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Abstract
Background  To assess the effect of the combination of deep learning reconstruction (DLR) and time-resolved 
maximum intensity projection (tMIP) or time-resolved average (tAve) post-processing method on image quality of 
CTA derived from low-dose cerebral CTP.

Methods  Thirty patients underwent regular dose CTP (Group A) and other thirty with low-dose (Group B) were 
retrospectively enrolled. Group A were reconstructed with hybrid iterative reconstruction (R-HIR). In Group B, four 
image datasets of CTA were gained: L-HIR, L-DLR, L-DLRtMIP and L-DLRtAve. The CT attenuation, image noise, signal-
to-noise ratio (SNR), contrast-to-noise ratio (CNR) and subjective images quality were calculated and compared. The 
Intraclass Correlation (ICC) between CTA and MRA of two subgroups were calculated.

Results  The low-dose group achieved reduction of radiation dose by 33% in single peak arterial phase and 18% 
in total compared to the regular dose group (single phase: 0.12 mSv vs 0.18 mSv; total: 1.91mSv vs 2.33mSv). The 
L-DLRtMIP demonstrated higher CT values in vessels compared to R-HIR (all P < 0.05). The CNR of vessels in L-HIR 
were statistically inferior to R-HIR (all P < 0.001). There was no significant different in image noise and CNR of vessels 
between L-DLR and R-HIR (all P > 0.05, except P = 0.05 for CNR of ICAs, 77.19 ± 21.64 vs 73.54 ± 37.03). However, the 
L-DLRtMIP and L-DLRtAve presented lower image noise, higher CNR (all P < 0.05) and subjective scores (all P < 0.001) in 
vessels than R-HIR. The diagnostic accuracy in Group B was excellent (ICC = 0.944).
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Background
Computed tomography angiography (CTA) is widely 
utilized in diagnosing cerebrovascular diseases, particu-
larly acute ischemic stroke and vascular malformations, 
due to its rapid and non-invasive features [1]. The emer-
gence of dynamic CTA, also known as 4D-CTA, derived 
from whole-brain CT perfusion (CTP) data, holds great 
promise in vascular imaging by describing the dynamic 
assessment of contrast medium over time [2]. However, 
one significant drawback of 4D-CTA is the relatively high 
radiation dose associated with repeated scans, a practice 
not endorsed by the Food and Drug Administration, USA 
[3]. Consequently, various radiation reduction techniques 
have been proposed to address this issue, including 
adjustments to scanning parameters such as tube voltage, 
tube current, and sampling frequency [4]. Nevertheless, 
reducing radiation dose can lead to higher image noise 
and compromised image quality. Subsequently, methods 
to enhance image quality are introduced.

The advancement of image reconstruction algorithms 
can effectively reduce image noise and either maintain or 
enhance image quality in low-dose CT scans. The imple-
mentation of Hybrid Iterative Reconstruction (HIR), such 
as Adaptive Iterative Dose Reduction 3D (AIDR-3D), in 
CT imaging has demonstrated significant noise reduc-
tion benefits when compared to the conventional fil-
tered back projection (FBP) reconstruction method [5, 
6]. However, a notable limitation of HIR is its potential to 
overly smooth image appearance or texture [7]. Recently, 
with the rise of artificial intelligence, research efforts 
have shifted towards utilizing deep learning reconstruc-
tion (DLR) algorithms in medical imaging. Among the 
commercially available DLR algorithms, the Advanced 
Intelligent Clear-IQ Engine (AiCE), based on deep con-
volutional neural networks (DCNN), stands out for its 
ability to differentiate noise from true signal [8]. Images 
produced through DLR algorithms exhibit improved spa-
tial resolution without compromising texture compared 
to HIR [9]. Numerous clinical studies have underscored 
the superior radiation exposure control and image qual-
ity achieved with DLR over unenhanced head CT [10, 11] 
and brain CTA scans [12].

