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Abstract
Background  Diabetic retinopathy is a major cause of vision loss worldwide. This emphasizes the need for early 
identification and treatment to reduce blindness in a significant proportion of individuals. Microaneurysms, 
extremely small, circular red spots that appear in retinal fundus images, are one of the very first indications of diabetic 
retinopathy. Due to their small size and weak nature, microaneurysms are tough to identify manually. However, 
because of the complex background and varied lighting factors, it is challenging to recognize microaneurysms in 
fundus images automatically.

Methods  To address the aforementioned issues, a unique approach for MA segmentation is proposed based on the 
CBAM-AG U-Net model, which incorporates Convolutional Block Attention Module (CBAM) and Attention Gate (AG) 
processes into the U-Net architecture to boost the extraction of features and segmentation accuracy. The proposed 
architecture takes advantage of the U-Net’s encoder-decoder structure, which allows for perfect segmentation by 
gathering both high- and low-level information. The addition of CBAM introduces channel and spatial attention 
mechanisms, allowing the network to concentrate on the most useful elements while reducing the less relevant 
ones. Furthermore, the AGs enhance this process by selecting and displaying significant locations in the feature maps, 
which improves a model’s capability to identify and segment the MAs.

Results  The CBAM-AG-UNet model is trained on the IDRiD dataset. It achieved an Intersection over Union (IoU) of 
0.758, a Dice Coefficient of 0.865, and an AUC-ROC of 0.996, outperforming existing approaches in segmentation 
accuracy. These findings illustrate the model’s ability to effectively segment the MAs, which is critical for the timely 
detection and treatment of DR.

Conclusion   The proposed deep learning-based technique for automatic segmentation of micro-aneurysms in 
fundus photographs produces promising results for improving DR diagnosis and treatment. Furthermore, our method 
has the potential to simplify the process of delivering immediate and precise diagnoses.
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Introduction
Diabetes is the primary cause of vision impairment and 
blindness. One common ophthalmic problem that affects 
diabetic people is called diabetic retinopathy (DR). Dia-
betic retinopathy (DR) can be categorized into two 
stages: proliferative diabetic retinopathy (PDR) and non-
proliferative diabetic retinopathy (NPDR). When DR first 
appears, patients may not exhibit any symptoms of visual 
problems. However, as the condition progresses, it can 
result in blindness or vision loss, therefore early detection 
of DR is crucial to preserving patients’ vision. In 90% of 
cases, blindness can be avoided with early identification 
of DR. It is predicted that by 2045, there will be around 
693 million people worldwide who have diabetes, accord-
ing to data from the International Diabetes Federation 
[1]. The first clinical lesions of DR are called microaneu-
rysms (MAs), which appear as reddish, round swellings 
in the capillaries that are either isolated or next to thin 
blood vessels. When assessing the progress of DR, the 
quantity of MAs is crucial. On the other hand, manual 
screening of MAs takes a long time and is trustworthy.

Therefore, computer-aided procedures are highly 
desired to save human labour and increase the accuracy 
of MA counting. A major challenge in medical image 
segmentation is the wide variance in lesions or illnesses’ 
size, shape, and location. In fundus images, MAs are vis-
ible as small, spherical, red dots that span a small num-
ber of pixels, with sizes varying from 15 to 60  μm. The 
four criteria listed below make diagnosing MA in fundus 
imaging difficult. Such as MA is a tiny objective, and the 
separation within the MA and non-MA areas is wildly 
out of proportion. The number of negative samples is 
significantly higher than the number of positive samples 
because the MA and non-MA regions are highly imbal-
anced due to the fundus image’s very tiny fraction of MA, 
as seen in Fig.  1. Furthermore, it is evident that MAs 
only take up a small portion of the fundus image’s pix-
els, which makes them challenging to recognize. Next to 
this, since some MAs are close to the blood vessels and 
resemble miniature blood vessels in both shape and color, 

