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Abstract
Objectives This study aims to differentiate Kimura’s disease (KD) from Sjogren’s syndrome with mucosa-associated 
lymphoid tissue lymphoma (SS&MALT), neurofibromatosis (NF), and lymphoma in the head and neck by using a 
stepwise decision tree approach.

Materials and methods A retrospective analysis of 202 patients with pathologically confirmed KD, SS&MALT, NF, 
or lymphoma was conducted. Demographic and magnetic resonance imaging (MRI) data were collected, with 
qualitative features (e.g., skin thickening, lesion morphology, lymphadenopathy, MRI signal intensity) and quantitative 
variables (e.g., age, lesion size, apparent diffusion coefficients (ADCs), wash-in rate, time to peak (TTP), time-signal 
intensity curve (TIC) patterns) examined. A stepwise decision-tree model using the classification and regression 
trees (CART) algorithm was developed to aid in the differential diagnosis of KD in the head and neck. The model’s 
diagnostic accuracy and misclassification risk were assessed to evaluate its reliability and effectiveness.

Results Key characteristics for KD included male predominance (91.7%), frequent lymphadenopathy (86.1%), 
and skin thickening (72.2%). Primary lesions of NF typically exhibited higher ADCs compared to those of KD, 
SS&MALT, and lymphoma. In lymphadenopathy, however, unique ADC patterns were observed: in KD, the ADCs of 
lymphadenopathy were lower than those of primary lesions, whereas in lymphoma, the ADCs of lymphadenopathy 
were comparable to those of primary lesions. Predictors for distinguishing KD included lesion’s location, ADCs, 
lymphadenopathy, and sizes (all p < 0.001). The decision-tree model achieved an impressive 99.0% accuracy in the 
differential diagnosis across the overall cohort, with a 10-fold cross-validated misclassification risk of 0.079 ± 0.024.

Conclusion The stepwise decision tree model, based on MRI features, showed high accuracy in differentiating KD 
from other head and neck diseases, offering a reliable diagnostic tool in clinical practice.

Clinical relevance KD is characterized by male predominance, skin thickening, and high incidence of 
lymphadenopathy. ADCs and TIC patterns are distinguishable in differentiating KD from SS&MALT, NF, and lymphoma 
in the head and neck. The decision tree model enhances the understanding of KD imaging features and facilitates 
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Introduction
KD, a rare chronic immune disease with an incidence 
of less than 1/100,000 [1], was first reported by Kim 
and Szeto in 1937 [2] and further described by Kimura 
in 1948 [3]. KD primarily affects young males of Asian 
lineage [4]. To date, there have been about 300 reported 
cases globally; however, the largest reported KD patient 
cohort consisted of 52 cases from PubMed [5].

Clinically, KD typically presents as a slow, progressive 
condition, with symptoms lasting on average of 4 years 
before diagnosis [6]. The manifestations of KD may vary, 
including subcutaneous mass-like lesions in the head and 
neck region as well as painless swelling in the major sali-
vary glands with local lymphadenopathy. While KD pre-
dominantly affects the head and neck, it can also involve 
other organs, such as the eyes and kidneys. Patients with 
KD often show increased peripheral eosinophil counts 
(5.8–51%) and elevated serum IgE levels (193–6827 U/
mL) [5, 7–9]. Histologically, KD is characterized by 
chronic inflammation, with significant eosinophilic infil-
tration, variable vascular proliferation, and fibrosis [7]. 
Though the exact cause of KD remains unknown, it has 
been thought to be an autoimmune reaction, possibly 
triggered by external stimuli. The involvement of IgE-
mediated type 1 hypersensitivity and Th2-driven immune 
responses suggests a link to allergic reactions, explaining 
the disease’s eosinophil-rich inflammation [8, 10–12].

Routine radiologic findings in KD are often nonspe-
cific and can overlap with those of other head and neck 
conditions [4, 13–16]. On MRI, KD typically appears as 
a hypo-intense lesion on T1-weighted images (T1WI) 
and may show varied signal intensities on T2-weighted 
images (T2WI). These variations in T2WI signal intensity 
are influenced by the degree of fibrosis and vascularity in 
the lesions. Fibrotic tissue generally results in lower sig-
nal intensity on T2WI, while increased vascularity cor-
responds to higher T2WI intensity [4, 14]. In addition, 
KD may present as poorly defined subcutaneous masses, 
enlarged salivary glands, and lymphadenopathy, which 

can mimic other diseases like mucosa-associated lym-
phoid tissue lymphoma, primary lymphoma, or NF, all of 
which may present similarly on computed tomography 
(CT) or MRI [17–20]. Moreover, both KD and NF may 
exhibit skin thickening adjacent to the primary lesions, 
which can complicate differentiation between the two 
conditions [20–23]. Due to the relatively high recurrence 
rate of KD, its management can be complex, involving 
surgical excision, oral corticosteroids, systemic immu-
nosuppressive medications, and in some cases, radia-
tion therapy [6]. Therefore, accurate diagnosis is crucial 
to prevent unnecessary treatments and ensure effective 
management, ultimately improving patient outcomes of 
KD.

