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Abstract
Background Computational approaches have been proposed using radiomics in order to assess tumour 
heterogeneity, which is motivated by the concept that biomedical images may contain underlying pathophysiology 
information and has the potential to quantitatively measure the heterogeneity of intra- and intertumours. Ovarian 
cancer has the highest mortality among malignant tumours of female reproductive system and can be further 
divided into many subtypes with different management strategies and prognosis. The purpose of our study is to 
develop and validate ultrasound-based radiomics models to distinguish the five major histological subtypes of 
epithelial ovarian cancer.

Methods From January 2018 to August 2022, 1209 eligible ovarian cancer patients were enrolled. There were two 
subjects in this study: all patients (n = 1209) and patients with the five major histological subtypes (n = 1039). After 
image segmentation manually, radiomics features were extracted and some clinical characteristics were added. Nine 
feature selection methods were used to select the optimal predictive features. Seven classifiers were carried out to 
construct models. Choose the combination with the best predictive performance as the final result.

Results As for low-grade serous carcinoma, endometrioid carcinoma, and clear cell carcinoma, the models yields 
AUCs below 0.80 in the 10-fold cross-validation in the two groups. As for mucinous carcinoma, the AUCs were 
0.83(95%CI, 0.74–0.93) and 0.89(95%CI, 0.83–0.95) in the validation cohorts and 0.80(95%CI, 0.73–0.87) and 0.86(95%CI, 
0.78–0.94) in the 10-fold cross-validation in the two groups, respectively. As for high-grade serous carcinoma 
(HGSC), the models showed AUCs of 0.87(95%CI, 0.83–0.91) and 0.85(95%CI, 0.81–0.89) in the validation cohorts and 
0.87(95%CI, 0.85–0.89) and 0.84(95%CI, 0.81–0.87) in the 10-fold cross-validation in the two groups, respectively, and 
exhibited high consistency between the predicted results and the actual outcomes, and brought great net benefits 
for patients.

Conclusions The ultrasound-based radiomics models in discriminating HGSC and non-HGSC showed good 
predictive performance, as well as high consistency between the predicted results and the actual outcomes, and 
brought significant net benefits for patients.
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Background
Ovarian cancer (OC) has the highest mortality among 
malignant tumours of female reproductive system [1], 
with about 52, 100 new cases and 22, 500 cancer-related 
deaths annually in China [2]. Epithelial ovarian cancers 
(EOCs) account for more than 85% of all OCs, while 
germ cell and sex cord stromal cell derived OCs account 
for the remaining cases. EOCs are not a singular disease 
entity which can be further divided into five major histo-
logical subtypes, including high-grade serous carcinoma 
(HGSC), mucinous carcinoma (MC), clear cell carcinoma 
(CC), endometrioid carcinoma (EN), and low-grade 
serous carcinoma (LGSC), based on their histopathologi-
cal and immunohistochemical characteristics, as well as 
the inherent molecular characteristics [3]. Their manage-
ment and prognosis vary widely by subtype and stage [4]. 
The current treatment standard for EOCs is primary deb-
ulking surgery (PDS) or internal debulking surgery (IDS) 
following neoadjuvant chemotherapy (NACT) [5, 6]. The 
chemotherapy regimens and biological behaviors differ 
among different subtypes. MC, CC, EN, and LGSC are 
characterized by low invasiveness, insensitivity to che-
motherapy, and better prognosis, while HGSC is highly 
invasive, sensitive to chemotherapy, and associated with 
poorer prognosis [7, 8]. The distinction between specific 
subtypes of ovarian cancer is beneficial to the develop-
ment of precise medicine.

Nowadays, the diagnosis of ovarian cancer sub-
types relies on pathology and still requires experienced 
pathologists, making it a challenging task. To reduce 
dependence on pathology, especially in the absence of 
pathological results, interventions targeting subtypes are 
necessary for ovarian cancer patients. Patients with ovar-
ian cancer typically undergo imaging examinations and 
serum tumour biomarker detection. Ultrasound (US) is 
the most basic imaging modality, with advantages such 
as ease of use, radiation-free, and low cost. Currently, 
young ultrasound physicians, aided by guidelines and 
ultrasound experts, find it no longer difficult to distin-
guish benign and malignant ovarian adnexal masses [9, 
10]. However, more imaging information is difficult to be 
detected by the naked eyes, and accurately identifying the 
subtypes of ovarian cancer is challenging. Scholars are 
attempting to utilize limited data to extract more infor-
mation and have made progress in studying the differ-
entiation of ovarian cancer subtypes from macroscopic 
and microscopic perspectives. Seven supervised machine 
learning classifiers based on 32 parameters commonly 
available from peripheral blood tests and age were able 
to predict the five major histological subtypes [11]. Dis-
tinct transcriptional programs stratify ovarian cancer 
cell lines into the five major histological subtypes [12]. 
Klein, O. et al. used Matrix-assisted laser desorption/
ionization imaging mass spectrometry combined with 

morphological features of protein expression to distin-
guish histological subtypes of EOCs from tissue microar-
rays by linear and nonlinear machine learning methods 
by analyzing Formalin-fixed-paraffin-embedded tissues 
[13].