they are especially vulnerable to interference zones. Fur-
thermore, the classifier is confused by noise from behind 
and microscopic blood vessels because of the similarities 
with MAs. Finally, fundus images with poor contrast and 
hazy borders are full of MAs. Whereas other identical 
noisy zones are quickly and wrongly discovered, these 
MAs were simply ignored [2]. Even for seasoned oph-
thalmologists, manually identifying MAs can be difficult, 
time-consuming, and error-prone due to their small size, 
poor contrast, and amorphous appearance. The intricacy 
of differences in MA appearance prompts us to concen-
trate on creating a strong deep learning-based method 
for MA segmentation [3], which may find application in 
medical environments.

Research contributions
The major contributions of this paper include.

 	• Proposed CBAM-AG-UNet, an enhanced U-Net 
framework for microaneurysm segmentation, which 
integrates the Convolutional Block Attention Module 
(CBAM) in the encoder and decoder to improve the 
feature extraction, and Attention Gates (AG) in skip 
connections to finetune the lesion-specific attributes, 
minimize background noise, and improve the fine 
details.

 	• CBAM in the encoder finds the most critical spatial 
and channel-wise features, enhancing initial feature 
representations, helpful for tiny lesion localization, 
such as microaneurysms (MAs).

 	• The three-fold attention decoding block is created 
with a multi-attention learning mechanism, 
incorporating AG, spatial attention for precise lesion 
localization, and channel attention for lesion-specific 
feature enhancement. This module captures fine-
grained details and broader contextual information, 
significantly improving MA segmentation.

 	• The proposed framework works noticeably better 
than the current state-of-the-art techniques, as 
shown by broad investigations and assessments of 

Fig. 1  Microaneurysms in the fundus image. ​h​t​t​p​s​:​​​/​​/​i​e​e​​e​​-​d​a​​t​a​p​o​​r​​t​.​​o​​​r​g​/​​o​p​​e​​n​-​a​c​​c​​​e​s​s​​/​i​n​d​​​i​a​n​​-​d​​i​a​b​​​e​t​i​​c​-​r​​e​t​​i​n​o​​p​​a​t​​h​y​-​​​i​m​​a​g​e​-​d​a​​t​a​s​e​t​-​i​d​r​i​d
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benchmark datasets. The combination of AG and 
CBAM increases segmentation accuracy, feature 
refinement, and lesion localization, as verified by 
Dice and IoU metrics.

Related works
Flaming et al. [4] and Quellec et al. [5] developed inno-
vative image processing-based methods that can attain 
high accuracies relative to the MA detection challenge. 
These traditional techniques are known to be semiau-
tomatic and to depend on well-crafted visual elements. 
Deep learning techniques can help mitigate this problem 
by systematically acquiring many filters or kernels using 
backpropagation-driven learning. For MA identification, 
Chudzik et al. [6] used patch-based fully convolutional 
neural networks (CNNs). Two pyramid feature extractors 
constitute a hierarchical “T”-shaped pyramid network 
that has recently been suggested in [7] for the detection 
of MAs. Using a shape suppression filter resolves the 
blood vessel interference that lowers the effectiveness of 
MA identification models. An efficient technique to iden-
tify MAs was presented by Zhang et al. [8] and was based 
on the idea of the local Fourier transform.

Other relevant research by authors [9–11], and [12] 
show how the authors have enhanced pre-existing mod-
els like DenseNet and YOLOv4 or used multistage tech-
niques to identify MAs. Nevertheless, MA segmentation 
adds the ability to precisely identify early DR-affected 
regions on the retinal layer. In fundus imagery, there is 
a significant disparity in class between MA and non-
MA regions, form variability, and visualization prob-
lems, accurately segmenting MAs is a challenging task. 
Tan et al. [13] examined the issue of highly unbalanced 
MA segmentation in the fundus images by using a ten-
layer CNN. To provide impressive MA segmentation 
findings concerning specificity, sensitivity, and accuracy, 
the effective U-Net architecture [14, 15] for biomedi-
cal image segmentation has been altered in [16–19], and 
[20]. The incorporation of multiple residual learning as 
well as recurrent convolutional units in [16] and [18] sub-
stantially improved U-Net’s localization capabilities. To 
improve the quality of data sent via a skip connection, 
Xu et al. [19] added a feature fusion block to the encoder 
portion. To capture the finer characteristics of MA seg-
mentation, an improved residual U-Net (ERUNet) that 
uses several up-sampling and down-sampling ways was 
proposed in [17]. Nevertheless, a considerable increase in 
the number of trainable model parameters results from 
these changes to the original U-Net.

