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Abstract 

Objective This study aims to assess the  consistency of various CT-FFR software, to determine the reliability of cur-
rent CT-FFR software, and to measure relevant influence factors. The goal is to build a solid foundation of enhanced 
workflow and technical principles that will ultimately improve the accuracy of measurements of coronary blood 
flow reserve fractions. This improvement is critical for assessing the level of ischemia in patients with coronary heart 
disease.

Methods 103 participants were chosen for a prospective research using coronary computed tomography angiog-
raphy (CCTA) assessment. Heart rate, heart rate variability, subjective picture quality, objective image quality, vascular 
shifting length, and other factors were assessed. CT-FFR software including K software and S software are used for CT-
FFR calculations. The consistency of the two software is assessed using paired-sample t-tests and Bland-Altman plots. 
The error classification effect is used to construct the receiver operating characteristic curve.

Results The CT-FFR measurements differed significantly between the K and S software, with a statistical signifi-
cance of P < 0.05. In the Bland-Altman plot, 6% of the points (14 out of 216) fell outside the 95% consistency level. 
Single-factor analysis revealed that heart rate variability, vascular dislocation offset distance, subjective image qual-
ity, and lumen diameter significantly influenced the discrepancies in CT-FFR measurements between two software 
programs (P < 0.05). The ROC curve shows the highest AUC for the vessel shifting length, with an optimal cut-off 
of 0.85 mm.

Conclusion CT-FFR measurements vary among software from different manufacturers, leading to potential misclas-
sification of qualitative diagnostics. Vessel shifting length, subjective image quality score, HRv, and lumen diameter 
impacted the measurement stability of various software.
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Background
Coronary artery disease (CAD) is a well-documented 
risk factor for mortality and morbidity of cardiovascu-
lar diseases among adults [1]. Coronary heart disease 
requires a comprehensive evaluation of morphological 
and hemodynamic information of coronary arteries [2, 
3]. Currently, invasive fractional flow reserve (iFFR) is 
a crucial clinical benchmark for assessing the function 
of coronary artery disease (CAD) [4]. CT fractional 
flow reserve (CT-FFR) is a valuable method that utilizes 
computational fluid dynamics (CFD) to identify and 
assess ischemic lesions resulting from coronary artery 
stenosis. It is also effective in reclassifying the severity 
of myocardial ischemia [5–7].

The use of a fluid mechanics model requires con-
siderable computing resources for the simulation of 
what can often be large and complex systems [8–10]. 
Advances in technology have led to the implementa-
tion of artificial intelligence in CT-FFR. This involves 
extracting clinical data characteristics using machine 
learning or deep learning algorithms to achieve autono-
mous, rapid, and precise processing [11–13]. Different 
software vendors vary in technical areas such as archi-
tecture, artificial intelligence, algorithms, training, and 
other variables. The variations in these elements could 
indicate ambiguity in the results obtained [14, 15]. 
Hence, various software programs may result in vary-
ing identification of a certain ischemia injury.

We conducted a thorough literature review and did 
not find any studies comparing various CT-FFR soft-
ware. Furthermore, the CT-FFR assessment can be 
influenced by pathophysiology, picture quality, scan-
ning settings, and other factors. Therefore, there is an 
urgent need for a comprehensive and systematic study 
of the differences in the CT-FFR measurements and to 
identify the factors, so as to improve the reliability and 
accuracy of the CT-FFR and provide strong support for 
its accurate assessment of myocardial ischemic lesions. 
Hence, this study aims to evaluate the consistency 
between different CT-FFR measurement softwares and 
identify relevant influence factors.

Materials and methods
Study population
This retrospective investigation was approved by the 
institutional ethics committee, which provided a waiver 
of informed consent. 103 patients suspected of having 
coronary artery disease (CAD) were chosen in advance 
from our hospital between June 2020 and July 2021. The 
median age of the participants was 52 years, ranging 
from 22 to 82 years, with 61 males and 42 females.

Inclusion criteria: Patients with suspected coronary 
artery disease necessitating coronary computed tomog-
raphy angiography (CCTA).