Given the relatively small number of KD cases in the 
database and its overlap in clinical and radiological fea-
tures with other head and neck diseases, differentiating 
KD from other conditions is clinically challenging. In 
such cases, a decision tree model, particularly one based 
on the CART algorithm, offers significant advantages. 
The CART algorithm is well-suited for situations with 
limited data points, where decisions must be made based 
on complex, multifactorial features, such as radiological 
and clinical data [24, 25]. For KD, a disease with limited 
available cases, the CART model can still identify pat-
terns by dividing the dataset into subsets based on key 
features, creating a tree-like structure that helps classify 
different diseases. For example, Vallee et al. utilized MRI 
data with the CART algorithm to classify intracranial 
lymphomas, glioblastomas, and metastatic tumors, also 
achieving 96% accuracy [26]. The efficiency and ease of 
interpretation of CART make it particularly useful for 
rare diseases like KD, where traditional diagnostic meth-
ods may struggle.

The purpose of this study is to evaluate and clarify the 
radiological features of KD, with a specific focus on dis-
tinguishing it from other head and neck conditions. We 
analysed 36 pathologically confirmed KD cases from a 
hospital database spanning 2009 to 2024, incorporating 

accurate KD diagnosis, offering an easily accessible and convenient diagnostic tool for radiologists and physicians in 
daily practice and guiding tailored clinical management plans for affected patients.

Clinical trial number Not applicable.

Key points
 • KD is characterized by male predominance, skin thickening, and a high incidence of lymphadenopathy.
 • Multiple lesions with varying morphological patterns are commonly seen in KD.
 • ADCs and TIC patterns are useful for differentiating KD from SS&MALT, NF and lymphoma in the head and 

neck.
 • A stepwise decision tree model, based on MRI variables, aids in the differential diagnosis of KD and other head 

and neck diseases, providing a convenient and accessible diagnostic tool for radiologists and physicians in 
daily practice.
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both routine and functional MRI data. To enhance diag-
nostic accuracy and ease, we applied a CART-based deci-
sion tree model to differentiate KD from other similar 
head and neck diseases, providing a practical tool for 
both radiologists and clinicians.

Materials and methods
Patient selection
This study was conducted in accordance with the Dec-
laration of Helsinki and was approved by the Medical 
Ethics Committee of Shanghai Ninth People′s Hospital, 
Shanghai Jiao Tong University School of Medicine (No. 
SH9H-2024-T168-1). Patients with pathologically con-
firmed KD, SS&MALT, NF or lymphoma were con-
secutively included between 2009 and 2024 at Shanghai 
Ninth People’s Hospital of Shanghai Jiao Tong University 
School of Medicine. The patient selection criteria were as 
follows:

1. All patients were pathologically diagnosed with KD, 
SS&MALT, NF or lymphoma.

2. Head and neck lesions involving subcutaneous 
tissue, glands and/or cervical lymphadenopathy were 
observed for each patient.

3. MRI data were completely available for each patient, 
and the image quality was favourable for analysis.

And the patient exclusion criteria were as follows:

1. Lesions were not located in the head and neck.
2. Preoperative MRI was not performed.
3. DWI or dynamic contrast-enhanced MRI (DCE-

MRI) was not available.
4. Artifacts affected imaging analysis (See Fig. 1).

MR image acquisition
Of all 202 subjects, 22 were scanned on 1.5T MRI (GE 
Signa Twinspeed USA); 180 were scanned on 3.0T MRI 
(Philips Ingenia 3.0T Netherlands). Axial T1WI, T2WI 

Fig. 1 Flowchart of study patients with selected head and neck diseases. Flowchart outlined the selection process for patients diagnosed with KD, 
SS&MALT, NF and primary lymphoma. The chart detailed the inclusion and exclusion criteria leading to the final patient cohorts used in the study. Ab-
breviations: KD, Kimura’s disease; SS&MALT, Sjogren’s syndrome with mucosa-associated lymphoid tissue lymphoma; NF, neurofibromatosis
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or fat-suppressed T2WI on axial and coronal images 
and DWI (b value, 1000  s/mm2) were performed in the 
same transverse plane. After contrast injection, axial fat-
suppressed and contrast-enhanced T1WI and DCE-MRI 
were acquired. The specific scanning parameters are 
shown in Table 1.

Image post-processing and data analysis
All images were reviewed by two senior radiologists. For 
primary lesions involving subcutaneous tissue or glands 
in the head and neck region, the lesion’s location, distri-
bution, number, size, shape, and adjacent skin thicken-
ing were recorded and measured. Skin thickening was 
defined as a para-lesion skin thickness to contralateral 
normal skin thickness ratio of ≥ 1.2:1. Lymphadenopathy 
was identified when cervical lymph nodes in levels I and 
II were > 15 mm in length, levels III-VII were > 10 mm, 
and lymph nodes in the salivary glands were > 8  mm. 
Clustered changes in lymphadenopathy were defined as 
involvement of three or more lymph nodes within the 
typical drainage area of the lesion [27].

