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Abstract 

Background Speckle tracking echocardiography (STE) provides quantification of left ventricular (LV) deformation 
and is useful in the assessment of LV function. STE is increasingly being used clinically, and every effort to simplify 
and standardize STE is important. Manual outlining of regions of interest (ROIs) is labor intensive and may influence 
assessment of strain values.

Purpose We hypothesized that a deep learning (DL) model, trained on clinical echocardiographic exams, can be 
combined with a readily available echocardiographic analysis software, to automate strain calculation with compara‑
ble fidelity to trained cardiologists.

Methods Data consisted of still frame echocardiographic images with cardiologist‑defined ROIs from 672 clinical 
echocardiographic exams from a university hospital outpatient clinic. Exams included patients with ischemic heart 
disease, heart failure, valvular disease, and conduction abnormalities, and some healthy subjects. An EfficientNetB1‑
based architecture was employed, and different techniques and properties including data set size, data quality, aug‑
mentations, and transfer learning were evaluated. DL predicted ROIs were reintroduced into commercially available 
echocardiographic analysis software to automatically calculate strain values.

Results DL‑automated strain calculations had an average absolute difference of 0.75 (95% CI 0.58–0.92) for global 
longitudinal strain (GLS), and 1.16 (95% CI 1.03–1.29) for single‑projection longitudinal strain (LS), compared to opera‑
tors. A Bland–Altman plot revealed no obvious bias, though there were fewer outliers in the lower average LS ranges. 
Techniques and data properties yielded no significant increase/decrease in performance.

Conclusion The study demonstrates that DL‑assisted, automated strain measurements are feasible, and provide 
results within interobserver variation. Employing DL in echocardiographic analyses could further facilitate adoption 
of STE parameters in clinical practice and research, and improve reproducibility.
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Introduction
Global longitudinal strain (GLS) using speckle track-
ing echocardiography (STE) is a validated and robust 
measurement for left ventricular (LV) function. GLS is 
reported to be a sensitive marker for LV systolic func-
tion, and provides incremental prognostic and diagnostic 
value in coronary heart diseases [1], early systolic dys-
function [2, 3], cardiomyopathies and valvular disease 
[4–8]. While STE parameters are widely used in research 
settings, use in clinical practice is more limited, partly 
due to the labor and experience required to manually 
delineate myocardial walls for strain analysis.

Outlining structures or objects in images, i.e. segmen-
tation, using deep learning (DL) has shown great poten-
tial in fields such as ophthalmology [9], skin cancer [10] 
and radiology [11]. Automating echocardiographic anal-
ysis using artificial intelligence (AI) technology, such as 
neural networks, has the potential to reduce operator-
dependent variability and analysis time, while increas-
ing repeatability. Studies have already demonstrated the 
feasibility of fully automated GLS calculations, including 
both view recognition and analysis [12, 13], and the use 
of commercial software for automated strain calculations 
[14, 15].

As a rule of thumb, the quality of a DL model is 
dependent on the size of the training data set and the 
accuracy of its labeling (in AI parlance: “ground truth”). 
In medical imaging, and echocardiography in particu-
lar, access to large datasets is limited. Also, with the low 
signal-to-noise ratio of ultrasound images, and the echo-
cardiographic inter- and intraobserver variability, ques-
tions arise regarding which aspects of DL training matter 
most: data quantity, ground truth quality, or even trans-
fer learning from other data sets.

With increasing usage of DL models in all aspects of 
life, the sometimes extraordinary failures [16, 17] of such 
tools in seemingly ordinary situations have become pop-
ular memes. While a few mistakes may not have a large 
impact on model statistics, this “black box” problem [18] 
could be significant in a clinical setting if the operator 
does not understand what is happening or is unable to 
intervene. Indeed, the American Society of Echocardi-
ography (ASE)/ European Association of Cardiovascular 
Imaging (EACVI) guidelines recommend that all medical 
imaging diagnostics using speckle tracking and automatic 
segmentation must allow the operator to visually check 
the tracking results and to manually correct them to 
account for mislabeling and varying anatomy [19].