In addition, significant advancements in post-pro-
cessing method for perfusion CT have been proposed 
and validated to enhance image quality. Time-resolved 
CT is a sophisticated imaging technique that integrates 
data from multiple optimal time points to generate 
time-resolved maximum intensity projections (tMIP) or 

average intensity projections (tAve) image. By consoli-
dating information from multiple images and incorpo-
rating noise reduction algorithms, this method has been 
demonstrated to significantly enhance image quality and 
diagnostic accuracy compared to conventional single-
phase CTA [13, 14]. Various studies [2, 15] along with 
our own previous research [16] have demonstrated that 
time-resolved CTA images derived from cerebral CTP 
and reconstructed using HIR exhibit remarkable capa-
bilities in visualizing vascular branches and anomalies. 
Nevertheless, to date, there has been a lack of research 
regarding the combination of this approach with DLR 
algorithms.

Our objective is to evaluate the impact of combining 
the DLR algorithm with the time-resolved CTA post-
processing method on the image quality of CTA obtained 
from low-dose cerebral CTP, in comparison with HIR at 
standard dose levels.

Methods
Study population
This study was approved by the ethics committee 
(I-24PJ0479), and the requirement of informed consent 
was waived. A total of sixty consecutive patients were ret-
rospectively enrolled. Group A (Regular dose) comprised 
30 patients who underwent whole-brain dynamic CTP 
for ischaemic stroke between June 2020 and Novem-
ber 2020. Group B (Low dose) consisted of another 30 
patients between January 2021 and December 2021. 
Patients with allergic action to iodine-containing contrast 
media, serve liver and kidney dysfunction, serve compen-
sated cardiac insufficiency, pregnancy, and aged below 18 
were excluded from the study.

CT acquisition
All CTP were performed with a 320 row-detector CT 
scanner (Aquilion ONE Genesis Edition, Canon Medi-
cal Systems, Japan). The patients were placed in the 
supine position with arms on the both sides of the body, 
and all were asked not to move during the examination. 
The scan was performed from atlas to cranial parietal in 
a caudocranial direction. Each patient was performed 
with a basic noncontrast CT and volumetric scanning 
for dynamic CTP with 19 phases: one noncontrast scan, 
three earlier arterial phase scans (interval 2 s), six arterial 
phase scans (interval 2 s), four late arterial phase scans 
(interval 2 s), and five venous phase scans (interval 5 s). 
The setting of tube current affecting radiation dose in 

Conclusion  Combining DLR with tMIP or tAve allows for reduction in radiation dose by about 33% in single peak 
arterial phase and 18% in total in CTP scanning, while further improving image quality of CTA derived from CTP data 
when compared to HIR.
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these phases was summarized in Table 1. Other identical 
parameters between two groups were as follows: detec-
tor collimator = 320 × 0.5  mm; rotating speed = 0.5 s/r; 
and tube voltage = 80 kV. A total of 40 ml contrast media 
was injected into the median cubital vein at the rate of 
5.0 ml/s by a power injector, and followed by 30 ml saline 
flush with same rate.

Image reconstruction and processing
The original image retrieved from Group A was recon-
structed using HIR with clinically recommended setting 
[Adaptive Iterative Dose Reduction (AIDR-3D), kernel 
FC41]. The images from Group B were reconstructed 
using the same HIR setting as Group A, along with DLR 
using the Advanced Intelligent Clear-IQ Engine (AiCE) 
for Brain CTA.

All datasets were transferred to a professional work-
station (Canon console, Canon Medical System, Japan) 
for imaging post-processing by one radiologist (three 
years of experience in the image diagnose of head and 
neck). The time attenuation curves of middle artery were 
separately generated for each dataset of two groups and 
the single arterial phase image derived from the time 
point with the best enhancement was extracted respec-
tively (R-HIR, L-HIR, L-DLR). For the perfusion data-
sets reconstructed with DLR in Group B, time-resolved 
maximum intensity projection image (L-DLRtMIP) and 
time-resolved average image (L-DLRtAve) derived from 
three adjacent time points with the greatest enhancement 
and identical scan phase were obtained additionally. The 
L-DLRtMIP and L-DLRtAve images were generated using 
the vendor’s software (tMIP and tAve) installed in the 
CT console, where the registration process for motion 
correction was integrated. Then five image sets (R-HIR, 
L-HIR, L-DLR, L-DLRtMIP, L-DLRtAve) from two groups 
were reconstructed with a thickness of 0.5  mm, slice 
interval of 0.5 mm, and pixel matrix of 512 × 512 for the 
subsequent analysis.