The raw DWI and DCE-MRI data were processed 
offline on a workstation (AMAX, TS40-X2, China) using 
the Philips IntelliSpace Portal software. ADC maps and 
TICs were subsequently obtained. Regions of interest 
(ROIs) were manually outlined by two experienced radi-
ologists based on fat-suppressed and contrast-enhanced 
T1WI, ensuring inclusion of the entire lesion while 
excluding obvious necrotic and cystic areas. For ADC 
measurement, ROIs were placed on all slices showing 
lesions or lymphadenopathy, and the average ADC value 

was calculated. To minimize bias, lymph nodes smaller 
than 1 cm were excluded from ADC measurement.

TICs were categorized into four patterns (types I-IV) 
based on wash-out rates and time to peak (TTP) [14]:

  • Type I: TTP > 120 s.
  • Type II: TTP ≤ 120 s with a wash-out rate ≤ 30%.
  • Type III: TTP ≤ 120 s with a wash-out rate > 30%.
  • Type IV: no enhancement.

The Stepwise decision-tree model
A stepwise decision-tree model was developed to differ-
entiate KD from three other similar conditions using the 
CART algorithm. The CART method splits data into two 
child nodes at each step, aiming to create more homoge-
neous subgroups based on optimal split points selected 
through criteria like the Gini index or information gain. 
This iterative splitting process constructs the decision 
tree and generates prediction rules to classify the data 
accurately [26].

To minimize the risk of overfitting, several strategies 
were employed. First, k-fold cross-validation was imple-
mented to further validate the model’s performance. The 
dataset was divided into 10 mutually exclusive subsets, 
or “folds,” of roughly equal size (with k = 10 in this study). 
During each iteration of cross-validation, the model was 
trained on 9 folds and tested on the remaining fold, rotat-
ing through all folds. After evaluating the results of the 
10-fold cross-validation, the decision tree model was 
pruned by adjusting the minimum sample size of the par-
ent nodes and child nodes. The values for the minimum 
sample size were chosen based on a balance between 

Table 1 Model of MRI machine and detailed parameters of each scanning sequence
Sequences FOV (mm2) FA (°) TR/TE (ms/ms) Slice thick-

ness (mm)
Slice gap 
(mm)

Matrix  size Contrast 
administra-
tion

Signa 1.5T Twinspeed
T1WI(FSE) 240*240 90 540/9 5 6 512*512
T2WI(FSFSE) 240*240 90 4440/94 5 6 512*512
T2WI-Cor(FSE) 220*220 90 3700/80 4 5 512*512
DWI(SE-EPI) 240*240 90 2200/70 5 5.5 256*256
T1WI + C(FSFSE) 240*240 90 700/9 5 6 512*512
T1WI + C-Cor(FSFSE) 220*220 90 500/10 4 5 512*512
DCE-MRI(FSPGR) 240*240 30 4/2 5 5.5 256*256 15 ml Gd-DT-

PA at 3.0 ml/s
Ingenia 3.0T
T1WI(TSE) 210*210 90 641/18 4 4.5 512*512
T2WI (HR-mDIXON-TSE-RL) 210*210 90 2810/85 4 4.5 384*384
T2WI-Cor (SS-mDIXON) 210*210 90 3000/80 3 3.3 864*864
DWI(SPAIR) 222*222 90 2254/68 5 5.5 192*192
T1WI + C (mDIXON-TSE-Fast) 209*209 90 582/15 4 4.5 336*336
T1WI + C-Cor (mDIXON-TSE-FH) 210*210 90 589/16 3 3.3 432*432
DCE-MRI(THRIVE) 210*210 10 7/4 6 3 320*320 15 ml Gd-DT-

PA at 3.0 ml/s
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model complexity and generalization ability [28]. In this 
study, the minimum sample size for parent nodes and 
child nodes was set to 5 and 2, respectively. The max-
depth of the decision tree was set to 3. This pruning 
approach allowed for a robust assessment of the model’s 
ability to generalize to new data, preventing overfitting 
while retaining model accuracy. Finally, the model’s per-
formance was evaluated based on two metrics: the over-
all accuracy and the classification accuracy for each of the 
four diseases. The cross-validated estimates were calcu-
lated as the average accuracy scores from each of the 10 
test folds, providing an estimate of the model’s predictive 
reliability across different subsets of the data.

Statistical analysis
Statistical analyses were performed using IBM SPSS 
Statistics (version 26.0). Continuous variables were 
expressed as the mean ± standard deviation and com-
pared by independent t tests, Mann-Whitney U or Krus-
kal-Wallis H test. Categorical variables were presented 
as numbers and percentages and were compared by the 
Chi-square test or Fisher’s exact test. P < 0.05 was consid-
ered statistically significant.

