’s predic-
tive performance [48, 49]. Meanwhile, model overfitting 
can diminish the generalizability of results and lead to 
suboptimal performance when applied to other datasets. 
We are actively working to collect more data and imple-
ment data balancing methods to enhance the model’s 
generalizability. Second, the study lacks multi-center 
controlled trials and external validation. To address this 
limitation, we implemented image standardization, eval-
uated feature reliability using intraclass correlation coef-
ficient (ICC), and performed internal validation through 
1,000 bootstrapped samples to enhance the robustness 
of the model. Third, the use of the largest cross-sectional 
area of the organ in this study may have resulted in the 
loss of critical information. Fourth, while our current 
study extracted 2D images of the lower esophagus, which 
may not fully capture the three-dimensional characteris-
tics of varicose veins, we intend to incorporate continu-
ous 3D imaging in our subsequent studies to enhance the 
depth of our analysis. Fifthly, the retrospective nature of 
this study may introduce selection bias. To mitigate this 
limitation, we plan to undertake prospective studies in 
the future.Ta
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In future work, we will focus on conducting multi-
center studies to externally validate the model across 
diverse patient populations, enhancing its generalizabil-
ity. We will also explore the use of 3D imaging techniques 
to capture more comprehensive variceal features and 
investigate the application of deep learning approaches 
for automated ROI segmentation and feature extraction. 
Additionally, we aim to explore image-based deep learn-
ing methods that do not require manual ROI segmenta-
tion. Prospective clinical studies will further refine and 
implement the model in real-time settings, ensuring its 
practicality and robustness in clinical applications.

Conclusion
In conclusion, the clinical-liver combined model could 
have the potential to evaluate the prognosis of endo-
scopically treated patients, suggesting that radiomics-
enhanced CT assessments could be routinely integrated 
into patient management. By enabling personalized risk 
stratification, this model could guide clinicians in making 
more informed decisions about the intensity of follow-
up and the need for secondary prophylaxis, ultimately 
improving patient outcomes and reducing mortality. 

To our knowledge, this study may have derived the first 
CT-based radiomics models to consider multiple organs 
for predicting rebleeding after endoscopic treatment of 
cirrhotic varices. An unexpected finding was the com-
paratively lower performance of the esophageal-based 
radiomics model, likely due to the anatomical challenges 
of capturing dynamic structures during CT scans. This 
highlights the potential for future studies to incorporate 
advanced imaging techniques such as 3D CT or motion 
correction algorithms to improve diagnostic accuracy. 
Furthermore, the broader application of radiomics in 
cirrhotic complications, such as portal hypertension 
or hepatocellular carcinoma, could stimulate further 
research and innovation in predictive imaging.

Abbreviations
EGVs	� Esophagogastric varices
EGVB	� Esophagogastric variceal bleeding
ICC	� Intraclass correlation coefficient
NRI	� Net reclassification improvement
IDI	� Integrated discrimination improvement
DCA	� Decision curve analysis
RBC	� Red blood cell count
LYM	� Lymphocyte count
ALP	� Alkaline phosphatase

Table 5  1000-times bootstrap estimate of the area under the ROC curve and the model optimism estimation
Index Model Apparent AUCa AUC Bootstrap-Trainb

(mean, 95% CI)
AUC Bootstrap-Testc

(mean, 95% CI)
Average optimismd Optimism-corrected AUCe

1 Liver 0.891 0.898(0.896-0.9) 0.856(0.853–0.858) 0.042 0.849
2 Spleen 0.837 0.839(0.836–0.841) 0.837(0.833–0.840) 0.002 0.835
3 Esophagus 0.767 0.773(0.770–0.775) 0.742(0.738–0.745) 0.03 0.737
Notes a. The AUC of the predicting model developed in the original whole dataset

b. The averaged model performance in the resampled training set after 1000-times bootstrapping

c. The averaged model performance in the “out-of-bag” test set after 1000-times bootstrapping

d. The averaged optimism of the model as the difference between the bootstrap training set AUC and the test AUC

e. The corrected AUC was found by subtracting the average optimism from the apparent AUC

Fig. 3  Illustration of model performance. (a) The ROC curves of eight models. (b) The calibration curves of eight Models, which describe the agreement 
between the model predicted probability and actual event happening probability. (c) The decision curves of eight models. Notes: The black horizontal 
line assumes no patients with rebleeding (NONE) and the grey line assumes all patients with rebleeding (ALL). The colored lines of each model illustrate 
the net benefit brought to each patient by choosing different threshold probability. The closer the decision curves are to the black and gray curves, the 
lower the clinical decision net benefit of the model. When comparing the net benefit among different models within specific threshold probability range, 
the higher the model curve, the greater the clinical usefulness
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