In the current study, we aimed to integrate a DL-based 
automatic method for LV segmentation, trained on a 
large, clinical echocardiographic dataset, with com-
mercially available echocardiographic analysis software. 
Thereby retaining the clinical workflow with a human 

in the loop, and the possibility for an operator to inspect 
and correct every measurement, while reducing analysis 
time. Employing commercial software in use world-wide 
for strain calculations means GLS results from the pre-
sent study are directly comparable to clinical data. Fur-
thermore, we aimed to investigate how transfer learning, 
data quantity, and data quality affect the DL-assisted GLS 
calculations, in addition to validating DL models built on 
the open source CAMUS echocardiographic data set [20] 
on clinical strain measurements from our hospital. The 
study aims to be a proof of concept, focusing on testing 
the feasibility and basic functionality of the idea, not to 
develop a fully operational pipeline ready for deployment.

Methods
Study population
Echocardiographic exams were collected from available 
datasets used in earlier research projects by our group 
(Center for Cardiological Innovation/ ProCardio Center 
for Innovation) between 2006 and 2018, and all avail-
able STE echocardiograms acquired related to invasive 
coronary angiography performed at Oslo University 
Hospital Rikshospitalet in 2018. The dataset consisted 
of 672 echocardiographic exams from 605 patients, 
acquired at Oslo University Hospital Rikshospitalet and 
University Hospital Brussels. Age was 63.4 ± 17.5  years, 
gender distribution 61.5% male. This included examina-
tions from patients with aortic stenosis (n = 121), Bru-
gada syndrome (n = 111), Mitral valve prolapse (n = 22) 
hypertrophic cardiomyopathy (n = 54), patients with 
heart failure before and after cardiac resynchronization 
therapy device implantation  (nbefore = 72,  nafter = 67), and 
patients with myocardial infarction (n = 219). There were 
also a small number of examinations from patients with 
no known heart disease (n = 6). 453 (67%) examinations 
were acquired for research projects, while 219 (33%) were 
clinical exams. All data were anonymized upon extrac-
tion, leaving only age, gender, and primary diagnosis. 
Using stratified randomization based on diagnosis, the 
examinations were divided into three sets, with 15% of 
data reserved for testing of clinical measurements while 
the remaining 85% was split into training and validation 
sets (Table 1). The test set consisted of 307 images from 
107 patients, with all 3 apical views present in 83 (76%) 
patients.

Two open source datasets were employed for transfer 
learning [21] and external validation: ImageNet ILSVRC 
is a commonly used open source database with thousands 
of images, and is often used for benchmarking segmenta-
tion models [22]. The CAMUS dataset is a publicly avail-
able echocardiographic dataset consisting of 500 patients 
with annotated epicardial and endocardial border [20].
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The echocardiographic examinations originated from 
Vivid E9 and E95 ultrasound systems (GE Healthcare, 
Horten, Norway). Clinical image analyses were per-
formed using EchoPAC software version 201, 202, and 
203 (GE Vingmed Ultrasound). The echocardiograms 
were primarily acquired and analyzed by trained cardi-
ologists following the EACVI/ASE clinical recommenda-
tions, and then quality assessed by a second cardiologist 
with 20 years of echocardiographic experience.

Data pipeline and model development
Mid-systolic frames and corresponding LV region of 
interest (ROI)s were extracted from image loops using 
GE proprietary software and exported for analysis on 
an offline workstation. The extracted images, and the 
ROI masks, were in 8-bit grayscale, 256 × 256 pixels. All 
images were manually reviewed to eliminate single wall-, 
right ventricle-, and left atrial strain exams from the data 
set. The quality of each image, and the placement of the 
corresponding mask, were quality assessed by an expe-
rienced cardiologist and determined to be either of low, 
medium, or high quality based on image noise and con-
trast, endo- and epicardial border visibility, and accuracy 
of LV outline markers.