Results
Patient demographic characteristics
We reviewed the demographic characteristics of 202 
patients with specific diseases. As shown in Table 2, the 
median age of onset for NF, KD, SS&MALT, and lym-
phoma was 22.5 (15.5, 29.0), 37.0 (19.0, 49.8), 49.5 (37.0, 
65.3), and 60.5 (52.5, 68.0) years, respectively. KD was 
more common in males (91.7%), whereas SS&MALT was 
predominantly seen in females (90.5%). No significant sex 
differences were observed for lymphoma or NF. The loca-
tion and distribution of primary lesions in KD showed 
similarities to those in NF, SS&MALT, and lymphoma, 
but were not entirely identical. KD and NF commonly 
involved subcutaneous tissue in the head and neck area, 
and larger lesions occasionally affected both the glands 
(lacrimal or salivary glands) and subcutaneous regions 
(16/31 for KD and 32/53 for NF). SS&MALT affected 
only the salivary glands, while lymphoma primarily 
involved submucosal and subcutaneous tissues, with 
rare salivary gland involvement. Bilateral lesions were 
common across all cases except for lymphoma, with the 
highest frequency of 64.3% in SS&MALT. The maximum 
diameter for primary lesions was significantly smaller in 
SS&MALT compared to KD (1.4 vs. 4.5  cm; p < 0.001), 

Table 2 General characteristics of patients with KD and the other three head and neck conditions
Characteristics KD

(n = 36)
SS&MALT
(n = 42)

NF
(n = 53)

Lymphoma
(n = 71)

p

Age (yrs) 37.0 (19.0,49.8) 49.5
(37.0,65.3)

22.5 (15.5,29.0) 60.5 (52.5,68.0) < 0.001

Sex Male 33 (91.7%) 4 (9.5%) 32 (60.4%) 47 (66.2%) < 0.001
Female 3 (8.3%) 38 (90.5%) 21 (39.6%) 24 (33.8%)

*Primary lesions n = 31 n = 42 n = 53 n = 47
Location *Gland and

subcutaneous
16 (51.6%) 0 32 (60.4%) 0 < 0.001

*Gland 3 (9.7%) 42 (100.0%) 0 5 (10.6%)
Subcutaneous 11 (35.5%) 0 21 (39.6%) 12 (25.5%)
Submucosa 1 (3.2%) 0 0 30 (63.8%)

Unilateral 25 (80.6%) 15 (35.7%) 49 (92.5%) 47 (100.0%) < 0.001
Bilateral 6 (19.4%) 27 (64.3%) 4 (7.5%) 0
Number Single 21 (67.7%) 7 (16.7%) 49 (92.5%) 45 (95.7%) < 0.001

Multiple 10 (32.3%) 35 (83.3%) 4 (7.5%) 2 (4.3%)
maximum diameter (cm) 4.5 (3.6,5.7) 1.4 (0.9,1.9) 10.4 (5.0,14.2) 3.6 (2.4,6.5) < 0.001
Lymphadenopathy n = 31 n = 45
Location Cervical and parotid 11 (35.5%) 3 (6.7%) < 0.001

Cervical 6 (19.4%) 40 (88.9%)
parotid 14 (45.2%) 2 (4.4%)

Unilateral 6 (19.4%) 33 (73.3%) < 0.001
Bilateral 25 (80.6%) 12 (26.7%)
Number Single 11 (35.5%) 19 (42.2%) 0.636

Multiple 20 (64.5%) 26 (57.8%)
maximum diameter (cm) 1.6 (1.2,2.0) 2.0 (1.6,2.5) < 0.001
*Primary lesions: extra-nodal soft tissue lesions

*Gland: parotid and lacrimal gland. Abbreviations: KD: Kimura’s disease, SS&MALT: Sjogren’s syndrome with mucosa-associated lymphoid tissue lymphoma, NF: 
neurofibromatosis



Page 6 of 13Luo et al. BMC Medical Imaging           (2025) 25:90 

NF (1.4 vs. 10.4  cm; p < 0.001), and primary lymphoma 
(1.4 vs. 3.6  cm; p < 0.01). Lymphadenopathy was more 
frequently observed in KD (86.1%) than in lymphoma 
(63.4%), though lymph nodes were larger in lymphoma, 
with a maximum diameter of 2.0 cm compared to 1.6 cm 
in KD (p < 0.001).

Characteristics on routine MRI
Primary lesions across the four diseases generally 
appeared iso-intense on T1WI and hyper-intense on fat-
suppressed T2WI, with most showing strong enhance-
ment after contrast administration (Table  3). In KD, 
93.5% of primary lesions displayed heterogeneous 
enhancement (Fig.  2), while 89.4% of lymphoma lesions 
showed homogeneous enhancement. Skin thickening 
was found as a distinctive feature in KD and NF, occur-
ring at significantly higher frequency (72.2% in KD and 
94.3% in NF; both p < 0.001) compared to lymphoma 
(1.4%) and SS&MALT (0%) (Table 3). Lymphadenopathy 
was prominent in KD (86.1%) and lymphoma (63.4%) but 

absent in SS&MALT and NF (Table 3; Figs. 3 and 4). In 
KD, while primary lesions often showed heterogeneous 
enhancement, all associated lymphadenopathy exhibited 
a mild to marked homogeneous enhancement pattern. 
In contrast, 31.1% of lymphoma cases showed heteroge-
neous enhancement in lymphadenopathy.