Computational approaches have been proposed using 
radiomics in order to assess tumour heterogeneity [14]. 
The quantitative features extracted from digital medical 
images are mineable data, and the process of convert-
ing images to high-throughput data is termed radiomics, 
which is motivated by the concept that biomedical 
images may contain underlying pathophysiology infor-
mation and has the potential to quantitatively measure 
the heterogeneity of intra- and intertumours [15]. A 
study on renal cancer has showed that computed tomog-
raphy (CT) texture features, such as entropy, mean of the 
positive pixels, and standard deviation were significantly 
associated with the subtype (clear vs. non-clear, P < 0.001) 
[16]. In patients with primary lung adenocarcinoma, 
there is indisputable evidence for intratumoral hetero-
geneity on routinely obtained diagnostic CT images. 
For example, shape complexity can be captured by con-
vexity and density variation can be captured by entropy 
ratio [17]. As for ovarian cancer, US-based radiomics 
have achieved good diagnostic performance in the dif-
ferentiation between type I and type II ovarian cancers 
[18, 19]. Specifically, type I ovarian cancer includes MC, 
CC, EN, LGSC, and malignant Brenner tumour, while 
type II ovarian cancer comprises HGSC, carcinosar-
coma, and undifferentiated carcinoma, according to the 
World Health Organization classification of tumours of 
female reproductive organs published in 2014 [20]. To 
our knowledge, no studies have been conducted to distin-
guish specific subtypes of ovarian cancer by far, whether 
radiomics based on US, CT, or magnetic resonance imag-
ing (MRI).

This research developed and validated US-based 
radiomics models to distinguish specific subtypes of 
ovarian cancer. In addition, we assessed the consistency 
between the prediction models and the actuality through 
calibration curves and evaluated the clinical value of the 
models based on calculating the net benefit (NB) at dif-
ferent threshold probabilities by decision curve analysis 
(DCA).

Methods
Patients
This retrospective study was conducted using consecu-
tive data from Shengjing Hospital of China Medical 
University from January 2018 to August 2022. It was con-
ducted in accordance with the Declaration of Helsinki 
and approved by the ethics committee of Shengjing hos-
pital. Clinical trial number: not applicable. The require-
ment for patients’ informed consent was waived owing 
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to the retrospective study design. The inclusion criteria 
were as follows: (1) patients with pathological confirma-
tion of ovarian cancer after biopsy or surgery and his-
tological subtypes of ovarian cancer identified; and (2) 
patients whose US and serum tumour biomarker exami-
nation were performed within 14 days before biopsy or 
surgery. The exclusion criteria were as follows: (1) no 
available US images (n = 129); (2) poor images quality 
(n = 40); (3) not detected by US (n = 8); (4) no available 
serum tumour biomarkers (n = 33); (5) with a history of 
chemotherapy or radiotherapy (n = 15); (6) accompanied 
with other tumour (n = 40); and (7) pregnant (n = 3). All 
histopathological findings were confirmed by patholo-
gists with more than 10 years of experience in ovarian 
pathology. The gold standard references of this study 
were based on the results of histopathological findings. 
Finally, 1209 patients enrolled in this study.

There were two subjects in this study: all patients 
(n = 1209) and patients with the five major histologi-
cal subtypes (n = 1039). Eligible patients were randomly 
divided into a training cohort (n = 846) and a validation 
cohort (n = 363) in a 7:3 ratio for all patients, and a train-
ing cohort (n = 727) and a validation cohort (n = 312) in 
a 7:3 ratio for patients with the five major histological 
subtypes. Histological subtypes of all patients include: 
HGSC, MC, CC, EN, LGSC, and others. The five major 
histological subtypes include: HGSC, MC, CC, EN, and 
LGSC. The study of histological subtypes was in the form 
of binary classification.

US images acquisition and characteristics collection
US examinations of ovarian adnexal masses were per-
formed using Philips iU22 (Netherlands), Philips EPIQ 5 
(Netherlands), Toshiba Aplio 400 (Japan), Toshiba Aplio 
500 (Japan), GE LOGIQ E9 (USA), and SuperSonic Imag-
ine Aixplorer (France). Trans-vaginal ultrasonography 
was preferred, with trans-abdominal ultrasonography 
used if the patient had no sexual history or if the mass 
was huge. When multiple masses were present, the most 

complex one was analysed. All images were recorded 
in the Picture Archiving and Communication System 
(PACS) in BMP format.