In the current study, convolutional neural networks 
(CNNs) were trained in a supervised way [23]. The model 
was provided with examples of echocardiograms and the 
corresponding ROI mask, and the model would then try 
to learn the relationship between these. A successfully 

trained model will be able to output a ROI mask for any 
given echocardiogram (Fig. 1).

5-fold cross-validation [24] was applied on the train/
validation data during development of the model in order 
to estimate the model’s performance and select the right 
model and parameters. EfficientNetB1 [25] was chosen as 
encoder, as it was the state-of-the-art CNN architecture 
based on the benchmarking dataset ImageNet at the time 
of choosing (September.2020), and allows for easy imple-
mentation of transfer learning. Furthermore, we used a 
U-net based encoder, and ADAM as the optimizer. As for 
the loss function, a combination of Dice score and Binary 
Cross Entropy was determined to be the most consistent. 
The model was trained for 30 epochs with a batch size of 
20 and a learning rate of 0.001. The code used for training 
is available at https:// github. com/ shigu rd/ DL_ ECHO/ 
tree/ ed905 3926f 0a520 c8271 f53f8 7db5d 26019 eee9b/ LV_ 
segme ntati on.

Image augmentation was employed to increase vari-
ation in the data set. Employed augmentations included 
rotation, shifting, zooming, horizontal and vertical warp-
ing, adding gaussian noise and gamma adjustments, 
all within clinical plausibility. The augmentations were 
chosen randomly, with multiple augmentations being 
done on each image. The code used for augmentations is 
available at https:// github. com/ shigu rd/ DL_ ECHO/ blob/ 
ed905 3926f 0a520 c8271 f53f8 7db5d 26019 eee9b/ data_ 
parti tion_ utils/ create_ augme ntati on_ imgs_ and_ masks. 
py, and includes augmentation ranges for all utilized 
augmentations.

Table 1 Stratifiction of diagnosis, quality and acquisition setting in training and validation set, and test set

Training and validation set Test set

Subset K1 K2 K3 K4 K5

Total number of projections 331 331 331 322 312 307

Diagnosis
 Aorta stenosis 59 64 62 57 58 50

 Mitral valve prolapse 12 11 12 11 9 8

 Brugada syndrome 57 57 57 62 52 52

 Hypertrophic cardiomyopathy 28 22 21 26 27 28

 Myocardial infarction 98 93 100 89 89 88

 Heart failure 72 80 75 73 74 75

 Healthy 5 4 4 4 3 6

Quality
 High 17 30 24 32 21 33

 Medium 206 182 212 198 200 183

 Low 108 119 95 92 91 91

Image acquisition setting
 Clinical 126 115 121 115 116 116

 Research 205 216 210 207 196 191

https://github.com/shigurd/DL_ECHO/tree/ed9053926f0a520c8271f53f87db5d26019eee9b/LV_segmentation
https://github.com/shigurd/DL_ECHO/tree/ed9053926f0a520c8271f53f87db5d26019eee9b/LV_segmentation
https://github.com/shigurd/DL_ECHO/tree/ed9053926f0a520c8271f53f87db5d26019eee9b/LV_segmentation
https://github.com/shigurd/DL_ECHO/blob/ed9053926f0a520c8271f53f87db5d26019eee9b/data_partition_utils/create_augmentation_imgs_and_masks.py
https://github.com/shigurd/DL_ECHO/blob/ed9053926f0a520c8271f53f87db5d26019eee9b/data_partition_utils/create_augmentation_imgs_and_masks.py
https://github.com/shigurd/DL_ECHO/blob/ed9053926f0a520c8271f53f87db5d26019eee9b/data_partition_utils/create_augmentation_imgs_and_masks.py
https://github.com/shigurd/DL_ECHO/blob/ed9053926f0a520c8271f53f87db5d26019eee9b/data_partition_utils/create_augmentation_imgs_and_masks.py
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Finally, the trained model was used to generate ROIs 
from echocardiograms, and these ROIs were then reintro-
duced into EchoPAC version 203 using a custom script. 
EchoPAC was then used to calculate LS and GLS follow-
ing standard clinical procedure. GLS was calculated for all 
patients where all three apical views were available.