Exclusion criteria include data not meeting analy-
sis requirements, poor breath holding, previous iodine 
allergy, renal insufficiency (serum creatinine ≥ 120 
µmol/L), severe tachycardia or arrhythmia, suspected 
acute coronary syndrome, complex congenital heart dis-
ease, and cardiac device implantation.

CCTA data acquisition
Patient preparation
An 18-gauge catheter (BD Intima II 18G, BD, Jiangsu, 
China) was inserted into the elbow vein, and its function-
ality was confirmed by flushing 20 mL of physiological 
saline before injecting the contrast agent. Patients having 
a heart rate over 70 beats per minute were given Betaloc 
tablets from Yangzi Pharmaceutical in China at an oral 
dosage ranging from 25 to 75 mg, as shown in Fig. 1.

Scan protocol
The CCTA examinations were conducted using a 128-
slice dual-source CT scanner (SOMATOM Definition 
Flash, Siemens Medical Solutions, Forchheim, Germany) 
with the patient lying down in a supine posture with their 
feet first. The bolus tracking technique is employed for 
automatic triggering. The monitoring point was located 
1 cm below the tracheal carina. The area of interest (ROI) 
was delineated at the aortic root. The drawing range was 
located in the lower center of the aortic root, distant from 
the superior vena cava and pulmonary artery. The trig-
ger level was established at 100 Hounsfield units (HU). 
Following the summit, there is a 5-second delay in the 
CCTA images. A prospective ECG acquisition sequence 
technique was used for CCTA to capture data during the 
35 − 80% of the R-R interval.

Acquisition parameters: Tube voltage set at 70 kVp; 
tube current at 320 mAs per rotation using ATCM 
(CareDose 4D, Siemens Medical Solutions, Forch-
heim, Germany). The detector collimation measured 
2 × 64 × 0.6  mm and the gantry rotation time was 280 
ms. The axial image reconstruction has a thickness of 
0.75 mm and a reconstruction interval of 0.6 mm. Image 
reconstruction was performed using sinogram-affirmed 
iterative reconstruction (SAFIRE 3, Siemens Medical 
Solutions, Forchheim, Germany) and a medium smooth 
convolution kernel (I26f ).

The experts recommended favoring the middle ven-
tricular diastolic phase, which corresponds to the 
60–80% phase of the R-R interval. Individuals with low 
to medium heart rates often choose a 70–80% phase 
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reconstruction of the R-R interval [16]. We chose the 
optimal diastolic data that was automatically recon-
structed by the CT equipment for analysis. The data 
was uploaded to an image post-processing worksta-
tion (ADW version 4.5, GE healthcare, Milwaukee, WI, 
USA) and the CT-FFR professional analysis platform.

Contrast injection
Iodixanol Injection 370 mgI/mL from Bayer Schering 
Pharma AG Guangzhou branch in Guangdong, China is 
used as the contrast agent for CCTA. The injection vol-
ume was adjusted to 50–70 mL at a rate of 4.0-5.5 mL/sec 
based on the individual’s body weight. After administer-
ing the contrast injection, 40 mL of physiological saline 
was flushed.

Image post‑processing
Post-processing of the image was conducted using a 
sophisticated workstation (ADW version 4.5, GE health-
care, Milwaukee, WI, USA). Curved planar recon-
struction (CPR), maximum intensity projection (MIP), 
volumetric rendering technique (VRT), and multi-planar 
reformation (MPR) were used to assess the coronary 

arteries. Image quality, stenosis, and lumen diameter 
were assessed using multiplanar reformation (MPR) and 
axial views of each channel.

Image quality
Subjective evaluation
Based on the ‘vessel’ level, including left anterior descend-
ing (LAD), left circumflex (LCx) and right coronary artery 
(RCA), the image quality was assessed by two independent 
observers (with 8 and 10 years of cardiovascular diagnos-
tic experience, respectively) blinded to each patient on the 
workstation independently. We use a scale with four levels. 
Image quality was rated as outstanding (scores 3 and 4) and 
inferior (scores 1 and 2). The two witnesses resolved their 
disagreement by consulting with each other to reach a con-
sensus, as shown in Fig. 2.