Characteristics on functional MRI
We analyzed TIC patterns from DCE-MRI and ADCs 
from DWI to differentiate among the four diseases. As 
shown in Table 4 and Figure 5, the primary lesions of NF 
had significantly higher ADCs than KD (1.58 vs. 1.04, 
p < 0.05), SS&MALT (1.58 vs. 0.63, p < 0.001), and lym-
phoma (1.58 vs. 0.67, p < 0.001). Additionally, ADCs dif-
fered significantly between KD and SS&MALT (1.04 vs. 
0.63, p < 0.001) and between KD and lymphoma (1.04 vs. 
0.67, p < 0.01). In KD, lymphadenopathy had lower ADCs 
than primary lesions (0.67 vs. 1.04), while in lymphoma, 
ADCs were similar between lymphadenopathy and pri-
mary lesions (0.67 vs. 0.58). In addition, for cases of KD 

Table 3 Routine MRI characteristics across four head and neck conditions
Characteristics KD

(n = 36)
SS&MALT (n = 42) NF

(n = 53)
Lymphoma
(n = 71)

p

*Skin thickening 26
(72.2%)

0 50
(94.3%)

1
(1.4%)

< 0.001

Lymphadenopathy 31
(86.1%)

0 0 45
(63.4%)

< 0.001

*Cluster 10
(27.8%)

24
(33.8%)

0.661

*Primary lesions n = 31 n = 42 n = 53 n = 47
T1WI Isointense 31 (100.0%) 42

(100.0%)
53
(100.0%)

47 (100.0%)

T2WI Hyperintense 31 (100.0%) 42
(100.0%)

53
(100.0%)

47
(100.0%)

Enhancement Homogeneous, marked 2
(6.5%)

11
(26.2%)

18
(34.0%)

40
(85.1%)

< 0.001

Heterogeneous, marked 28
(90.3%)

31
(73.8%)

35 (66.0%) 5
(10.6%)

Homogeneous, mild 0 0 0 2
(4.3%)

Heterogeneous, mild 1
(3.2%)

0 0 0

Lymphadenopathy n = 31 n = 45
T1WI Isointense 31 (100.0%) 45 (100.0%)
T2WI Hyperintense 31 (100.0%) 45

(100.0%)
Enhancement Homogeneous, marked 29

(93.5%)
31
(68.9%)

< 0.001

Heterogeneous, marked 0 14
(31.1%)

Homogeneous, mild 2
(6.5%)

0

*Skin thickening: a thickness ratio of para-lesion skin to contralateral normal skin ≥ 1.2:1

*Cluster: three or more lymph nodes involved within the typical drainage area of the lesion

*Primary lesions: extra-nodal soft tissue lesions. Abbreviations: KD: Kimura’s disease, SS&MALT: Sjogren’s syndrome with mucosa-associated lymphoid tissue 
lymphoma, NF: neurofibromatosis
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and lymphoma with both primary lesions and lymphade-
nopathy, the ADC differences between primary lesions 
and lymphadenopathy (△ADC) demonstrated a strong 
diagnostic ability in differentiating KD from lymphoma, 
with values of 0.37 ± 0.21 vs. 0.11 ± 0.05 (p < 0.001). TIC 
patterns, classified into four types (I-IV), also helped dis-
tinguish disease types. Primary lesions of KD were mainly 
type I (51.6%) and type II (48.4%), similar to NF, which 
were 83.0% type I and 17.0% type II. Most SS&MALT 
primary lesions were type II (76.2%), while lymphoma 
primary lesions showed a broader range (types I-III). In 
lymphadenopathy, TIC patterns effectively differenti-
ated KD (mainly type II, 89.3%) from lymphoma, which 
displayed a mix of types I-III. TTP for primary lesions 
was significantly longer in NF compared to SS&MALT 
(185.8 vs. 39.5; p < 0.001) and lymphoma (185.8 vs. 44.0; 
p < 0.001). Although TTP differences between KD and 
NF were not significant, KD showed a significantly longer 
TTP compared to SS&MALT (108.0 vs. 39.5; p < 0.001).