Data quality and network property testing
Data set properties effect on model performance were 
assessed by training two separate models, one on all data, 

and one restricted to high and medium quality. However, 
there was insufficient high-quality data available to train a 
separate model only on high quality data. Separate models 
were also trained using data acquired in either a research 
or clinical setting. To evaluate the effect of dataset size, 
separate models were trained starting with 100 patients, 
and increasing by 100 patients every step until all data was 
included.

We studied the impact of transfer learning by initializ-
ing models using weights from previous models trained 
on either ImageNet or the CAMUS dataset. Additionally, 
U-net [26] and ResNet50 [27] encoder architectures were 
tested using the highest scoring techniques and parame-
ters previously mentioned. An overview of tested param-
eters can be found in Fig. 2.

CAMUS validation
Finally, a model trained on the publicly available CAMUS 
dataset, using the optimal architecture and settings dis-
covered, was evaluated on the clinical test set. The pre-
dicted ROIs and LS/GLS were compared with the human 
annotated ground truth.

Performance metrics
Model performance was primarily evaluated using the 
average absolute difference (AAD) between the GLS 
calculated from the DL-predicted ROI and the human 
annotated ROI (ground truth). AAD is defined as

GLS was calculated by averaging the longitudinal 
strain (LS) from all three apical views where present. 
Single-view LS was used to compare data from incom-
plete exams. DL obtained strain values were compared 
to clinical strain values on the basis of AAD with a 95% 
confidence interval (CI), and a Bland–Altman plot with 
a 95% limit of agreement (LOA) and relative bias was 
used to evaluate the distribution of the results. Note 
that strain is reported in percent and that the AAD is 
reported in percentage points.

When developing the model only standard perfor-
mance metrics for segmentation, Dice score and Haus-
dorff distance (HD) were employed. These are metrics 
for geometrical overlap between the DL annotated 
area  ADL and the clinical annotated area  AClinician, and 

AAD =
|GLSDL − GLSClinician|patient 1 + . . . .|GLSDL − GLSClinician|patient n.

number of patients
.

Fig. 1 Examples of DL predicted ROI overlaid on corresponding echocardiographic image

AAD = Average absolute difference, LS = Single projection longitudinal strain
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their geometrical shape. The Dice score is defined as 
D = 2(|ADL ∩ AClinician|)/(|ADL| + |AClinician|) . The coef-
ficient is on a scale from 0 to 1, where 0 represents no 
overlap and 1 is a perfect overlap. The Hausdorff dis-
tance is a measure of the distance for each point on 
shape A to any point on shape B and is useful for meas-
uring the similarity in shapes between two shapes.

The number of failures were defined as DL-predicted 
ROIs that were discontinuous or bifurcated, and/or 
included parts of the right ventricle, papillary muscle, 
or structures beyond the heart valves.

All statistical analyses were done using STATA SE 17.0 
(Statacorp LLC, Texas, USA), Microsoft Excel version 2204 
(Microsoft Corporation, Washington, USA) and Python 3.7.

Results
Considering both GLS and LS results, the best overall 
model architecture performance was an EfficientNetB1 
model pretrained on the CAMUS dataset and then 
trained on all data in the current dataset, having a AAD 
of 0.75 (95% CI 0.58–0.92) for GLS, and a AAD of 1.16 
(95% CI 1.03–1.29) for LS. A Bland–Altman plot (Fig. 3) 

Fig. 2 Workflow of data pipeline and model training

GLS = Global longitudinal strain, ROI = Region of interest

Fig. 3 Bland–Altman plot for comparison of DL and Operator values for LS and GLS for best performing model

The 95% limit of agreement were ‑2.366 – 1.708 with a relative bias of ‑0.329 for GLS, and ‑3.489 – 2.785 with a relative bias of ‑0.352 for LS. 
LS = single projection longitudinal strain, GLS = Global longitudinal strain, DL = Deep learning
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revealed no obvious bias, though there were fewer outli-
ers where the average LS values were low.