Attenuation, noise, signal‑to‑noise ratio 
and contrast‑to‑noise ratio
The average and variability of the aortic root (AO), left 
coronary artery (LCA), and RCA were determined using 
areas of interest (ROIs). The standard deviation (SD) 
served as the noise. The mean attenuation was measured 
in the adipose tissue around the ascending aorta as the 
background signal. ROIs drew the largest area as much 

Fig. 1 Recruitment flowchart for including patients in the study and technology roadmap
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as possible. The signal-to-noise ratio (SNR) and contrast-
to-noise ratio (CNR) were calculated by the formula, as 
shown in Fig. 3:

(1)SNR = Meanattenuation/Noise

CNR = (Mean attenuation - Mean attenuation of adipose tissue around the

(2)AO)/Noise]

Vessel shifting length
The unregistered phenomena of vascular data included 
the vascular truncation, dislocation and stepped artifacts. 
This phenomenon mainly occurs during arrhythmia. 
In order to quantify the severity of the non-registration 

of different phases, we defined a new index, viz., vessel 
shifting length (VSL). The measurement rules of VSL are 
shown in Fig. 4.

Fig. 2 Subjective assessment of the image quality score. Note: 1 = poor, unavailable; 2 = acceptable, moderate artifact, but images are available; 
3 = good, slight artifact; and 4 = excellent, no visible artifact. Figure a ~ d showed the image quality scores of 1, 2, 3 and 4, respectively

Fig. 3 Objective image quality measurement. Note: Figure a showed the mean values and standard deviation of the aortic root, left coronary artery 
and adipose tissue area around the aortic root as attenuation and noise, respectively; figure b showed the mean attenuation and noise of the right 
coronary artery
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Measurement of the lumen diameter
Following magnetic resonance imaging (MPR) of the 
coronary artery, the diameter of the proximal lumen of 
the primary coronary arteries (LAD, LCx, and RCA) was 
quantified as the lumen diameter (LD) [17].

Coronary stenosis
Coronary stenosis was assessed by two obstetricians 
with 8 and 10 years of experience in cardiovascular diag-
nostics. The evaluation method involves the diameter 
method, which is calculated as follows.

The formula to calculate the degree of vascular steno-
sis is: (D-d) / D × 100%, where d represents the average 
value of the normal lumen diameter at both ends of the 
stenosis, and D is the smallest lumen diameter at the ste-
nosis. The severity of narrowing was assessed based on 
SCCT guidelines, as shown in Table 1 [16, 18].

CT‑FFR
The CT-FFR calculation was performed using CT-FFR 
software, which included K software (deep vessel FFR, 
KEYA medical, Shenzhen, China) and S software (coro-
nary doc, SHUKUN Technology, Beijing, China). The 
raw data from the best diastolic phase of the CCTA was 
sent to K software in DICOM format for analysis. The 
CT-FFR measurement was conducted by specialists who 
were unaware of the other examination outcomes.

Statistical analysis
Statistical analysis was performed using SPSS software, 
version 24.0, developed by SPSS, Inc. based in Chi-
cago, IL, USA. Quantitative variables were presented 
as Mean ± SD, whereas categorical variables were dis-
played as frequencies or percentages. The consistency 
of the two software programs was evaluated using a 
paired sample t-test and a Bland-Altman plot. The 
Bland-Altman figure showed the mean difference and 
± 1.96 standard deviations as the consistency bounds. 
Either Pearson or Spearman correlation was utilized 
for the correlation analysis. The reliability was assessed 
using the intra-class correlation coefficient (ICC). Error 
classification affects were utilized for receiver operating 
characteristic (ROC) curve analysis. P values less than 
0.05 are considered significant.