Stepwise classification of the decision tree model
Since a single imaging parameter was ineffective in differ-
entiating KD from three other head and neck conditions, 
we adopted a stepwise approach for better discrimina-
tion. Key predictors identified for distinguishing KD 
included lesion’s location, ADCs, lymphadenopathy, 
and maximum diameters, with a significance level of 
p < 0.001. As shown in Fig. 6, the ADC value of 0.83 × 10⁻³ 
mm²/s was the first criterion for splitting. Higher ADCs 
were commonly associated with KD and NF, while lower 
ADCs were found in SS&MALT and primary lymphoma, 
except for 9 cases of KD (Fig. 6, left panel). Then, in the 
second tier, parotid gland involvement was a distinctive 
feature for SS&MALT, achieving 100% accuracy. For cases 
with lower ADCs but no parotid involvement, a maxi-
mum diameter of 2.2 cm in lymphadenopathy effectively 
distinguished KD from primary lymphoma, with 100% 
accuracy for KD (diameter ≤ 2.2 cm) and 98.4% for lym-
phoma (diameter > 2.2 cm). On the right panel, for cases 
with larger ADCs, the presence of lymphadenopathy was 
also a strong indicator of KD, achieving 100% accuracy. 
In contrast, for cases without lymphadenopathy, KD 

Fig. 2 Representative case of KD. Imaging and histopathological findings from a patient diagnosed with KD. (a) Axial T1WI and (b) fat-suppressed T2WI 
showed a well-defined subcutaneous lesion (white arrow) with adjacent skin thickening and right-sided parotid lymphadenopathy (red arrow). (c) Con-
trast-enhanced axial fat-suppressed T1WI demonstrated homogeneous enhancement of both the subcutaneous lesion and lymphadenopathy. (d) DWI 
revealed hyperintensity in both the subcutaneous lesion and lymphadenopathy, indicating restricted diffusion. (e) The ADC map showed higher ADCs in 
the subcutaneous lesion (white arrowhead) compared to the lymphadenopathy (red arrowhead). (f) Histological examination with haematoxylin-eosin 
(H&E) staining (×20 magnification) revealed hyperplastic lymphoid follicles with diffuse eosinophilic infiltration, consistent with a diagnosis of KD
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was further differentiated from NF based on a higher 
ADC cut-off of 1.2 × 10⁻³ mm²/s, yielding 100% accu-
racy for KD (ADCs ≤ 1.2 × 10⁻³ mm²/s) and 98.1% for NF 
(ADCs > 1.2 × 10⁻³ mm²/s). Overall, the stepwise decision 
tree model achieved an impressive accuracy of 99.0% in 
predicting these four diseases individually, with a mis-
classification risk of 0.079 ± 0.024, as estimated by 10-fold 
cross-validation. Specifically, the classification accuracy 
for KD was 94.4%, while the accuracies for SS&MALT, 
NF and lymphoma were all 100%.

Two cases of KD were misclassified as lymphoma and 
NF, respectively. The primary reason for misclassifying 
the first case of KD as lymphoma was the presentation 
of markedly enlarged, bilateral lymph nodes across mul-
tiple cervical levels (II-V), including the parotid gland. 
The significant size of the largest lymph node (up to 
6  cm) closely resembled the pattern seen in lymphoma. 
The second case of KD presented with a patchy primary 
lesion with ill-defined borders, involving both the left lac-
rimal gland and adjacent soft tissues. The ADCs, which 
were influenced by tissue characteristics such as cellu-
larity and water content, were likely elevated in this case 
due to the lesion’s soft tissue involvement. This elevated 
ADC further complicated the diagnosis and contributed 
to the misclassification as NF.

Discussion
Clinically, diagnosing KD can be challenging due to its 
nonspecific symptoms. Predominantly affecting males, 
young individuals (ages 10–40), and Asians, our study 
found a male predominance (91.7%) with a median age 
of 37 years, consistent with previous studies [4]. KD 
often presents with subcutaneous nodules or lesions in 
the head and neck, which resembles conditions such as 
parotid neoplasms, malignant lymphomas, or inflam-
matory diseases. Lymphadenopathy is a common fea-
ture of KD, with incidences ranging from 25 to 100% in 
the literature [4, 8, 15]. Our study observed a relatively 
high incidence of 86.1%. However, lymphadenopathy 
can be confused with conditions like Castleman’s disease 
or Hodgkin’s lymphoma, complicating the diagnostic 
process.

Imaging features of KD
While imaging alone could not confirm a KD diagnosis, 
both CT and MRI played vital roles in assessing the dis-
ease’s extent and excluding other malignancies. There has 
been no consensus on specific imaging findings for KD, 
with reports showing both specific signal changes [4] and 
a lack of distinct features [8]. In our study, we observed 
two main morphological patterns in primary KD lesions: 
a well-defined nodular pattern and an ill-defined infiltra-
tive pattern, which were sometimes present simultane-
ously (Fig. 7). On T1WI and T2WI, primary lesions and 

Fig. 4 Comparison of lymphadenopathy presence in KD and three other 
head and neck conditions. Significantly different P values at P < 0.05 
(*) or P < 0.001 (***), Chi-square test. Abbreviations: KD: Kimura’s disease, 
SS&MALT: Sjogren’s syndrome with mucosa-associated lymphoid tissue 
lymphoma, NF: neurofibromatosis