Image analysis
Objective image analysis
A radiologist with 3 years of experience in head and neck 
imaging performed the quantitative analysis and cal-
culated the mean CT attenuation values, image noise, 
signal-to-noise ratio (SNR), and contrast-to noise ratio 
(CNR) at the same position of each image. The regions 

of interest (ROIs) were placed in the siphon segment of 
bilateral internal carotid arteries (ICAs), middle cerebral 
arteries (MCAs), basilar artery (BA), and brainstem (BS). 
And the ROIs were set as large as possible while avoid-
ing the artifacts and arterial calcifications (Fig.  1). The 
attenuation values in the vessel (CTvessel) were calculated 
as the average of the measurements in the center of each 
artery (BA, ICAs, MCAs). The image noise was defined 
as the standard deviation (SD) of the brainstem attenua-
tion measurements. For each of the image sets, the calcu-
lations of SNR and CNR were performed as follows:

	 SNRROI = CTROI/SDROI

	CNRvessel = (CTvessel − CTbrainstem)/SDbrainstem

Subjective image analysis
All images were independently and subjectively evaluated 
by two radiologists (with 10 and 3 years of experience in 
CTA of head and neck), who were blinded to the scan-
ning parameters and the reconstruction methods. The 
window width and window level setting having influence 
on image quality were consistent in all datasets. Sagittal 
thin-slab maximum intensity projection (MIP) images 
were reconstructed for five sets and presented in ran-
dom order. Overall image quality was evaluated using a 
5-point scale with respect to clarity of small vessels and 
noise: 5 = excellent image quality, distal second-order 
branches visualized with little image noise; 4 = good 
image quality, second-order branches completely visual-
ized with little image noise; 3 = moderate image quality, 
second-order branches not completely visualized with 
average image noise; 2 = nondiagnostic image quality, 
first-order branches clearly visualized with significant 
image quality; 1 = poor image quality, main branches not 
completely visualized with significant image noise. Fig-
ure 2 showed the images with different scores.

Arterial stenosis
Only patients underwent both CTP and MRA were per-
formed the analysis of arterial stenosis, therefore only a 
subgroup of patients was included. The MRA was per-
formed on a 3.0  T MR imaging system (Signa General, 
electric medical system, Milwankee, WI, USA) with 3D 
TOF technique. The image parameters were as follow: 
angle, 20°; echo time/repetition time: 39/2.6 ms. Images 
were set to workstation for post-processing to punch 
veins, isolate anterior and posterior circulation arteries, 
and create 12 MIP images that were radially projected at 
15-degree increments. Then the CTA and MRA data were 
evaluated by two well-experienced radiologist mentioned 
above, who were blinded to the patients’ information and 
reached a consensus conclusion. Intracranial arteries 
were divided into 21 segments, including bilateral C2-7 

Table 1  CTP tube current of Group A and Group B
Group A Group B

Noncontrast phase (1 scan) 300 mA 200 mA
Earlier arterial phase (3 scans) 150 mA 150 mA
Arterial phase (6 scans) 300 mA 200 mA
Later arterial phase (4 scans) 150 mA 150 mA
Venous phase (5 scans) 150 mA 150 mA
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segments of the ICA, bilateral anterior cerebral artery 
(ACA), bilateral middle cerebral artery (MCA), bilateral 
posterior cerebral artery (PCA), bilateral V4 of the verte-
bral artery (VA) and BA. A 4-point scale according to the 
North American Symptomatic Carotid Endarterectomy 

Trial criteria [17] was used to evaluated the arteries and 
explained as follows: 0 = non stenosis (0%), 1 = mild ste-
nosis (<50%), 2 = moderate stenosis (50%-69%), 3 = severe 
stenosis (70%-99%), and 4 = complete occlusion (100%).