Fig. 4 Schematic representation of the CT-FFR measurement. Note: MPR for coronary artery data and a suitable oblique coronary position were 
determined to measure the maximum shifting length of vessels (Fig. 4c). The VSL of LAD was 7.3 mm, CT-FFR = 0.80 determined by K software 
(Fig. 4a), and CT-FFR = 0.62 determined by S software (Fig. 4b). The measurement results were qualitatively inconsistent with the diagnosis

Table 1 Coronary stenosis

CAD‑RADS grading Degree of stenosis

CAD-RADS 0 0% (No visible stenosis)

CAD-RADS 1 1–24% (Minimal stenosis)

CAD-RADS 2 25–49% (Mild stenosis)

CAD-RADS 3 50–69% (Moderate stenosis)

CAD-RADS 4 70–99% (Severe stenosis)

CAD-RADS 5 100% (Occluded)
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Results
Baseline data
Seventy-two participants and 216 coronary vessels 
were included in the study. Table  2 displayed the 
first data.

Image quality
Subjective evaluation
72 patients were assessed for a total of 216 coronary 
vessels. The average score for all vessels was 3.51 with 
a standard deviation of 0.571. Score 1 represented 0.9% 
of the total (2/216); score 2 accounted for 3.7% (8/216); 
score 3 accounted for 41.2% (89/216); and score 4 repre-
sented 54.1% (117/216). The average scores for LAD, LCx, 
and RCA were 3.47 ± 0.604, 3.46 ± 0.604, and 3.60 ± 0.494, 
respectively.

Objective evaluation
Attenuation, noise, SNR and CNR
The attenuation of the target area was 504.85 ± 94.042 
HU, the noise was 25.51 ± 9.847 HU, the SNR was 
24.12 ± 12.391, and the CNR was 24.71 ± 8.323. Table  3 
displays the attenuation, noise, SNR, and CNR.

Vessel shifting length
The average VSL was 0.46 mm with a standard deviation 
of 0.962. The LAD shifted by 0.31 ± 0.684 mm, the LCx by 
0.57 ± 1.140 mm, and the RCA by 0.50 ± 1.000 mm.

Coronary LD
The average coronary LD was 3.41 mm with a standard 
deviation of 0.682  mm.  LDLAD,  LDLCX, and  LDRCA  had 
mean diameters of 3.61 ± 0.706 mm, 3.26 ± 0.641 mm, and 
3.37 ± 0.660 mm, respectively.

Coronary stenosis
The average stenosis rate of coronary artery disease was 
24.68% with a standard deviation of 31.081%. Out of 216 
vessels, 20.8% (15/72) were in grade I, 23.6% (17/72) were 
in grade II, 19.4% (14/72) were in grade III, 11.1% (8/72) 
were in grade IV, 20.8% (15/72) were in grade V, and 4.2% 
(3/72) were in grade VI.

Consistency of CT‑FFR measured by different software
Paired sample t‑test
A paired sample t-test was used to compare the CT-FFR 
readings obtained from K software and S software. The 
discrepancy was statistically significant with values of 
0.867 ± 0.077 and 0.886 ± 0.167, t = 2.069, P < 0.05.

Bland‑Altman consistency analysis
In the study population, the occurrence of ischemia was 
16.2% (35/216) as determined by K software and 21.76% 
(47/216) as determined by S software. Figure 5 displayed 
the consistency results.

ICC
CT-FFR measurements using K software and S software 
showed a moderate level of consistency with an intraclass 
correlation coefficient (ICC) of 0.581 (95% confidence 
interval 0.452, 0.679), P < 0.001.