It is also evident from the provided performance mea-
surements that the effectiveness of MA segmentation 
needs to be further enhanced. To tackle this difficult task, 
we investigate the idea of visual attention mechanisms 
in this paper. Our studies have shown that selecting a 

low threshold [which relates to a high false positive rate 
(FPR)] for converting the final probability map to binary 
segmentation output can result in improved scores for 
standard metrics like accuracy, sensitivity, and specificity 
in [13–15], and [16]. Jingkun Chen et al. [21] presented 
a new semi-supervised technique that regularizes task-
affinity consistency in the feature maps. An attention 
mechanism, which draws inspiration from the human 
visual system, focuses on the most discriminative areas 
of a deep network to increase its total efficacy [22]. The 
attention modules use a focused-on tasks dynamic selec-
tion mechanism to intelligently evaluate the convolu-
tional features. The highly effective U-Net [14] or the 
subsequent residual U-Net [23] designs employ a skip 
connection to rapidly combine fundamental attributes 
from the contracting path with corresponding high-level 
features in the expansive path. Conversely, a skip con-
nection with an attention component is referred to as an 
attentive-augmented connection, in which high-level fea-
tures are concatenated with attended feature maps, and 
low-level features are adaptively enhanced as they move 
through the attention module [24]. Inspired by the suc-
cess in natural language processing, a standard trans-
former known as Vision Transformer (ViT) with some 
alterations was used for CV in 2020 [25]. A small portion 
of the original image is used to linearly encode a series 
of cropping images that are fed into a ViT. Image patches 
are handled in an NLP framework in the same manner 
as tokens, or words. The transformer architecture has 
recently been used in the biomedical image processing 
field as well. The transformer architecture has recently 
been used in the biomedical image processing field as 
well. The ViT was used for anisotropic 3D medical image 
segmentation by Guo and Terzopoulos [26], with the self-
attention model positioned at the base of the UNet archi-
tecture. Chen et al. [27] combined positional embeddings 
with picture patches to create a dual-channel transformer 
that could provide strong features. In this transformer 
approach, the two channels address tiny and big patches. 
A transformer-based model using a CNN and trans-
former for pathological image classification was proposed 
by Ding et al. [28]. In particular, local feature extraction 
is carried out by the CNN, and the global contextual 
information is extracted by the transformer. TransUNet 
[29] uses a Transformer as an encoder to investigate the 
global context information in medical images to segment 
them. Additionally, a pure Transformer with an encoder-
decoder structure for multi-organ segmentation was 
proposed by Hu Cao et al. [30]. Transformers are incred-
ibly effective at simulating long-range dependencies. But 
they can’t catch local features, which limits their per-
formance. To combine the CNNs and Transformer into 
a new framework, certain recently pertinent techniques 
were used. For medical image segmentation, Li et al. [31] 
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offer a dual encoding-decoding approach. The literature 
makes it clear that there are several problems with MA 
segmentation. One possible way to address the funda-
mental challenges in small and irregularly sized MA seg-
mentation is to incorporate the idea of a visual system of 
attention as part of foundational U-Net design. Jingkun 
Chen et al. [32] proposed dynamic contrastive learning 
for medical image segmentation that leverages class con-
fidence and confusion.