Fig. 2  Subjective image quality criteria graded on 5-point scale (5 = excellent, 1 = poor). A image quality of score 1 (main branches not completely vi-
sualized with significant image noise). B image quality of score 2 (first-order branches clearly visualized with significant image quality). C image quality 
of score 3 (second-order branches not completely visualized with average image noise). D image quality of score 4 (second-order branches completely 
visualized with little image noise). E image quality of score 5 (distal second-order branches visualized with little image noise)

 

Fig. 1  ROIs of objective image quality evaluation. The regions of interest (ROIs) were placed in the siphon segment of bilateral internal carotid arteries 
(A), middle cerebral arteries (B), basilar artery (C), and brainstem (D)
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Radiation dose
The CT dose index volume (CTDIvol) and dose length 
product (DLP) were automatically recorded for each 
phase. The efficient dose (ED) was calculated using DLP 
multiplied by a conversion coefficient k factor of 0.0021 
(mSv•mGy−1•cm−1) [18]. To make the difference more 
clear between two groups, the radiation dose of single 
arterial phase was calculated additionally.

Statistical analysis
Continuous variables were expressed as mean ± standard 
deviation or median and interquartile range, depending 
on the normality of the data assessed by The Shapiro-
Wilk test. For the comparisons of CT value, image noise, 
SNR, and CNR between two groups, t test (for normally 
distributed data) or Wilcoxon-Mann-Whitney (for non-
normally distributed data) was employed. For the evalu-
ation of subjective image quality, interreader reliability 
was assessed using weighted kappa statistics and inter-
preted as follows: poor (ƙ = 0-0.20), fair (ƙ = 0.21–0.40), 
moderate (ƙ = 0.41–0.60), good (ƙ = 0.61–0.80), and excel-
lent (ƙ = 0.81–1.00). For the evaluation of Arterial steno-
sis, The Intraclass Correlation (ICC) between CTA and 
MRA of two groups were calculated. Statistical analysis 
was performed using R software (version 3.6.1, ​h​t​t​p​:​/​/​w​w​
w​.​R​-​p​r​o​j​e​c​t​.​o​r​g​​​​​)​. P < 0.05 was considered statistically ​s​i​g​n​
i​f​i​c​a​n​t in difference.

Results
Patient population and radiation dose
The patient characteristics, including age, gender, weight, 
and body mass index (BMI), of each group were summa-
rized in Table  2. No statistically significant differences 
in patient characteristics were found between the two 
groups (all P > 0.05). In single arterial phase of Group A, 
The DLP was 85.3 mGy · cm, the CTDIvol was 5.3 mGy 
and the ED was 0.18 mSv. The total CTDIvol for a CTP 
scan in Group A was 1108.3 mGy, with a total ED of 2.33 
mSv. In single arterial phase of Group B, The DLP was 
56.8 mGy · cm, the CTDIvol was 3.6 mGy and the ED was 
0.12 mSv. The total CTDIvol for a CTP scan in Group B 
was 908.8 mGy and total ED was 1.91 mSv.

Objective image analysis
The comparison of objective image quality between 
Group A and Group B is presented in Table  3. The 
L-DLRtMIP demonstrated higher CT values in ICAs, 

MCAs and BA compared to R-HIR (all P < 0.05). There 
were no significant differences in CT attenuation of the 
vessels when comparing L-HIR, L-DLR and L-DLRtAve to 
R-HIR (all P > 0.05, except P = 0.05 for L-HIR and R-HIR 
in ICAs: 619.88 ± 144.06 vs 702.72 ± 167.65). The SD 
and SNR of all vessels in L-HIR, L-DLR, L-DLRtMIP and 
L-DLRtAve were inferior to that of R-HIR (all P < 0.05). 
Notably, the SD of the brainstem in L-HIR was higher 
than that in R-HIR (P < 0.001), while there was no statis-
tically significant difference between L-DLR and R-HIR 
(P = 0.28). However, L-DLRtMIP and L-DLRtAve exhibited 
lower image noise than R-HIR (P ≤ 0.001), resulting in 
a higher CNR for vessels by approximately 31–38% and 
43–55% respectively (Fig. 3).