 

Fig. 3 Comparison of skin thickening frequency in KD and three other 
head and neck conditions. Significantly different P values at P < 0.001 
(***), Chi-square test. Abbreviations: KD: Kimura’s disease, SS&MALT: Sjo-
gren’s syndrome with mucosa-associated lymphoid tissue lymphoma, NF: 
neurofibromatosis
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lymphadenopathy often exhibited iso- and hyper-inten-
sity signals, respectively, but their enhancement patterns 
differed significantly. While 93.5% of primary KD lesions 
showed heterogeneous enhancement, all lymphadenopa-
thy exhibited homogeneous enhancement. Additionally, 
skin thickening, found in 72.2% of cases, would be a nota-
ble feature of KD, often caused by chronic inflammation 
and subcutaneous tissue proliferation.

Functional MRI findings
Functional MRI, including DWI and DCE-MRI, offers 
promising markers like the ADCs and TIC patterns, 
which can distinguish between head and neck diseases 
[29–31]. Our study, which included both ADC and TIC 
data, is the largest series of KD cases reported to date. 
The significant differences in ADCs (△ADC) between 
primary lesions and lymphadenopathy were especially 
interesting, as they could provide a non-invasive marker 
for distinguishing KD from lymphoma. The TIC patterns 
further supported these findings, with KD lesions show-
ing patterns more akin to NF and lymphoma exhibiting 
a broader variety of patterns. △ADC and TIC patterns 
between primary lesions and lymphadenopathy may be 
attributed to variations in tissue composition. Subcuta-
neous lesions often have more fibrotic tissue, leading to 
higher ADCs and a progressive enhancement pattern on 
DCE-MRI. Lymphadenopathy, however, typically showed 

lower ADCs due to its hypercellular nature [14]. This 
observation has also been noted by Horikoshi et al. [14] 
and may be a distinctive feature of KD.

Stepwise decision tree model for differential diagnosis of 
KD
To improve diagnostic accuracy, we utilized a stepwise 
decision-tree model, which is advantageous over tradi-
tional logistic regression. CART selected the most sig-
nificant variables and excluded irrelevant ones, making 
it particularly effective for small sample sizes. As shown 
in Fig. 6, ADCs emerged as the most discriminative fea-
ture, allowing differentiation between KD and conditions 
like lymphoma, NF and SS&MALT. KD with lower ADCs 
(≤ 0.83 × 10⁻³ mm²/s) could be easily misled to lymphoma. 
However, it could be further differentiated by examin-
ing the maximum diameter of the lymphadenopathy. 
Similarly, KD with ADCs greater than 0.83 × 10⁻³ mm²/s 
and no lymphadenopathy might be confused with NF, 
but this distinction could be made by using a higher 
ADC cutoff of 1.2 × 10⁻³ mm²/s. Typically, KD showed 
ADCs between 0.83 × 10⁻³ mm²/s and 1.2 × 10⁻³ mm²/s, 
whereas NF ADCs were usually higher than 1.2 × 10⁻³ 
mm²/s. Overall, the decision tree model demonstrated 
excellent accuracy in distinguishing KD from other con-
ditions such as SS&MALT. This model offered several 
advantages over traditional methods. For example, the 

Table 4 Functional MRI characteristics of KD and three other head and neck conditions
Characteristics KD

(n = 36)
SS&MALT (n = 42) NF

(n = 53)
Lymphoma
(n = 71)

p

*△ADC
(×10-3mm2/s)

0.37 ± 0.21 0.11 ± 0.05 < 0.001

*Primary lesions
*ADC
(×10-3mm2/s)

1.04 (0.95,1.26) 0.63 (0.56,0.69) 1.58
(1.44,1.76)

0.67 (0.58,0.76) < 0.001

*TIC Type I 16 (51.6%) 0 44 (83.0%) 9 (20.0%) < 0.001
Type II 15 (48.4%) 32 (76.2%) 9 (17.0%) 31 (68.9%)
Type III 0 10 (23.8%) 0 5 (11.1%)

Wash-in rate (s-1) 21.2
(5.9,52.5)

46.9 (27.4,58.1) 35.8
(17.8,48.5)

48.6 (24.9,65.5) 0.018

*TTP (s) 108.0 (50.0,177.0) 39.5 (35.5,53.2) 185.8 (116.8,199.5) 44.0 (38.5,68.0) < 0.001
Lymphadenopathy
*ADC
(×10-3mm2/s)

0.67 (0.61,0.76) 0.58 (0.52,0.62) < 0.001

*TIC Type I 0 9 (21.4%) 0.013
Type II 25 (89.3%) 26 (61.9%)
Type III 3 (10.7%) 7 (16.7%)

Wash-in rate (s-1) 40.5 ± 30.5 44.6 ± 21.4 0.622
*TTP (s) 43.5 (34.2,56.6) 44.5 (35.0,71.8) 0.472
*Primary lesions: extra-nodal soft tissue lesions