In contrast to previous works, we created a deeper 
CNN, AG (Attention gate), channel and spatial atten-
tion module-based novel triple-attention fundus image 
segmentation methodology that takes into account the 
most recent developments in the attention mechanism to 
address these challenges. In skip connections, the infor-
mation gated from the encoded pathways is utilized to 
distinguish between unnecessary and noisy outcomes 
using AG attention. The spatial attention mechanism 
captures the spatial correlation between features, which 
enhances deep network performance.

Materials and methods
The proposed CBAM-AG-based U-Net framework of 
the MA segmentation includes input image acquisition, 
preprocessing, patch extraction, and augmentation as 
shown in Fig. 2. The function of each block is explained 
as follows.

Dataset
The IEEE Data Port Repository is the public repository 
for obtaining the Indian Diabetic Retinopathy Image 
Dataset (IDRiD dataset), licensed under a Creative Com-
mon Attribution 4.0 license. This data descriptor 1 con-
tains more detailed information regarding the data. We 
adhere to the Porwal et al. utilization of data permis-
sion. This dataset has 81 color fundus images, measur-
ing 4288 × 2848 pixels. Of these, 64 have been employed 
for training and 17 for testing. Ophthalmologists have 
been marked 11,716, 1903, 150, and 3505 related loca-
tions in IDRiD as EX, HE, SE, and MA, respectively. In 
this research work, we concentrate especially on MAs 
because our work is purely related to MA segmentation. 
The total number of images is 81, 64 for training, and 17 
for testing. As mentioned earlier there are 3505 locations 
related to MA. To conduct experiments and replicate the 
comparison approaches on IDRiD, we use training sets 
to train the models and testing sets for testing. To assess 
our CBAM-AG-UNet, we use this dataset and only focus 
on consideration of the pixel-level visual annotations (i.e., 
81).

1 ​h​t​t​p​​s​:​/​​/​i​e​e​​e​-​​d​a​t​​a​p​o​​r​t​.​o​​r​g​​/​o​p​​e​n​-​​a​c​c​e​​s​s​​/​i​n​​d​i​a​​n​-​d​i​​a​b​​e​t​i​​c​-​r​​e​t​i​n​​o​p​​a​t​h​​y​-​i​​m​a​g​e​​-​
d​​a​t​a​s​e​t​-​i​d​r​i​d.

Data pre-processing
Pre-processing is done on the original fundus images 
to improve the quality of the images for training. The 
RGB fundus image’s green channel is used for addi-
tional processing because it has the best contrast. When 
the contrast of the acquired image is excessively low, it 
is challenging to distinguish and isolate the objects of 
importance. Image improvement is thus a crucial stage 
that comes before learning.

The initially collected images (2848 × 4288 × 3) in the 
IDRiD dataset were cropped out (2848 × 3450 × 3) apply-
ing the batch processing approach since they contained 
a black backdrop and unnecessary information. Then, to 
increase the deep learning model’s input size, it is resized 
to a fixed size of 512 × 512 × 3. To offer equally sized 
images for automated analysis, the dataset’s images are 
scaled. This will make the recommended approach more 
efficient and reduce its processing time. This automated 
approach will not work without the help of image scaling. 
Next, we will look at the original fundus image, which has 
three channels and is represented as f (p, q). We will now 
investigate the original fundus image, denoted as f (p, q), 
which is made up of 3 channels: red fr (p, q), green fg p, 
q), and blue fb (p, q) is represented in Eq. (1).

	 f (p, q) = [[[fr (p, q) , fg (p, q) , fb (p, q)] � (1)

{fg ( p, q) has better contrast}
It is evident from examining the fundus image of all 

of the channels that the green channel has a higher con-
trast between the backdrop and the microaneurysms. 
To enhance contrast, the entire image is separated into 
grids that do not overlap the dimensions (8, 8) in CLAHE 
(contrast-limited Adaptive Histogram Equalization). 
Then, each tile is exposed to histogram equalization. The 
greatest amount of contrast improvement that can be 
performed on each grid of the processed image is deter-
mined by the clip limit of CLAHE. The technique known 
as CLAHE [33] is employed to achieve a consistent 
decrease in noise amplification and equalization of inten-
sity. Gamma correction (GAMMA) is performed using 
Eqs.  (2) and (3), respectively, to modify the augmented 
image’s overall brightness and lessen the overexposure 
conditions.