Our selection of parameters is based on guideline rec-
ommendations and current research evidences. Accord-
ing to NCCN clinical practice guidelines in oncology 
[21], tumour biomarkers such as CA-125, CEA and 
CA-19-9 are recommended. HE4 is considered the most 
promising ovarian cancer tumour biomarker, which is 
not expressed in normal ovarian epithelial cells, but is 
expressed 100% in endometrioid epithelial ovarian cancer 
and 93% in serous epithelial ovarian cancer [22]. CA-72-4 
is now widely used in the detection of gastric and ovar-
ian cancers [23–25]. AFP is a useful tumour biomarker, 
because it is elevated in almost 100% of malignant yolk 
sac tumour, and may also be present in other germ cell 
tumour [26], which may suggesting that the tumour 
originated from germ cells rather than epithelial cells. 
In addition, our hospital is a general hospital with excel-
lent medical resources to provide the above-mentioned 
ovarian tumour biomarkers for patients with suspected 
ovarian cancer, so as to facilitate the early detection and 
treatment of the disease. Clinical characteristics includ-
ing age, histological subtypes, alpha-fetoprotein (AFP), 
carcinoembryonic antigen (CEA), carbohydrate antigen 
125 (CA-125), carbohydrate antigen 19 − 9 (CA-19-9); 
carbohydrate antigen 72 − 4 (CA-72-4), and human epi-
didymis protein 4 (HE4) levels were collected from the 
Hospital Information System (HIS).

Image segmentation
We chose gray scale US images showing the plane with 
maximal dimension and its orthogonal plane (two images 
per patient). Use PyCharm to convert BMP format into 
JPEG format. Then, the patient’s images and clinical data 
were imported into the Darwin Scientific Research Plat-
form (Beijing Yizhun Intelligent Technology Co., China) 
and used the platform to delineat the Region of inter-
ests (ROIs). The work flow is show Fig. 1. The ROIs were 

Fig. 1 The workflow of this study
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manually delineated by a junior radiologist with five years 
of experience and reviewed by a senior radiologist with 
more than 20 years of experience. Both radiologists were 
blinded to patients’ information. To ensure reproducibil-
ity and accuracy, discrepancies were solved through con-
sultation and resegmented the image until a consensus 
was reached.

Feature extraction and normalization
The platform mentioned above was used to extract 
radiomics features. The original features contain first-
order, shape, and texture features extracted from original 
images. Furthermore, eight filters, including exponential, 
gradient, local binary pattern, logarithm, square, square 
root, wavelet, and Laplacian of Gaussian, were used to 
generate transformed images. Except shape features, 
both first-order and texture features can be extracted 
from transformed images. Texture features can describe 
the heterogeneity of the tumours, including gray level 
co-occurrence matrix (GLCM), gray level dependence 
matrix (GLDM), gray level run-length matrix (GLRLM), 
gray level size zone matrix (GLSZM), and neighbour-
ing gray tone difference matrix (NGTDM). Z-score nor-
malization was used to reduce potential effects related 
to various parameters. The formula was as follows: z = 
(x-µ)/σ, where x refers to the original value, µ refers to 
the mean value, and σ refers to the standard deviation.

Feature selection and model construction
To reduce computational complexity and improve clas-
sification accuracy, nine feature selection methods, 
including variance threshold filter, optimal feature fil-
ter (number), optimal feature filter (percentage), select-
ing based on saliency, selecting from model, recursive 
elimination, stability selection, minimum redundancy 
maximum relevance (MRMR), and fast correlation-
based filter were used to select the optimal predictive 
features from all features. Seven classifiers were carried 
out to construct models, including K-nearest neighbor 
(KNN), support vector machine (SVM), logistic regres-
sion (LR), decision tree (DT), gradient boosting decision 
tree (GBDT), random forest (RF), and extreme gradient 
boosting (XGBOOST). The nine feature selection meth-
ods and the seven classifiers were combined to make a 
total of 63 combinations. Choose the combination with 
the best predictive performance as the final result.

Model evaluation and validation
The predictive performance of the models was fur-
ther tested in the internal validation cohort using the 
same thresholds determined in the training cohort. The 
receiver operating characteristic (ROC) curves were 
plotted. The area under the curve (AUC), sensitivity, 
specificity, and accuracy of the models were calculated. 

Calibration curves were applied to assess the consistency 
between the prediction models and the actuality, both in 
the training and the validation cohorts. DCA was carried 
out to evaluate the clinical value of the models based on 
calculating the net benefit at different threshold proba-
bilities. The 10-fold cross-validation method was used to 
verify the predictive performance of the models.