Subjective image analysis
The inter-reader reliability was excellent (ƙ = 0.81). All 
images reconstructed with DLR (L-DLR, L-DLRtMIP and 
L-DLRtAve) showed higher scores and superior image 
quality compared to R-HIR (all P < 0.001), while the score 
of L-HIR was lower than of R-HIR (P < 0.05). The detailed 
results of subjective analysis are summarized in Table 4.

Diagnostic accuracy of stenosis
MRA was conducted on 8 patients, with 5 in Group A 
and 3 in Group B, encompassing a total of 168 arterial 
segments (105 in Group A, 63 in Group B) in this study. 
The average time interval between CTP and MRA was 
58.8 days in Group A (115, 85, 19, 5, 70 days respectively) 
and 11  days in Group B (20, 11, 2  days respectively). 
Using MRA results as the reference standard, in Group 
A, 81% of arterial segments (85/105) were classified as 
normal, 16% (17/105) with mild stenosis, 2% (2/105) 
with moderate stenosis, 1% (1/105) with severe stenosis, 
and no complete arterial occlusion. Group B exhibited 
57% of arterial segments (36/63) classified as normal, 
32% (20/63) with mild stenosis, 3% (2/63) with moder-
ate stenosis, 8% (5/63) with complete occlusion, and no 
segments with severe stenosis. For Group B, the evalu-
ated results were consistent across all four CTA images, 
leading to the calculation of the ICC between MRA and 
CTAs in Group B only once. The ICC was 0.896 (95%CI: 
0.851, 0.928) in Group A and 0.761 (95%CI: 0.634, 0.849) 
in Group B. An interesting observation was made in 
one patient from Group B, where the bilateral posterior 
cerebral arteries were completely occluded in MRA but 
showed normal or mild stenosis in CTA. Consequently, 
a second ICC calculation excluding these two arterial 
segments was performed, yielding a higher ICC of 0.944 
(95%CI: 0.903, 0.967) after their exclusion.

Table 2  Characteristics of the study population
Group A (n = 30) Group B (n = 30) P-value

Age, years 57.67 ± 17.89 56.00 ± 17.51 0.72
Males, n 20 (66.7%) 17 (56.7%) 0.43
Weight, kg 68.10 ± 13.15 66.42 ± 13.95 0.63
BMI, kg/m2 24.97 ± 3.83 23.82 ± 3.81 0.25

http://www.R-project.org
http://www.R-project.org
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Table 3  Objective assessment of image quality
R-HIR L-HIR L-DLR L-DLRtMIP L-DLRtAve R-HIR

vs.
L-HIR

R-HIR
vs.
L-DLR

R-HIR
vs.
L-DLRtMIP

R-HIR
vs.
L-DLRtAve

CT ICAs 702.72
(167.65)

619.88
(144.06)

759.10
(193.51)

823.1
(210.08)

707.25
(176.66)

0.05 0.09 0.003 0.56

MCAs 657.18
(162.78)

605.21
(129.82)

739.13
(183.32)

754.35
(179.45)

678.81
(165.15)

0.26 0.06 0.03 0.33

BA 643.86
(163.33)

539.20
(142.49)

666.02
(196.99)

739.14
(176.30)

623.15
(166.03)

0.12 0.65 0.04 0.64

BS 51.90
(5.06)

54.76
(5.22)

46.15
(5.36)

52.61
(4.59)

45.50
(4.83)

0.04 <0.001 0.58 <0.001

SD ICAs 10.24
(3.80)