	 fg_clahe_gamma = GAMMA
(
fg_clahe , γ = 0.9

)
� (2)

where

	
GAMMA (R, γ ) =

{(
R

Rmax

)r}
∗ Rmax� (3)

This research displays better denoising performance for 
medical images and effectively eliminates noise using 

https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid
https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid
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a fast Non-Localized Means filter. Next to this patch 
extraction. In many image-processing applications, 
patch extraction is a crucial preprocessing step. It offers 
a collection of locally smaller images, or patches, that are 
chosen at random to represent an image. We first pre-
process the fundus image before proceeding with patch 
extraction. Table 1 shows the number of images used for 
training and testing. This study substitutes patch-based 
training for global image-based training to address data 
scarcity. Regarding the need for pixel-level annotations 
in medical image segmentation, data scientists are the 
most concerned. For actual deep neural network train-
ing, it is therefore always difficult to gather a substan-
tial amount of labeled data, and most techniques that 
employ deeper models tend to perform below expecta-
tions. To a certain extent, certain techniques—like aug-
mentation and transfer learning—can work with less 
data. This method extracts numerous regions from one 
image to deliver multiple instances with more data. 

Microaneurysms are small and sparsely distributed 
lesions that can appear anywhere in the fundus image, 
making region-based detection unreliable. Unlike larger 
lesions that may be localized, microaneurysms do not 
have a fixed position, and an object detection approach 
may fail to capture all instances, leading to missed detec-
tions. To achieve full segmentation, we implemented 
a patch-based method that divided the image into tiny 
regions to ensure that each area could be analyzed iden-
tically. This method ensures that no lesions are ignored 
while maintaining spatial properties. In addition, our 
three-fold attention strategy enhances feature extraction 
to enhance segmentation rather than adding a detection 
stage. Patch-extracted training images have undergone 
data augmentation to increase the diversity of data. Data 
augmentations used are random rotation 900, Horizontal 
and vertical flip.

Table 1  Image distribution for MA segmentation for training and testing
Original images Training images

(512 × 512)
Testing images
(512 × 512)

No. of training samples 
(64 × 64 patch extracted)

No. of testing samples 
(64 × 64 patch extracted)

No. of training 
samples after 
augmentation

81 64 17 4096 1088 16,384

Fig. 2  Proposed framework for MA segmentation
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Proposed CBAM-AG-based UNet architecture
Building on the Convolutional Block Attention Module 
(CBAM) [34], Attention U-Net [24], and U-Net [14], we 
suggest CBAM-AG-UNet shown in Fig.  3 to improve 
microaneurysm (MA) segmentation in fundus pictures. 
We explain in detail about each part of the network 
below.

The CBAM-AG-UNet encoder-decoder structure is 
U-shaped. To improve feature learning, a CBAM module 
is added after a structured convolutional block in each 
encoder step. To improve segmentation, the decoder 
includes a three-fold attention decoding block that 
records contextual information as well as fine-grained 
data. Convolutional layers and Rectified Linear Unit 
(ReLU) activations constitute each convolutional block. 
To improve feature extraction, the network doubles the 
amount of feature channels in the encoder path at each 
downsampling stage. Using 2 × 2 transposed convolu-
tions, up-sampling is carried out in the decoder route to 
gradually recreate the segmentation map. Encoder and 
decoder feature maps are connected by skip connec-
tions, allowing for feature reuse. Lesion segmentation is 
improved by these connections as they go through the 
three-fold attention decoder block. A 1 × 1 convolution 
and a sigmoid activation function are used to create the 
final segmentation map, which yields the microaneurysm 
segmentation output.