Statistical analysis
R software version 4.1.3 and IBM SPSS Statistics ver-
sion 26.0 were used for analysis. The counting data were 
expressed in n (%). The metrological data of this study 
were shown as skewed distribution by Kolmogorov-
Smirnov tests, and were displayed as M (Q1, Q3). 
Chi-square tests were used to analyze the categorical 
variables. Mann-Whitney U tests were used to analyze 
the continuous variables. A two-sided P value < 0.05 was 
considered statistically significant.

Results
Clinical and histopathological characteristics
The results of clinical and histopathological characteris-
tics in the group of all patients and the group of patients 
with the five major histological subtypes are shown 
in Table  1. The number of patients included in the two 
groups were 1209 and 1039, respectively. The most com-
mon subtypes in the five major histological subtypes 
were HGSC, with a number of 645, followed by CC with 
133, EN with 110, MC with 79, and LGSC with 72 in 
this study. The median age in both groups was 54 years. 
Patients with the five major histological subtypes had 
higher expression of serum tumour biomarkers than all 
patients in terms of CEA, CA-125, CA-19-9, CA-72-4, 
and HE4, except AFP. The comparisons of clinical char-
acteristics among different subtypes are shown in addi-
tional file 1. All clinical characteristics were significantly 
different between HGSC and non-HGSC (P < 0.05), 
except AFP in the group of patients with the five major 
histological subtypes (P > 0.05). All clinical characteristics 
were significantly different between MC and non-MC 
(P < 0.05), except AFP and CA-72-4 in the two groups 
(P > 0.20). All clinical characteristics were significantly 
different between CC and non-CC (P < 0.05), except age 
and CEA in the two groups (P > 0.05). Age, CEA, and 
CA−19−9 differed significantly between EN and non-EN 
in the two groups (P < 0.05). There were significant dif-
ferences between LGSC and non-LGSC in terms of age 
and CA−72−4 in the two groups and HE4 in the group 
of patients with the five major histological subtypes 
(P < 0.05).

Predictive performance of the models
The distribution of subtypes was rational between the 
training cohort and the validation cohort, both in the 
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group of all patients and the group of patients with the 
five major histological subtypes (all P > 0.20), as is shown 
in Table 2. Construction and the predictive performance 
of the models is shown in Table 3. As for LGSC, in the 
training cohort, the combination of stability selection 
and LR yielded AUCs of 0.71 and 0.76, respectively, in the 
two groups, showing a poor predictive performance. As 
for EN, models showed AUCs of 0.83 and 0.80, respec-
tively, in the training cohort, but showed AUCs of 0.67 
and 0.69, respectively, in the validation cohort. As for 
CC, the AUCs were 0.80 and above both in the training 
cohort and the validation cohort, with relatively lower 
AUCs of 0.76 and 0.77, respectively, in the 10-fold cross-
validation. Furthermore, the specificity of the group of 
all patients was only 0.70 and the sensitivity of the group 
of patients with the five major histological subtypes was 
only 0.70 in the validation cohort, showing an unbal-
anced diagnostic efficiency. As for MC and HGSC, the 
AUCs in the training cohort were 0.9 and above, and in 
the validation cohort and 10-fold cross-validation were 

0.8 or above, with a relatively higher sensitivity, speci-
ficity, and accuracy. Moreover, the comnination of the 
feature selection method and the classifier was the same 
which was recursive elimination and GBDT that could 
distinct HGSC and non-HGSC effectively in the two 
groups. ROC curves of the models in the training cohort 
and the validation cohort are shown in Fig.  2 and ROC 
curves in the 10-fold cross-validation are shown in Fig. 3.

Calibration and DCA of the models
Calibration curves of the models in the training cohort 
and the validation cohort are depicted in Fig. 4. Calibra-
tion curves displayed the consistency between the pre-
diction models and the actuality in discriminating HGSC 
and non-HGSC was favorable, both in the group of all 
patients (Fig. 4A) and the group of patients with the five 
major histological subtypes (Fig.  4C). Compared with 
the calibration of the model in discriminating HGSC and 
non-HGSC, the calibration of the model in discriminat-
ing MC and non-MC in the group of all patients (Fig. 4B) 