Impact of size and quality of training data
Evaluating the effect of cohort size on model perfor-
mance (Table 2), Dice, HD and LS all show a non-sig-
nificant trend towards improvement with increasing 
training set size, with a less prominent trend when the 
model was pretrained on CAMUS data. Limiting the 
training data set to only high and mid quality acquisi-
tions did not improve model accuracy. Exams used in 
previous research produced models with better evalu-
ation metrics than those trained on clinical exams only 
(Research dice 0.757 vs clinical dice 0.743).

Transfer learning
Two different datasets were used for pre-training 
the CNN in order to perform the transfer learning 

experiments. The model pretrained on ImageNet and 
further trained on the dataset proposed in this study 
improved the performance in terms of Dice score vs 
the reference model only trained on the proposed data-
set (all available data) (ImageNet Dice 0.786 vs refer-
ence Dice 0.779), but with diverging results on HD and 
LS. However, the differences between the pretrained 

Table 2 HD, DICE, LS and failures for data quality and model property testing

The same baseline Efficientnet model with augmentation and HML were employed for all tests. Where not otherwise stated all data was used

HD Hausdorff distance, LS Single projection longitudinal strain, GLS Global longitudinal strain, CI Confidence interval
a Reference model

Geometric evaluation Clinical measures evaluation Number 
of 
failures

Dice HD LS GLS (95% CI)

Cohort size for training
 n = 100 0.739 14.51 1.46 0.97 (0.78–1.16) 13

 n = 200 0.762 12.65 1.27 0.86 (0.69–1.02) 7

 n = 300 0.762 12.02 1.23 0.79 (0.61–0.97) 3

 n = 400 0.770 12.40 1.25 0.82 (0.64–1.00) 2

 n = 518a 0.779 11.52 1.17 0.74 (0.59–0.90) 3

Cohort size for training w/CAMUS trans-
fer learning
 n = 100 0.759 12.56 1.28 0.81 (0.65–0.98) 9

 n = 200 0.767 12.14 1.20 0.81 (0.61–0.92) 7

 n = 300 0.767 11.83 1.21 0.75 (0.58–0.93) 4

 n = 400 0.776 11.55 1.26 0.87 (0.69–1.04) 3

 n = 518 0.779 11.17 1.16 0.75 (0.58–0.92) 2

Exam quality
 H/M/La 0.779 11.52 1.17 0.74 (0.59–0.90) 3
 H/M 0.769 12.41 1.23 0.81 (0.65–0.97) 2

Image acquisition setting
 From research (n = 219) 0.757 12.69 1.29 0.82 (0.62–1.02) 3

 From clinical exams (n = 219) 0.743 13.94 1.32 0.85 (0.67–1.03) 8

Transfer learning
 ImageNet 0.786 11.43 1.22 0.76 (0.58–0.92) 2

 CAMUS 0.779 11.17 1.16 0.75 (0.58–0.92) 2

CAMUS set as training set
 CAMUS baseline 0.682 21.74 1.80 1.65 (1.35–1.95) 17

Table 3 Comparison of model architecture based on AAD for LS 
and GLS with 95% CI

Models were trained on High, medium and low quality data, and utilized 
augmentations and CAMUS transfer learning

HD Hausdorff distance, LS Single projection longitudinal strain, GLS Global 
longitudinal strain, CI Confidence interval

Dice HD LS (95% CI) GLS (95% CI)

EfficientNetB1 0.779 11.17 1.16 (1.03–1.29) 0.75 (0.58–0.92)

U‑net 0.774 12.12 1.16 (1.03–1.28) 0.77 (0.61–0.94)

ResNet50 0.783 11.62 1.18 (1.05–1.31) 0.78 (0.62–0.94)
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model and the reference model were not statistically 
significant.