CBAM module
To obtain more precise information about visual features, 
we employ CBAM [29] as the network’s attention mod-
ule. Attention modules have been employed in recent 
research to help CNNs concentrate on more significant 
elements from input images and avoid getting lost in less 
significant ones. To enhance the weights of informative 
elements in the channel and beneficial attributes in the 
space, CBAM combines channel attention and spatial 
attention, as shown in Fig. 4. The resulting combination 
indicates that key properties in both channels and spatial 
locations are given priority by the network. The channel 
attention generates a 1D attention map Mc ∈ RC× 1× 1 , 
which prioritizes the most important feature chan-
nels. Spatial attention produces a 2D attention map 
Ms ∈ R1× H× W , which enhances the focus on key spa-
tial regions. The attention mechanisms are mathemati-
cally expressed as

	 Channel F ′ = Mc (F ) ⊗ F � (4)

and

	 Spatial F ′ ′ = Ms (F ′ ) ⊗ F ′ � (5)

where ⊗ denotes element-wise multiplication.

Fig. 3  The architecture of the proposed CBAM-AG-UNet model
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The channel attention values are spread across the spa-
tial dimension, enhancing the importance of global fea-
tures. Next, the spatial attention values are applied across 
feature channels, ensuring a more precise spatial focus. 
The final, enhanced feature representation is denoted 
as F′′. Each attention map’s computational process is 
depicted in Fig.  4, with detailed information about the 
individual attention modules provided in the following 
sections.

Channel attention module  The Channel Attention 
Module uses the relationships between different feature 
channels to generate a channel attention map, enabling 
the network to concentrate on key elements in the input 
image. By treating each channel in a feature map as a fea-
ture detector, channel attention ensures that the most 

crucial channels are given priority. To infer finer channel-
wise attention, max-pooling collects yet another signifi-
cant hint regarding distinguishing object attributes. As a 
result, we simultaneously apply average-pooled and max-
pooled characteristics. Instead of using each feature sepa-
rately, we experimentally showed that utilizing both sig-
nificantly increases the representation ability of networks. 
To generate two different spatial context descriptors, F c

avg

and F c
max, which represent average-pooled features and 

max-pooled features, respectively, we initially combine 
the spatial information of a feature map by applying both 
average-pooling and max-pooling procedures. After that, 
both descriptors are sent to a common network, which 
creates our channel attention map Mc ∈ RC× 1× 1. A 
multi-layer perceptron (MLP) with a single hidden layer 
constitutes the shared network. The hidden activation 

Fig. 4  (a). Convolutional block attention module (b). Channel attention module (c). Spatial attention module
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size is set to Rc/r× 1× 1, where r is the reduction ratio, 
to minimize parameter overhead expenses. Following the 
application of the shared network to every descriptor, we 
use element-wise summing to combine the resultant fea-
ture vectors. To summarize, the channel attention is cal-
culated as follows:

	
Mc (F ) =σ (MLP (AvgPool (F )) + MLP (MaxPool (F )))

=σ
(
ω1

(
ω0

(
F c

avg

))
+ ω1 (ω0 (F c

max))
) � (6)

Where ω 0 ∈ Rc/r× c, ω 1 ∈ Rc× c/r , and σ represents 
the sigmoid function. The MLP weights, ω 0 and ω 1, are 
shared for both inputs, and ReLU activation is applied 
after ω 0.

Spatial attention module  The Spatial Attention Module 
makes use of the inter-spatial connections of features to 
highlight the “where” the key areas of an image are identi-
fied by spatial attention, as opposed to channel attention. 
Average pooling and max pooling operations along the 
channel axis are combined to produce two different con-
textual descriptors, which are then used to calculate spatial 
attention. By aggregating the channel-wise information, 

we produce two 2D feature maps, F s
avg ∈ R1×H×W  and 

F s
max ∈ R1× H× W , representing average-pooled and 

max-pooled features, respectively. These are then concat-
enated and passed through a 7 × 7 convolutional layer to 
generate the spatial attention map Ms (F ) ∈ R1× H× W  

which determines where to focus in the input feature map. 
The spatial attention is calculated as follows:

	

Ms (F ) =σ(f7×7 ([AvgPool (F ) ; MaxPool (F )))
=σ

(
f7×7 ([

F c
avg; F s

max

])) � (7)

Where f7× 7 is a convolution operation with a 7 × 7 filter 
size, and represents the sigmoid function.