Influence factor of the difference by different 
CT‑FFR software
Influence factor
HRv in patients showed a weak positive connection 
(r = 0.226, P < 0.01) with the difference in CT-FFR meas-
urements. No other variable shows a significant correla-
tion with the difference in the CT-FFR measurement. 
Subjective image quality, VSL, and LD were identified as 
weakly negatively correlated variables with the CT-FFR 
measurement difference, with correlation coefficients of 

Table 2 Baseline data

HR Heart rate, HRv Heart rate variability

Patients (n = 72) Statistical description

Gender (male/female) 47/25

Age (years old) 59.85 ± 11.70

BMI (kg/m2) 24.48 ± 3.42

HR (bpm) 60.26 ± 10.65

HRv (bpm) 17.04 ± 12.47

Hypertension (n, %) 41, 56.9%

Hyperglycemia (n, %) 18, 42.5%

Hyperlipidemia (n, %) 15, 20.8%

Table 3 Attenuation, noise, SNR and CNR

SNR as signal-to-noise ratio, CNR as contrast-to-noise ratio

Parameter Aortic root Left coronary artery Right coronary artery

Attenuation (507.45 ± 85.046) HU (516.73 ± 96.520) HU (490.36 ± 100.56) HU

Noise (28.91 ± 5.838) HU (23.80 ± 10.921) HU (23.81 ± 12.782) HU

SNR (18.14 ± 4.056) HU (26.43 ± 12.878) HU (27.79 ± 20.240) HU

CNR (21.44 ± 4.775) HU (31.25 ± 15.419) HU (21.44 ± 4.775) HU
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-0.361 (P < 0.05), 0.462 (P < 0.01), and − 0.166 (P < 0.05), 
respectively (Table 4).

ROC curve
CT-FFR values equal to or greater than 0.8 are consid-
ered negative for qualitative diagnosis, whereas values 
below 0.8 are considered positive. Different software 

correctly classified negative cases and incorrectly clas-
sified positive cases. The ROC curve is used to analyze 
each of the influence elements. All P values are less than 
0.01 as shown in Fig. 6.

Sub‑group analysis
These variables were divided into two groups accord-
ing to the best cut-off points of ROC curve (0.85 mm, 
score of 3.5, 20 beats / min and 2.95 mm, respectively). 
Determine locations beyond the 95% confidence inter-
val. The study found that the accuracy of CT-FFR meas-
urements using various software was higher when the 
vessel size was less than 0.85  mm (5-12%), the image 
quality score was equal to or more than 3.5 (5-8%), the 
heart rate variability was less than 20 beats per min-
ute (5-10%), and the lumen diameter was equal to or 
greater than 2.95  mm (2-6%) compared to the other 
group (Fig. 7).

Discussion
The investigation revealed that the discrepancy in CT-
FFR measurements between K software and S software 
exceeded the 95% consistency limit in the Bland-Altman 
plot. It demonstrates that the measurements obtained 
from several software programs are inconsistent. Subse-
quent studies have revealed numerous parameters that 
influence variability in CT-FFR measurements with dif-
ferent software, such as heart rate variability, subjective 
image quality, vessel signal-to-noise ratio, and lumen 
diameter. The VSL has the highest AUC, with the optimal 
cut-off point being 0.85  mm. When the vessel shifting 
distance exceeded 0.85  mm, there was a notable rise in 

Fig. 5 Bland-Altman plots of consistency by K and S software. Note: The Bland-Altman difference plot (a) and ratio plot (b) both showed 
that the 6% (14 / 216) points were outside the 95% consistency limit (Fig. 5). ICC of the measurements between K and S software was 0.581, P<0.001

Table 4 Related variables analysis

HR as heart rate, HRv as heart rate variability, VSL as vessel shifting length, SNR as 
signal-to-noise ratio, CNR as contrast-to-noise ratio, LD as lumen diameter
a As independent sample t-test
b As Pearson correlation
c As Spearman correlation

Variable Statistic P value

Gender (male/female) 0.726a 0.469

Hypertension (yes/no) 1.815a 0.071

Hyperglycemia (yes/no) 0.142a 0.887

Hyperlipidemia (yes/no) 0.118a 0.696

Coronary distribution (right/others) 1.165a 0.248

Age (years old) -0.028b 0.683

BMI (kg/m2) 0.060b 0.378

HR (bpm) 0.071b 0.300

HRv (bpm) 0.226b 0.001

VSL (mm) 0.462b 0.001

Attenuation (HU) -0.037b 0.589

Noise (HU) 0.009b 0.896

SNR -0.022b 0.751

CNR -0.020b 0.768

LD (mm) -0.166b 0.014

Coronary stenosis (%) 0.027b 0.695

Subjective image quality score -0.361c 0.001
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the discrepancy of CT-FFR measurements obtained from 
different software.