Network architecture
Finally, evaluating encoder differences between stand-
ard U-net, ResNet50 and EfficientNet (Table 3), again 
the different performance metrics gave disparate 
results. The traditional U-net and the newer Efficient-
Net B1 gave the best results for LS (1.16 percentage 
points), ResNet50 the best Dice score, and EfficientNet 
B1 the best GLS and HD results.

Result summary
The numerical differences between cohort composi-
tions and technological approaches to model training 
were minor in terms of geometric comparisons HD 
and Dice as shown in both Tables 2 and 3. With regards 
to the clinical output parameters LS and GLS, the vari-
ation between models was greater. However, except for 
the model trained on CAMUS data, GLS was within 
0.74–0.81 percentage points and LS within 1.16–1.32 
percentage points of ground truth for all models.

Model failure and results outliers
The number of failures for the highest performing 
models were 2 or 3, giving a failure rate of less than 1%. 
There was a higher failure rate in the models trained 
on smaller cohort size, but the effect was diminishing 

after a cohort size of 300. The model trained on the 
external dataset, CAMUS, had the highest failure rate 
of 5.54% (17 out of 307).

A significant outlier in performance came from the 
model trained on the CAMUS dataset. The model had a 
AAD in GLS of 1.65 (95% CI 1.35–1.95) and AAD in LS 
of 1.80 (95% CI 1.60–2.00). A Bland–Altman plot (Fig. 4) 
revealed a trend of the DL overestimating the GLS and LS.

Discussion
Our results demonstrate that deep learning can automate 
strain calculations with comparable accuracy to trained 
cardiologists. Considering that the fully automated strain 
calculations were within interobserver variation observed 
in other studies [12, 28], the difference is within a range 
commonly accepted between operators. It is worth men-
tioning that DL models such as those utilized in this study 
have no intraobserver variation [12]. To the authors’ 
knowledge, at the time of writing,  this is currently the 
largest dataset employed for DL automated strain calcula-
tions, and the only paper that explores the combination of 
an in-house developed DL model and commercial echo-
cardiographic analysis software to calculate LS/GLS. Our 
approach achieved a smaller 95% LOA and bias in GLS 
than what was reported by Salte et al. [12], and a smaller 
absolute deviation in GLS compared to Zhang et al. [13]. 
Moreover, our approach achieved a smaller absolute error 
in strain estimation compared to DL predicted circumfer-
ential and radial strain on Magnetic Resonance Imaging 
[29].

Fig. 4 Bland–Altman plot for comparison of DL trained on CAMUS and operator values

The 95% limits of agreement were ‑1.51 – 4.53 with a relative bias of 1.51 for GLS, and ‑2.58 – 5.49 with a relative bias of 1.45 for LS. LS = Single 
projection longitudinal strain, DL = Deep learning
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Effect of tested parameters and techniques
In the general DL image segmentation space, papers 
report on new network architectures improving geomet-
ric comparison scores such as Dice on reference datasets. 
Often, improvements from the previous state-of-the-art 
model are small, and at the third significant digit level. 
In our experiments, different DL approaches and clinical 
parameters were applied to real world, noisy echocardio-
graphic data, and the incremental gains from presumed 
improved model building approaches were minimal.

Training data quality
Although differences between models were small, some 
outcomes are worth noting. Previous studies have 
removed low quality images from training sets. It was 
therefore noteworthy that including low quality data 
slightly increased model performance based on Dice 
score, HD, LS, and GLS, while only resulting in one 
more failure (Table 2). This indicates that the increase in 
training size and variation in quality might improve DL 
models—at least in DL settings where data set size is a 
limiting factor, as is often the case with medical imagery. 
However, when low quality images can lead to inaccurate 
annotation or labeling of training data, the value of inclu-
sion of such images is still debatable.