Table 1 Clinical and histopathological characteristics
Characteristics Normal range Expressed All patients (n = 1209) Patients with the five major histological subtypes (n = 1039)
Age - M (Q1, Q3) 54.00 (47.00, 61.00) 54.00 (48.00, 61.00)
AFP 0–9 ng/mL M (Q1, Q3) 3.06 (1.95, 4.13) 2.94 (1.90, 3.98)
CEA 0–5 ng/mL M (Q1, Q3) 1.39 (0.88, 2.28) 1.41 (0.89, 2.30)
CA-125 0–35 U/mL M (Q1, Q3) 118.10 (34.60, 562.85) 158.30 (44.87, 705.60)
CA-19-9 0–37 U/mL M (Q1, Q3) 13.52 (7.13, 27.60) 14.39 (7.48, 29.29)
CA-72-4 0−6.9 U/mL M (Q1, Q3) 5.77 (2.02, 17.82) 6.98 (2.34, 21.83)
HE4 < 140 pmol/L M (Q1, Q3) 110.50 (59.54, 352.50) 137.70 (68.57, 387.74)
Subtypes - n (%) 1209 (100.00%) 1039 (100.00%)
 HGSC - n (%) 645 (53.35%) 645 (62.08%)
 MC - n (%) 79 (6.53%) 79 (7.60%)
 CC - n (%) 133 (11.00%) 133 (12.80%)
 EN - n (%) 110 (9.10%) 110 (10.59%)
 LGSC - n (%) 72 (5.96%) 72 (6.93%)
 others - n (%) 170 (14.06%) 0 (0.00%)
Notes: AFP, alpha-fetoprotein; CEA, carcinoembryonic antigen; CA-125, carbohydrate antigen 125; CA-19-9, carbohydrate antigen 19 − 9; CA-72-4, carbohydrate 
antigen 72 − 4; HE4, human epididymis protein 4; HGSC, high-grade serous carcinoma; MC, mucinous carcinoma; CC, clear cell carcinoma; EN, endometrioid 
carcinoma; LGSC, low-grade serous carcinoma

Table 2 The distribution of subtypes between the training cohort and the validation cohort
Group All patients (n = 1209) P Patients with the five major histological subtypes (n = 1039) P

Training cohort Validation cohort Training cohort Validation cohort
HGSC 451 (53.31%) 194 (53.44%) 0.966 451 (62.04%) 194 (62.18%) 0.965
Non-HGSC 395 (46.69%) 169 (46.56%) 276 (37.96%) 118 (37.82%)
MC 55 (6.50%) 24 (6.61%) 0.943 55 (7.57%) 24 (7.69%) 0.944
Non-MC 791 (93.50%) 339 (93.39%) 672 (92.43%) 288 (92.31%)
CC 93 (10.99%) 40 (11.02%) 0.989 93 (12.79%) 40 (12.82%) 0.990
Non-CC 753 (89.01%) 323 (88.98%) 634 (87.21%) 272 (87.18%)
EN 77 (9.10%) 33 (9.09%) 0.995 77 (10.59%) 33 (10.58%) 0.994
Non-EN 769 (90.90%) 330 (90.91%) 650 (89.41%) 279 (89.42%)
LGSC 50 (5.91%) 22 (6.06%) 0.919 50 (6.88%) 22 (7.05%) 0.920
Non-LGSC 796 (94.09%) 341 (93.94%) 677 (93.12%) 290 (92.95%)
Notes: HGSC, high-grade serous carcinoma; MC, mucinous carcinoma; CC, clear cell carcinoma; EN, endometrioid carcinoma; LGSC, low-grade serous carcinoma
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and the group of patients with the five major histological 
subtypes (Fig.  4D) demonstrated poor agreement. DCA 
curves of the models in the training cohort and the vali-
dation cohort are presented in Fig. 5. The model in dis-
criminating HGSC and non-HGSC could bring more net 
benefits than the model in discriminating MC and non-
MC both in the two groups. 

Feature importance
The importance of the features in the models in dis-
criminating HGSC and non-HGSC are shown in Fig.  6. 
Of the 2250 radiomics features and 7 clinical features, 7 
potential predictors that were most relevant to the pre-
diction of HGSC and non-HGSC were selected based on 
recursive elimination. The radiomics features included 
Lbp−2D_glrlm_LongRunHighGrayLevelEmphasis , 
Lbp−2D_glrlm_RunVariance, and Lbp−2D_glrlm_Lon-
gRunEmphasis and clinical features included HE4, 
CA-19-9, AFP, and CA-125 in the group of all patients 
(Fig.  6A). The radiomics features included original_
shape2D_MaximumDiameter, original_shape2D_Sphe-
ricity, exponential_glszm_SizeZoneNonUniformity, and 
exponential_gldm_SmallDependenceHighGrayLevelEm-
phasis and clinical features included HE4, CA-19-9, and 
AFP in the group of patients with the five major histo-
logical subtypes (Fig. 6B).