Sequential vs. parallel arrangement  Two attention 
modules—channel and spatial—calculate complimentary 
attention to an input image by concentrating on “what” 
and “where,” respectively. The two modules are capable of 
being arranged either sequentially or in parallel in light of 
this. We discovered that a sequential arrangement outper-
forms a parallel arrangement. Outcome of our experiment 
indicates that the channel-first arrangement is marginally 
superior to the spatial-first for the sequential process lay-
out, thereby significantly enhancing feature extraction 
and segmentation performance.

Three-fold attention module
The three-fold attention decoder module shown in Fig. 5 
improves the up-sampling (decoding) process while also 
offering specific and spatial data. By using skip connec-
tions, this section incorporates features derived from 
the encoder path, adding more information to the fea-
ture map. Both spatial and channel attention are compo-
nents of the dual attention mechanism that makes up the 
decoder block. Following Attention Gate (AG) processing 

Fig. 5  Three-folded architecture
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on the concatenated feature map, the combined output is 
normalized using a typical 3 × 3 convolution operation. 
By concentrating on channel interactions to enhance fea-
ture representations and identifying spatial correlations 
between features to draw attention to the pertinent areas, 
this three-pronged strategy dramatically boosts perfor-
mance, as shown by Hu et al., then concentrating on the 
most crucial regions by making decisions based on con-
textual knowledge.

Attention gate  Attention Gates (AG) [24] are employed 
in U-Net designs [14] to highlight the most significant 
details in an image. They do this by using incremental 
attention to compute attention coefficients (α) which scale 
the given input features significantly. Therefore, through-
out training, vital regions are given additional weight and 
attention. The gating signal (g), which comes from the 
previous layer of the upsampling/decoder section and 
provides coarse information, and the encoder features, 
which are passed in via skip connections from the downs-
ampling/encoder section and provide more detailed fea-
tures, are the two inputs obtained by the attention gate 
in the U-Net architecture design. During training, this 
configuration guarantees that the model gives priority to 
the most important regions of the input image. By giv-
ing input characteristics attention coefficients (α), the AG 
mechanism helps the model focus on significant areas 
while reducing the impact of noisy or unnecessary parts. 
By integrating these modules with Attention U-Net’s 
CBAM block, the network may concentrate on high-level 
features, increasing segmentation accuracy.

By eliminating unnecessary information and empha-
sizing the most important areas for the task, the AG 
automatically learns to recognize desired structures of 
different shapes and sizes in medical imagery. In the for-
ward progression, the model adjusts activations in the 
skip connections to identify important regions; in the 
backward motion, gradients from the background areas 
are down-weighted to make sure the model updates 
parameters based on task-relevant spatial regions. By 
using trilinear interpolation to compute the attention 
coefficients (α) for the reproduced grids and then scal-
ing the input features (sl), the Attention Gate mechanism 
improves the representation capability of the U-Net with 
little computational overhead. The gating signal (g) fil-
ters attributes at more fine scales and chooses the most 
important areas. Our model effectively retains crucial 
features after 32× and 16× downsampling by employing 
skip connections, CBAM, and attention gates. Skip con-
nections restore spatial details by directly transferring 
high-resolution features to subsequent layers. CBAM 
emphasizes key lesion features through channel and spa-
tial attention, ensuring that important information is pre-
served even at lower resolutions. Attention gates, which 

target tiny structures like microaneurysms, improve fea-
ture recovery even further. Additionally, to improve fea-
ture representation and guarantee accurate segmentation 
even in the face of downsampling, the three-fold atten-
tion block integrates several attention techniques. These 
combined techniques enhance tiny lesion segmentation 
and avoid feature loss.