Artificial intelligence (AI) and machine learning (ML) 
are widely used in various fields and improve robustness 
and generalization capability through varioustechniques 
[19–23]. CT-FFR utilizes a multi-layer neural network 
framework to construct a coronary artery database based 
on the anatomical structure and hydrodynamics of the 
coronary artery tree. It has shown benefits in terms of 
processing speed and greatly enhanced work produc-
tivity. CT-FFR showed comparable diagnostic efficacy 
to invasive FFR. It greatly enhanced the detection of 
ischemic lesions resulting from obstructive stenosis and 
reassessed the level of ischemia [24, 25]. The variation 
in CT-FFR measurements from different software was 
influenced by technological differences [6, 26–28]. The 
study results were consistent with the present software’s 
application state. The basic data for CT-FFR comes from 
CCTA and one of the key steps is to build a coronary tree 
model through CCTA. Image segmentation has been a 
fundamental component of medical image analysis for 
an extensive period. The primitive image features (e.g., 
pixel intensities and edge maps) significantly impacts 
their robustness and generalization capability [29, 30]. 
Analyzed in a multicenter retrospective investigation, 

factors influencing CT-FFR included subjective picture 
quality, objective image quality, and heart rate, affecting 
its diagnostic accuracy. Subjective image quality score ≥ 3 
points, attenuation between 300 and 400 HU, and heart 
rate less than 70  bpm were found to enhance the cred-
ibility of CT-FFR [31]. The current survey indicates that 
image quality, lumen diameter, and HRv are significant 
factors that influence the CT-FFR calculations evaluated 
with various software, yielding comparable results. Cri-
teria for guaranteeing measurement stability included 
a lumen diameter of 2.95  mm or above, HRv less than 
20  bpm, subjective image quality score of 3.5 points or 
higher, and VSL less than 0.85  mm. Xu et  al. [32] pro-
pose a multi-feature fusion method to identify high-risk 
plaque. The proposed method helped to build a more 
complete feature set so that the machine learning mod-
els could identify vulnerable plaque more accurately even 
on datasets with poor quality. In future studies, we will 
continue to explore the effect of image quality on coro-
nary hemodynamics. Heart rate variability (HRv) can 
cause variations in the heart’s diastole and systole, lead-
ing to irregular acquisition positions. An increase in HRv 
may lead to a rise in phase difference, which might affect 
image registration differences [33, 34]. In this study, 7.7% 
(6 out of 78) patients were unable to have their CT-FFR 

Fig. 6 ROC curves of diagnosis classification. Note: The optimal cut-off point of HRv was 20 times /min, the sensitivity was 75.8%, the specificity 
was 68.3%. The the cut-off point of VSL was 0.85 mm, the sensitivity was 87.9%, the specificity was 90.7%. The optimal cut-off point of subjective 
image quality score was 3.5 points, the sensitivity was 63.5%, the specificity was 91%. The optimal cut-off point of LD was 2.95 mm, the sensitivity 
was 87.9%, the specificity was 27.1%

(See figure on next page.)
Fig. 7 Bland-Altman plots of sub-group analysis. Note: Figure a showed the Bland Altman plot with VSL ≥ 0.85 mm, which showed that the 12% 
(6/51) points were outside the 95% confidence interval; 5% (8/165) if VSL < 0.85 mm (b) Figure c showed the Bland Altman plot with Subjective 
image quality score < 3.5, which showed that the 8%(9/118) points were outside the 95% confidence interval; 5% (5/98) if the score ≥ 3.5 (d) 
Figure e showed the Bland Altman plot with HRv ≥ 20 bpm, which showed that the 10% (12/116) points were outside the 95% confidence 
interval; 5% (5/100) if HRv < 20 bpm (f) Figure g showed the Bland Altman plot with LD ≥ 2.95 mm, which showed that the 2%(3/164) points were 
outside the 95% confidence interval; 6% (3/52) if the LD< 2.95 mm (h) 
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Fig. 7 (See legend on previous page.)
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estimated using the K program due to image registration 
discrepancies. Some scholars tested two dynamic reg-
istration methods to correct for the patient respiratory 
movements [35]. In this study, respiratory movement has 
a more direct impact on subjective image quality, and 
patient respiratory coordination is extremely important. 
Hence, achieving optimal image quality is crucial in the 
clinical application of CT-FFR.