28.68
(15.97)

39.91
(21.57)

39.09
(22.19)

32.39
(20.14)

<0.001 <0.001 <0.001 <0.001

MCAs 10.31
(4.47)

24.99
(9.85)

25.19
(10.27)

26.11
(12.69)

17.83
(9.36)

<0.001 <0.001 <0.001 0.002

BA 10.23
(5.08)

43.87
(19.14)

42.00
(20.38)

46.44
(19.21)

39.08
(16.20)

<0.001 <0.001 <0.001 <0.001

BS 10.09
(3.20)

14.30
(1.63)

9.39
(1.35)

7.70
(1.45)

6.07
(1.10)

<0.001 0.28 0.001 <0.001

SNR ICAs 81.09
(45.15)

27.26
(13.66)

24.73
(12.49)

26.24
(12.36)

28.97
(15.97)

<0.001 <0.001 <0.001 <0.001

MCAs 82.26
(52.88)

27.59
(11.77)

32.54
(12,01)

33.69
(12.27)

45.43
(18.07)

<0.001 <0.001 <0.001 <0.001

BA 79.62
(42.84)

14.59
(8.06)

19.57
(13.20)

17.79
(7.34)

20.02
(13.07)

<0.001 <0.001 <0.001 <0.001

BS 5.72
(2.12)

3.87
(0.48)

5.00
(0.82)

7.00
(1.12)

7.65
(1.22)

<0.001 0.62 0.002 <0.001

CNR ICAs 73.54
(37.03)

40.03
(10.61)

77.19
(21.64)

101.43
(25.42)

110.66
(29.69)

<0.001 0.05 <0.001 <0.001

MCAs 68.51
(35.08)

38.80
(9.65)

76.11
(21.38)

93.22
(25.13)

106.19
(24.55)

<0.001 0.09 0.002 <0.001

BA 67.45
(36.10)

34.32
(10.22)

66.95
(21.34)

88.76
(24.39)

96.55
(27.46)

<0.001 0.38 0.001 <0.001

BA, basilar artery; BS, brainstem; CNR, contrast-to-noise ratio; DLR, Deep learning reconstruction; HIR, Hybrid iterative reconstruction; ICAs, internal carotid arteries; 
SNR, signal-to-noise ratio; tAve, time-resolved average; tMIP, time-resolved maximum intensity projection

Fig. 3  Example demonstrating the impact of the different reconstruction methods of the brainstem with a window setting of the tissue (width 400HU, 
level 40HU) and middle arterial with a window setting of the vessel (width 1000HU, level 400HU)
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Discussion
In this study, we assessed the application of deep learn-
ing reconstruction algorithm and the time-resolved 
post-processing method in CTA images derived from 
low-dose cerebral CTP data by comparing the image 
quality with regular dose images reconstructed with HIR. 
Our results indicated that the combination of these two 
techniques could further enhance image quality, despite 
a significant reduction of 33% in radiation dose compared 
with R-HIR.

Recently years, several studies have validated the posi-
tive effect of DLR algorithm on image noise reduction 
and image quality improvement in low-dose scanning, 
including head CT [10], coronary CTA [19], chest CT 
[20], CT pulmonary angiography [21] and abdominal CT 
[22]. For instance, in non-contrast head CT [10], DLR 
presented lower image noise, higher gray matter-white 
matter contrast, and higher CNR than HIR even at 25% 
reduced dose setting. However, the potential of DLR 
algorithm for radiation reduction is limited. In a liver CT 
study by Lyu et al [23], where DLR was evaluated at dif-
ferent lower radiation dose levels against full-dose HIR, 
DLR’s performance was subpar to full-dose HIR when 
at dose reductions exceeding 50%. Our study also found 
that L-DLR (33% dose reduction) exhibited inferior SD 
and SNR for vessels compared to R-HIR, while the CNR 
of vessels showed no significant difference (except ICAs). 
As a result, we considered to explore the feasibility of 
integrating DLR with other methodologies to further 
enhance image quality in low-dose settings.