Discussion
There were two subjects in this study: all patients 
(n = 1209) and patients with the five major histologi-
cal subtypes (n = 1039). The results showed that the 
conclusions of the two subjects were consistent. As for 
LGSC, the AUC in the training cohort is low. As for EN, 
the AUC in the training cohort is 0.8 or higher, but the 
AUC in the validation cohort is low. The diagnostic effi-
ciency of the training and validation cohort is good for 
the discrimination of CC, MC, and HGSC. However, the 
results of 10-fold cross-validation showed that the AUC 
of the model for the discrimination of CC was below 0.8. 
Finally, considering the diagnostic efficiency, the model 
for the discrimination of MC and HGSC is relatively suc-
cessful. Further considering the consistency between the 
prediction models and reality, as well as the NBs brought 
to patients, the performance of MC is poor, while HGSC 
is excellent in comparison. Therefore, after comprehen-
sive analysis, this study concludes that the model for 
discriminating HGSC is successful. The model used to 
distinguish between HGSC and non-HGSC achieved 
AUCs of 0.98 and 0.87 in the training and validation 
cohorts, respectively, in the group of all patients, and 
the model achieved AUCs of 0.98 and 0.85 in the train-
ing and validation cohorts, respectively, in the group of 
patients with the five major histological subtypes. These 
results are superior to those reported by Wang et al. Ta
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[27], whose logistic regression model based on contrast-
enhanced CT in discriminating HGSC and non-HGSC 
achieved AUCs of 0.837 and 0.836 for the training and 
testing cohorts, respectively. Currently, there have been 
many studies reporting the use of machine learning to 
distinguish between type I and type II ovarian cancers 
has achieved satisfactory outcomes. Zhang, H. et al. 
[28] retrospectively analyzed preoperative MRI images 
from 286 patients with pathologically proven ovar-
ian tumours to distinguish type I and type II EOC and 
obtained satisfactory results with an accuracy of 93% in 
the leave-one-out cross-validation cohort and 84% in 
the independent validation cohort. Jian, J. et al. [29] con-
ducted a MR image-based radiomics multicenter study 

for differentiating between type I and type II EOC. The 
results exhibited advantages of utilizing multi-parametric 
MRI and the combined model performed well both in the 
internal and external validation cohorts with AUCs of 
0.806 and 0.847, respectively. Tang, Z. P. et al. [18] con-
ducted a study about ultrasound-based radiomics for dif-
ferentiating between type I and type II EOC. The AUCs 
of the training cohort and testing cohort in the radiomics 
model and comprehensive model were 0.817 and 0.731 
and 0.982 and 0.886, respectively.

To the best of our knowledge, there is no machine 
learning research to distinguish specific subtypes of ovar-
ian cancer based on radiomics, no matter whether US, 
CT, or MRI. But there have been many deep learning 

Fig. 3 ROC curves of the models in the 10-fold cross-validation. Notes: A-E, the subject is all patients; F-J, the subject is patients with the five major histo-
logical subtypes. A, F: ROC curves of the models in discriminating HGSC and non-HGSC. B, G: ROC curves of the models in discriminating MC and non-MC. 
C, H: ROC curves of the models in discriminating CC and non-CC. D, J: ROC curves of the models in discriminating EN and non-EN. E, J: ROC curves of the 
models in discriminating LGSC and non-LGSC. HGSC, high-grade serous carcinoma; MC, mucinous carcinoma; CC, clear cell carcinoma; EN, endometrioid 
carcinoma; LGSC, low-grade serous carcinoma

 

Fig. 2 ROC curves of the models in the training cohort and the validation cohort. Notes: A-E, the subject is all patients; F-J, the subject is patients with the 
five major histological subtypes. A, F: ROC curves of the models in discriminating HGSC and non-HGSC. B, G: ROC curves of the models in discriminating 
MC and non-MC. C, H: ROC curves of the models in discriminating CC and non-CC. D, J: ROC curves of the models in discriminating EN and non-EN. E, J: 
ROC curves of the models in discriminating LGSC and non-LGSC. HGSC, high-grade serous carcinoma; MC, mucinous carcinoma; CC, clear cell carcinoma; 
EN, endometrioid carcinoma; LGSC, low-grade serous carcinoma
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studies aiming to differentiate specific subtypes of ovar-
ian cancer. Some studies focused on US, CT or MRI 
images, while others concentrated on Hematoxylin-Eosin 
stained whole-slide pathology images. For examples, the 
results of a study by Jung, Y. et al. [30] showed a convolu-
tional neural network with a convolutional autoencoder 
to remove disturbances such as calipers and annotations 
on the ultrasound images, which cannot be removed 
manually, and generate new pixels which are compared 

with the surrounding pixels without a sense of heteroge-
neity. Then, the convolutional neural network sorts ovar-
ian neoplasms into five classes: normal, cystadenoma, 
mature cystic teratoma, endometrioma, and malignant 
tumor. A structured support vector machine formulation 
is defined and used to combine the salient slide images 
information from multiple magnifications while simulta-
neously operating within the latent variable framework 
[31]. It can automatically recognized HGSC, CC and MC 