The hydrodynamic model of CT-FFR relies on precise 
image data and the boundary of the vessel wall. Elevated 
heart rate can cause motion abnormalities and inad-
equate dilation of the coronary arteries [36]. Xu et  al. 
[31] showed that the specificity and positive predictive 
value of CT-FFR were greater at low heart rates com-
pared to high heart rates. The ADVANCE study [37] 
demonstrated that heart rate independently predicted 
the quality of CCTA images. This suggests that the heart 
rate can affect the visualization of coronary arteries. The 
DeFACTO study discovered that β-Receptor blockers 
or nitroglycerin could notably enhance the specificity 
of CT-FFR [38]. The study utilized a second-generation 
dual-source CT scanner with high temporal resolution 
and scanning speed, ensuring minimal impact on image 
quality from heart rate variations. Our investigation did 
not demonstrate the impact of heart rate on the con-
sistency of CT-FFR measurement. To ensure accurate 
CT-FFR values, it was essential to regulate the heart rate 
during the CCTA examination.

The investigation revealed that the lumen diameter 
has an impact on measurement consistency. The lumen 
diameter may affect the fine resolution. The size of the 
lumen has an impact on the precision of morphologi-
cal diagnosis [39]. Sankaran and colleagues examined 
how the uncertainty of minimum lumen diameter, lesion 
length, boundary resistance, and blood viscosity affect 
FFR. The study findings indicated that the impact of 
minimal lumen width on CT-FFR was greater than that 
of other variables such as lesion length, viscosity, and 
border resistance [37]. In this study, the examination of 
several components did not find the lumen diameter to 
be a statistically significant determinant. Our investi-
gation concluded that coronary stenosis did not have a 
major impact on the variations caused by different soft-
ware. This suggests that there may not be a clear connec-
tion between coronary stenosis and the hemodynamic 
alterations.

Future studies involving more clinical data will be nec-
essary to verify the stability of CT-FFR measurements 
with different softwares and relevant influence factors in 
order to provide reliable guarantees for CT-FFR evalua-
tion of myocardial ischemia.

Our study has some limitations. First, the study was 
limited by a small sample size, which could result in type 

I errors and limits the statistical power and strength of 
the conclusions. In the future, it is necessary to further 
enhance the sample size to confirm the dependability 
and correctness of the research results. Second, invasive 
fractional flow reserve is a crucial clinical benchmark for 
assessing the function of CAD. In this study, the small 
number of patients undergoing iFFR intervention made 
it difficult to support subsequent analysis. In later stud-
ies, iFFR should be further used as a standard to compare 
the clinical efficacy of different software in evaluating 
hemodynamics while expanding the sample size. Third, 
the S software lacks approval from the National Medical 
Products Administration and may have inadequate clini-
cal validation.

Conclusions
Our study demonstrates that there are significant varia-
tions in the CT-FFR measurements produced by different 
software providers and even qualitative diagnostic mis-
classifications occur. Various software stability was influ-
enced by lumen diameter, HRv, subjective image quality 
score, and VSL. We recommend carefully considering the 
variations among different software in clinical practice 
and selecting optimal measurement software based on 
clinical practice. In the actual clinical work, it is neces-
sary to pay attention to the influencing factors related to 
image quality, and it is also necessary to carefully inter-
pret the guidance of CT-FFR in evaluating the degree of 
cardiac ischemia. Future multicenter prospective studies 
will be necessary for the validation of our findings.
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