Based on relevant literature in time-resolved CTA [16, 
24, 25], post-processing is typically conducted at three 
time points. In our previous study [16], we had com-
pared the objective and subjective image quality among 
HIRtMIP, HIRtAve and HIRpeak in 4D-CTA, and concluded 
that time-resolved CTA was preferred to visualize vas-
cular branches when at the same dose level. Building 
on this, we further assessed the impact of the combina-
tion of DLR and tMIP or tAve based on the three adja-
cent time points with the greatest enhancement at lower 
dose level. Our results found that L-DLR with tMIP and 
tAve achieved enhanced CNR of all vessels approximately 
31–38% and 43–55%, respectively, compared to images 
obtained with HIR at regular dose. This result suggested 
that the combination outperformed using DLR alone and 
demonstrated the feasibility of enhancing noise reduction 

and improving objective image quality in 4D-CTA scans 
with a 33% lower dose by integrating the DLR algorithm 
with time-resolved CTA post-processing methods.

Subjectively, a previous study [12] had shown the 
advantage of DLR over FBP and HIR at the same dose 
level in depicting small intracranial vessels. This was 
attributed to DLR’s ability to enhance spatial resolution 
and depict small cortical branches effectively. Our study 
was consistent with that. As illustrated in Figure 4–5, the 
visualization of distal second-order branches was nota-
bly clearer with DLR compared to HIR, irrespective of 
whether time-resolved post-processing methods were 
combined or not. This indirectly reflected the enhanced 
spatial resolution of DLR as higher spatial resolution 
allows for better visualization of small anatomical struc-
tures and results in higher subjective scores. What set 
our study apart was the observed enhancement when 
comparing low-dose DLR images to regular-dose HIR 
images. Therefore, our result further validated the benefit 
of DLR in small intracranial vessels depiction in 4D-CTA 
scan when implementing 33% dose reduction.

In the assessment of arterial stenosis, MRA was found 
to grade two arterial segments as occluded, primarily due 
to overestimation issues [26]. This overestimation can be 
attributed to intravoxel dephasing and local signal loss 
resulting from flow velocity gradients, acceleration, and 
complex flow patterns encountered in MRA imaging. As 
it shows in Fig. 6, the bilateral posterior cerebral arteries 
were not visualized in the MRA image but were clearly 
delineated in the CTA images. In the case of this patient, 
the bilateral V4 segments of the VA, the proximal and 
mid BA were completely occluded, leading to slow flow 
velocities in the distal vessels that were challenging to 
image using MRA. Actually, the bilateral posterior cere-
bral arteries and distal BA were primarily supplied by 
the anterior circulation and the lumen was normal or 
mild stenosis. After excluding these two segments, the 
ICC in Group B was 0.944, compared to 0.896 in Group 
A. Consequently, the diagnostic accuracy achieved with 
low-dose DLR imaging (with or without the use of time-
resolved post-processing methods) was comparable to, 
if not better than, that obtained with regular-dose HIR 
imaging.

In this study, we found the subjective image quality 
and diagnostic accuracy of arterial stenosis in the low-
dose group (with a 33% reduction) using DLR alone were 

Table 4  Subjective assessment of image quality
R-HIR L-HIR L-DLR L-DLRtMIP L-DLRtAve R-HIR