Fig. 4 Calibration curves of the models in the training cohort and the validation cohort. Notes: A, B: the subject is all patients. C, D: the subject is patients 
with the five major histological subtypes. A, C: Calibration curves of the models in discriminating HGSC and non-HGSC. B, D: Calibration curves of the 
models in discriminating MC and non-MC. HGSC, high-grade serous carcinoma; MC, mucinous carcinoma
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cases but misclassified EN and LGSC as HGSC which is 
the most prevalent subtype, achieving an average multi-
class classification accuracy of 90%. BenTaieb, A. et al. 
observed that salient regions from CC cases often con-
tain papillary-looking areas while salient patches from 
MC cases often show tissue foldings. Wu, M. et al. [32] 
employed a Deep Convolutional Neural Networks 
(DCNN) which consists of five convolutional layers, 
three max pooling layers, and two full reconnect layers to 
automatically classify the different subtypes (serous car-
cinoma, mucinous carcinoma, endometrioid carcinoma, 
and clear cell carcinoma) of ovarian cancers through the 
Hematoxylin-Eosin stained tissue sections at the cytolog-
ical level. The testing results are obtained by the method 
of 10-fold cross-validation, showing that the accuracy of 
the classification models has reached to 78.20% by using 
augmented images as training data. Farahani, H. et al. [33] 

trained four different artificial intelligence algorithms 
based on convolutional neural networks to automati-
cally classify histopathology subtypes of ovarian tumors 
according to the Hematoxylin-Eosin stained whole-slide 
pathology images. The best-performing model achieved a 
concordance of 81.38% and Cohen’s kappa of 0.7378 on 
the training dataset, and a concordance of 80.97% and 
Cohen’s kappa of 0.7547 on the external dataset.

The model for discriminating between HGSC and non-
HGSC is composed of a feature selection method using 
recursive elimination and a GBDT classifier. Recursive 
elimination is a commonly used feature selection method 
that reduces the risk of model overfitting and improves 
the model’s generalization ability by iteratively remov-
ing unimportant features [34]. GBDT is an ensemble 
learning method based on decision trees, which builds 
a strong classifier by iteratively training weak classifiers 

Fig. 6 The importance of the features in the models. Notes: A: The importance of the features in the model in discriminating HGSC and non-HGSC in all 
patients. B: The importance of the features in the model in discriminating HGSC and non-HGSC in the patients with the five major histological subtypes. 
HGSC, high-grade serous carcinoma

 

Fig. 5 DCA curves of the models in the training cohort and the validation cohort. Notes: A-D: the subject is all patients; E-H: the subject is patients with 
the five major histological subtypes. A, B, E, F: DCA curves of the models in discriminating HGSC and non-HGSC. C, D, G, H: DCA curves of the models in 
discriminating MC and non-MC. A, C, E, G: DCA curves of the models in the training cohort. B, D, F, H: DCA curves of the models in the validation cohort. 
HGSC, high-grade serous carcinoma; MC, mucinous carcinoma
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and combining them. GBDT can capture complex non-
linear relationships in datasets and has high accuracy in 
classification and regression tasks. It is also robust to out-
liers and noise in the dataset, making it less susceptible 
to interference [35]. The radiomics features of the model 
in discriminating HGSC and non-HGSC included two 
original features and five texture features. Specifically, 
the original features in this study were shape-based and 
included MaximumDiameter and Sphericity. This finding 
could be associated with the different growth patterns. 
Non-HGSC ovarian cancer is characterized by a slower-
growing and less aggressive behavior, typically con-
fined to the ovary. In contrast, HGSC ovarian cancer is 
known for its highly aggressive nature, resulting in rapid 
and irregular tumor growth patterns that are less likely 
to be small and spherical. In a study of Wang, M. et al. 
[27], the values of sphericity were significantly higher in 
non-HGSC than HGSC (P < 0.001). Similarly, in an MRI 
radiomics study [29], sphericity was the optimal selected 
feature for discriminating HGSC and non-HGSC. The 
reason for excluding first-order features may be that they 
describe the distribution of values of individual voxels 
without considering their spatial relationships. In con-
trast, texture features describe relationships between 
voxels and may explain the heterogeneity of intra- and 
intertumours. In this study, texture features, including 
LongRunHighGrayLevelEmphasis, RunVariance, Lon-
gRunEmphasis, SizeZoneNonUniformity, and SmallDe-
pendenceHighGrayLevelEmphasis, were extracted from 
transformed images by two filters, which were exponen-
tial and local binary pattern. The clinical features used in 
the model to differentiate between HGSC and non-HGSC 
included HE4, CA-19-9, AFP, and CA-125. These results 
are partly consistent with findings from previous stud-
ies by other researchers. For instance, seven supervised 
machine learning classifiers based on 32 parameters com-
monly available from peripheral blood tests and age were 
able to predict HGSC of EOC with an accuracy of 75.8% 
and an AUC of 0.785 which is manifested as a relatively 
higher CA-125 and a relatively lower CA-19-9, and could 
also predict MC of EOC with an accuracy of 96.0% and 
an AUC of 0.728, showing a relatively higher CEA. The 
underperformance with regard to CC with an accuracy of 
67.7% and an AUC of 0.650 and EN with an accuracy of 
55.6% and an AUC of 0.597 may result from the lack of 
distinct characteristics at the level of serum biomarkers 
[11]. The results of a study by Yao, F. et al. [19] showed 
that the clinical model that distinguished between type I 
and type II EOC including age, CA125, and CA199 sug-
gested that patients with type I were younger than those 
with type II, with lower levels of CA125 and higher levels 
of CA199. In the training cohort, the AUCs of the com-
bined model was 0.83. In the testing cohort, the AUC was 
0.82.