Image acquisition setting
The initial hypothesis was that exams conducted in a 
busy clinical practice would be less precise than research 
analysis, leading to a worse performing model when 
training on clinical data. The model trained on research 
data had a lower failure rate, indicating that it is more 
stable. However, image acquisition setting did not appear 
to impact model performance in terms of LS and GLS 
(Table 2). The results can indicate there are more outliers 
in terms of image and ROI quality in clinical data, result-
ing in more failures, but that models trained on such data 
still can become accurate overall. It should also be noted 
that increasing training size lowered failure rate, which is 
encouraging considering clinical data is generally more 
available.

Training set size
As stated earlier, limited data availability is a challenge for 
DL in medical imaging. It is encouraging that increasing 
the patient number beyond 100–200 patients only has a 
limited effect on model performance (Table  2). These 
findings correspond well with the findings of Leclerc et al. 
[20], and shows the potential of utilizing DL even where 
there is limited available data. It is important to note that 
the higher failure rate when training on smaller cohort 
sizes can cause poor exams to be eliminated, slightly 
elevating the perceived model performance for these 

models. Again, the numerical variation is slight, and the 
signal-to-noise ratio of echocardiographic images may be 
the most important limiting factor.

Transfer learning
Transfer learning seemed to decrease the number of 
patients needed to achieve acceptable results. However, 
there are indications that transfer learning benefits vary 
depending on the dataset size and complexity [30]. The 
diverging results when comparing ImageNet and The 
CAMUS dataset supports this finding. Finally, it is inter-
esting that the relatively old U-net network architecture 
performed just as well as the newer networks (Table 3), 
considering the large improvement to neural networks 
and their performance in other fields. The challenges 
proposed by the low resolution, low contrast echocardio-
graphic images for segmentation are widely recognized, 
and the results indicate that the quality of training and 
ground truth data is still the biggest challenge to improve 
DL for strain analysis.

Training on CAMUS
The model that was trained on the CAMUS dataset 
(Fig.  4) was an outlier in terms of performance, and it 
generally overestimated strain compared to expert oper-
ators. In a visual comparison of the ROIs, the CAMUS 
ROIs tended to be larger than the operator outlined ones 
in our dataset. The overestimation can be a result of dif-
ferences in operator tendencies between the originating 
hospitals, and highlights the importance of DL model 
validation on local data before implementation both in 
research and clinical practice.

Clinical significance
Since our approach follows the clinical workflow step by 
step, the operator can monitor and correct any mistakes 
of the DL segmentation, thereby retaining the quality and 
accountability of the analysis. Automating strain calcu-
lations has the potential to provide both higher quality 
patient care by increasing the availability of strain analy-
sis, as well as providing more time for patients by reduc-
ing time spent per analysis. Utilizing such models will 
also allow for the analysis of enormous amounts of data-
bases for research, making later studies more efficient 
and less costly.

Limitations
Our study contains a diverse set of heart diseases, anno-
tated by a variety of operators. The heterogeneity of the 
dataset should produce a more generalizable DL model. 
However, the model has yet to be externally validated on 
data from other populations, other hospitals, and data 
sets achieved from other echocardiographic machines. 
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Some major heart diseases, such as atrial fibrillation, 
are not represented in the study due to lack of avail-
ability. While it is reportedly more difficult to calculate 
strain from patients with atrial fibrillation, our approach 
should not be more affected than clinical practice as it 
follows the clinical workflow. The proposed approach 
would most likely still be able to increase efficiency and 
reproducibility in these patients. Furthermore, image 
segmentation using DL models is a rapidly evolving field. 
During the course of this study, newer architectures have 
emerged that demonstrate a higher performance on the 
benchmarking dataset, ImageNet, compared to those 
employed in the current study.

Conclusion
Our study, which was performed before automated strain 
analysis became available in commercial software, con-
firms that automatic strain calculations are feasible and 
that the results are within a range of variations that are 
appropriate for echocardiographic experts. This study 
further confirms that automatic LS measurements using 
a DL model could be integrated into readily available 
commercial echocardiographic analysis software, but 
also demonstrates the risk of bias in datasets used for 
model training.
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