vs.
L-HIR

R-HIR
vs.
L-DLR

R-HIR
vs.
L-DLRtMIP

R-HIR
vs.
L-DLRtAve

Reader 1 4.20 (0.66) 3.80 (0.55) 4.77 (0.50) 4.87 (0.35) 4.90 (0.31) 0.02 <0.001 <0.001 <0.001
Reader 2 4.33 (0.66) 4.03 (0.41) 4.93 (0.25) 4.93 (0.25) 4.93 (0.25) 0.03 <0.001 <0.001 <0.001
DLR, Deep learning reconstruction; HIR, Hybrid iterative reconstruction; tAve, time-resolved average; tMIP, time-resolved maximum intensity projection
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superior to or on par with the results obtained from the 
regular dose group using HIR. The objective image qual-
ity could potentially be further improved to exceed the 
levels achieved with the regular dose by incorporating 
a time-resolved post-processing method. However, the 
potential advantages of this combination were somewhat 
tempered by the time-consuming nature of reconstruct-
ing these two elements in routine 4D-CTA scans, and 
there was no significant breakthrough in terms of diag-
nostic accuracy due to the limited number of cases. Con-
sequently, the integration of the time-resolved method 
may be worth considering in specific challenging sce-
narios, such as when there is a need to highlight certain 

details in low-dose 4D-CTA scans that may not have 
been satisfactorily captured with DLR alone.

There were several limitations in this study. Firstly, 
all results and findings were derived from a relatively 
small sample size, particularly in terms of the number 
of patients who underwent DSA. Secondly, the benefit 
of spatial resolution provided by DLR was assessed indi-
rectly through subjective evaluation in our study. Future 
research for a comprehensive evaluation should include 
objective assessment of spatial resolution. Thirdly, the 
diagnostic accuracy of DLR and DLR combined with 
a time-resolved post-processing method was assessed 
against the diagnostic results of MRA, as there was no 

Fig. 6  Images of the excluded case in assessment of diagnostic accuracy of stenosis.A patient with occlusive bilateral V4 segments of the vertebral artery 
(VA), the proximal and mid based artery (BA). A The posterior circulation was not show in Maximum intensity projection (MIP) of MRA and included ves-
sels (bilateral posterior cerebral artery, bilateral V4 of the VA and BA) were evaluated as occlusion. B–E Thin-MIP of CTA reconstructed by four methods 
(HIR, DLR, DLRtMIP, DLRtAve) from CTP image sets showed distal BA and bilateral posterior cerebral artery clearly, and the arteries above were regarded as 
non or mild stenosis

 

Fig. 5  Example of middle cerebral arteries. A 68-year old man in Group A was reconstructed with HIR (A). A 56-year-old man in Group B was reconstruct-
ed with HIR (B), DLR (C), DLRtMIP (D) and DLRtAve (E), there were no stenosis in the bilateral middle arteries. The vascular edge in images reconstructed with 
DLR (C–E) was sharper and clearer than those reconstructed with HIR (A, B)

 

Fig. 4  An example of subjective score for image quality. Sagittal thin-slab maximum intensity projection (MIP) images were reconstructed. A A patient 
performed with R-HIR scan and the score is 4. B–E Another patient performed with L-HIR, L-DLR, L-DLRtMIP and L-DLRtAve scans. The scores are 4, 5, 5 and 
5 respectively. The distal second-order branches are visualized clearer than HIR in the images with DLR, whether time-resolved post-processing method 
combined or not
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gold standard examination (such as DSA) available. This 
reliance on MRA as the reference point may have intro-
duced some uncertainty into the evaluation of arterial 
stenosis. Therefore, future studies should involve a larger 
cohort of patients who have undergone DSA to provide a 
more reliable assessment of diagnostic accuracy in arte-
rial stenosis. Additionally, we compared CTAtMIP and 
CTAtAve using only the three time points with the highest 
enhancement, future studies will focus on determining 
the optimal combining post-processing strategy for vari-
ous scenarios. Last but not least, the majority of patients 
included in this study were diagnosed with mild narrow-
ing, and there was an imbalance in the distribution of 
narrowing degrees and the time intervals between CTP 
and MRA in the two groups. To address this issue, future 
research should incorporate a matched-pairs design and 
encompass a more comprehensive range of narrowing 
degrees for a more robust investigation.

Conclusions
In conclusion, the combination of DLR with time-
resolved CTA post-processing method in CTA derived 
from low-dose cerebral CTP data (with a 33% reduc-
tion in a single peak arterial phase dose and an 18% 
reduction in total dose) significantly enhanced both 
the objective and subjective image quality of the 
vessels.
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