Although the purpose of this study is to predict the five 
major histological subtypes of epithelial ovarian cancer, 
the purpose of the differential diagnosis is to better treat 
ovarian cancer. When it comes to the treatment of ovar-
ian cancer, one topic that we have to discuss is lymph-
adenectomy in ovarian cancer. Due to the lack of early 
screening, more than 80% of women are diagnosed with 
EOC when it is already at stages III and IV [36, 37]. Lym-
phatic vessels represent one of the main pathways for the 
spread of most gynecological malignancies, and patients 
with advanced ovarian cancer have a high incidence of 
both pelvic and para-aortic lymph node metastases [38, 
39]. Although there is no first level evidence in literature 
that lymphadenectomy has survival benefits for early 
ovarian cancer, trials [40, 41] have indicated a signifi-
cant survival advantage in patients undergoing lymphad-
enectomy as part of surgical debulking in patients with 
advanced ovarian cancer. Results from a randomized 
prospective trial [42] showed that systematic lymphad-
enectomy significantly improved progression-free sur-
vival and reduced recurrence rates, but did not improve 
overall survival. The lymphadenectomy in ovarian neo-
plasms trial [43] reports no better outcomes and higher 
complication and mortality rates associated with lymph-
adenectomy. Even if performed by expert hands, lymph-
adenectomy has a cost in terms of longer operative time, 
blood loss, higher rates of transfusions, and intensive 
unit care. In the absence of high-level study on nodes, 
the authoritative guidelines [21, 44] recommended that 
systematic lymphadenectomy should not be regarded as 
a standard procedure. Currently, the removal of bulky 
lymph nodes is carried out as part of an attempt to 
achieve maximum cytoreduction. Resection of clinically 
negative nodes is not required.

To the best of our knowledge, this is the first research 
to utilize machine learning to distinguish specific sub-
types of ovarian cancer based on radiomics, no matter 
whether US, CT, or MRI. In addition to analyzing AUC, 
sensitivity, specificity, and accuracy of the models, we 
also assessed the consistency between the prediction 
models and the actuality through calibration curves and 
evaluated the clinical value of the models based on cal-
culating the net benefit at different threshold probabili-
ties by DCA. Furthermore, there were two subjects in 
our study: all patients and patients with the five major 
histological subtypes, and conclusions drawn from the 
two subjects were the same, indirectly demonstrating 
the reliability of the models. However, there were sev-
eral limitations in our study. First, it included a relatively 
small number of patients retrospectively collected from 
a single centre with inevitable selection bias. And this 
study used 10-fold cross-validation instead of external 
validation to verify the predictive performance of the 
models. This is a preliminary exploratory study, and the 
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model in discriminating HGSC and non-HGSC could be 
developed using prospectively collected data from mul-
tiple centres and externally validated to demonstrate its 
generalizability and robustness. Second, the delineation 
of ROI was manually performed, which was time-con-
suming and prone to error. It could be overcome by an 
automated segmentation artificial intelligence system. 
Third, most patients did not undergo genetic testing, 
so we did not consider this feature of genetics owing to 
the retrospective study design. However, it is currently 
known that genes such as BRCA1/2, RAD51C, RAD51D, 
BRIP1, PALB2, ATM, and Lynch syndrome-related genes 
(MLH1, MSH2, MSH6, PMS2, EPCAM) that increase the 
risk of epithelial ovarian cancers, and STK11 germline 
mutations are mainly associated with the development 
of ovarian Sertoli-Leydig cell tumours [45, 46]. We hope 
that further research could incorporate genes related to 
ovarian cancer subtyping.

Conclusions
This research developed and validated US-based 
radiomics models to distinguish specific subtypes of 
ovarian cancer. The results demonstrated it seems dif-
ficult for US-based radiomics models to distinguish CC, 
EN, and LGSC. The diagnostic performances of the mod-
els in discriminating HGSC and MC were satisfactory, 
both in the internal validation and 10-fold cross-vali-
dation. Especially in discriminating HGSC, the models 
exhibited high consistency between the predicted results 
and the actual outcomes, and brought great net benefits 
for patients.
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