*ADC: apparent diffusion coefficient

*TIC: time-signal intensity curve

*TTP: time to peak

*△ADC: ADC (lesion)-ADC(lymphadenopathy). Abbreviations: KD: Kimura’s disease, SS&MALT: Sjogren’s syndrome with mucosa-associated lymphoid tissue lymphoma, NF: 
neurofibromatosis
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decision-making process was quick and automated by 
analysing key parameters such as ADCs, lesions sizes 
and locations, particularly for diseases with nonspecific 
imaging findings or when we are less familiar with the 
condition. Additionally, this model can potentially guide 
management decisions. For example, distinguishing KD 
from lymphoma could avoid unnecessary treatments, 
such as chemotherapy or radiation therapy. By accurately 
diagnosing KD, the model would help direct more appro-
priate interventions, such as corticosteroids or immuno-
suppressive therapy. This personalized approach can lead 
to better patient outcomes, with a reduced risk of adverse 
effects from inappropriate treatments.

Limitations and future directions
Our study still had some limitations. The small sample 
size, due to the rarity of KD, resulted in a limited num-
ber of cases for analysis. Additionally, misclassification 
occurred in two KD cases—one was incorrectly identified 
as lymphoma due to a markable enlarged lymph node (up 
to 6 cm), and the other, involving both the lacrimal gland 
and adjacent soft tissues, was misclassified as NF due to a 
higher ADC value resulting from the soft tissue involve-
ment. These misclassifications highlighted the challenges 
in differentiating KD from lymphoma or NF when larger 
lymph nodes or lesions involving soft tissues were pres-
ent. Future studies with larger cohorts and more detailed 
imaging and clinical metrics will help further refine the 
decision tree model. Incorporating additional imaging 

Fig. 5 Comparison of parameters derived from DWI and DCE-MRI in KD and three other head and neck conditions. (a) ADCs of primary lesions across 
four conditions. (b) ADCs of lymphadenopathy in KD and lymphoma. (c) TIC patterns of lesions and lymphadenopathy across four conditions illustrated 
distinct dynamic enhancement characteristics. (d) TTP values of primary lesions across four conditions highlighted differences in enhancement kinet-
ics. Statistical analysis was performed using Kruskal-Wallis H test, Mann-Whitney U test, Chi-square test, and Fisher’s exact test. Significantly different P 
values at P < 0.05 (*) or P < 0.001 (***). Abbreviations: ADC, apparent diffusion coefficient; KD, Kimura’s disease; SS&MALT, Sjogren’s syndrome with mucosa-
associated lymphoid tissue lymphoma; NF, neurofibromatosis; TIC, time-signal intensity curve; TTP, time to peak
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parameters and expanding the sample size will enhance 
its accuracy, potentially making it a standard tool in clini-
cal practice for diagnosing KD and similar diseases. Once 
trained, the model could be seamlessly integrated into 
clinical settings with minimal additional cost, relying on 
data already collected from routine imaging studies.

Conclusion
In conclusion, the stepwise decision tree model, incorpo-
rating both routine and functional MRI features, showed 
high accuracy in differentiating KD from other head and 

neck conditions, offering a reliable diagnostic tool for 
radiologists and physicians in daily practice and guiding 
tailored clinical management plans for affected patients.

Fig. 6 Stepwise approach for discrimination of KD and three other head and neck conditions. The decision tree model illustrated a structured approach 
for distinguishing KD from SS&MALT, NF, and primary lymphoma based on routine and functional imaging features. The initial split was based on an ADC 
threshold of 0.83 × 10⁻³ mm²/s, effectively categorizing 202 cases. Left Panel: For cases with lower ADCs (≤ 0.83 × 10⁻³ mm²/s), parotid gland involvement 
served as a distinguishing feature, achieving 100% accuracy in identifying SS&MALT. In cases with no parotid involvement, a lymphadenopathy maximum 
diameter threshold of 2.2 cm differentiated KD (diameter ≤ 2.2 cm) from primary lymphoma (diameter > 2.2 cm) with high accuracy (100% for KD and 
98.4% for lymphoma). Right Panel: For cases with higher ADCs (> 0.83 × 10⁻³ mm²/s), the presence of lymphadenopathy indicated KD with 100% accuracy. 
In the absence of lymphadenopathy, KD and NF were further differentiated by an ADC threshold of 1.2 × 10⁻³ mm²/s, achieving 100% accuracy for KD 
(ADCs ≤ 1.2 × 10⁻³ mm²/s) and 98.1% for NF (ADCs > 1.2 × 10⁻³ mm²/s). Overall, the decision tree model attained a 99.0% accuracy rate in distinguishing 
these four diseases, with a misclassification risk of 0.079 ± 0.024 as validated by 10-fold cross-validation. Abbreviations: ADC, apparent diffusion coefficient; 
KD, Kimura’s disease; SS&MALT, Sjogren’s syndrome with mucosa-associated lymphoid tissue lymphoma; NF, neurofibromatosis
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