In the end, the triple attention mechanism combined 
with the attention gates (AGs) to improve the segmenta-
tion by concentrating on key features from the channel 
and spatial point of view, using the coarse scale informa-
tion from the gating signal to remove the insignificant 
details combining the attributes and ensuring both for-
ward and backward passes highlight important regions 
by adjusting neuron activations and gradients. This 
method helps the U-Net architecture learn more effec-
tively, increasing segmentation accuracy and robustness.

Loss function
The cross-entropy (CE) loss function is often used in 
image segmentation research since it measures the infor-
mation difference between the prediction and ground 
truth areas. An important indicator of the cross-entropy 
relationship between the ground truth distribution p 
and the probability distribution q is the average num-
ber of bits of the coding length required for the ground 
truth distributed p to identify a sample. The average 
cross-entropy of all pixels is typically used to compute 
the cross-entropy loss in image segmentation tasks. qi, 
pi denotes the predicted segmentation and ground truth 
of voxel I, respectively. K is the number of voxels in the 
image I.

	 LBCE = − 1
K

∑
K
i=1 [pilogqi + (1 − pi) log (1 − qi)]� (8)

Performance metrics
The metrics used to evaluate the reliability of the sug-
gested method are illustrated in this section; these met-
rics are commonly used to evaluate the effectiveness of 
semantic segmentation. We demonstrate how precisely 
the segmentation generated by the algorithm matches 
the ground truth and give their numerical techniques 
for determining its success rate. True positive (TP), True 
negative (TN), False positive (FP), and False negative 
(FN) are examples of metrics that are computed at the 
pixel level.

Accuracy
It is referred to the ratio of correct predictions to the all-
predicted pixels.

	
Accuracy = TP + TN

TP + FP + FN + TN � (9)
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Area under the curve - receiver operating characteristic 
(AUC-ROC)
For segmentation, the pixel-wise predictions can be 
treated as binary classification results. It is especially 
beneficial when working with imbalanced datasets. To 
measure the AUC-ROC; we plot the True Positive Rate 
(TPR) against the False Positive Rate (FPR) with different 
threshold values and compute the area under the curve.

	
True positive rate = TP

TP + FN
� (10)

	
False positive rate = FP

FP + TN
� (11)

Dice similarity coefficient
The dice similarity coefficient is a frequently employed 
statistic in image segmentation that assesses the degree 
of similarity between a ground truth mask and a pre-
dicted segmentation mask. We measure the overlap of 
the two masks.

	
Dice = 2 × P × SE

P + SE
� (12)

Intersection of union
It is a metric used to assess how well the segmentation 
results(S) and the ground truth mask(G) overlap.

	
IoU = |G ∩ S|

|G ∪ S| � (13)

Experimental results
Simulation environment
For deep learning applications like MA segmentation in 
medical images, a simulation environment with a T4GPU, 
Keras version 2.15.0, and Python 3 as the deep learning 
framework works quite well. To train the network, we set 
the hyperparameters and employed the Adam optimizer 
with the initial learning rate set to 1 × 10 − 3 and adjusted 
using the ReduceLROnPlateau method. The validation 
loss is tracked, and after five epochs without progress, 
the learning rate shrinks in half, but it never falls below 
the minimum value of 1e-5. We train and evaluate the 

IDRiD dataset on an initialized network. While training, 
we make use of a patch size of 64 and provide standard 
augmentation methods such as random rotation and flip. 
There are 40 training epochs followed by a batch size of 
16 (See Table 2).

Training and testing of the model
Model accuracy with loss validation techniques is 
employed to evaluate the model’s training procedures. 
Over the whole training dataset, one epoch is one full 
iteration. The learning method processes every train-
ing example once throughout an epoch. The dataset is 
frequently split up into smaller batches, and the model 
iteratively adjusts its parameters for each batch for each 
epoch. When the model’s accuracy reduces and its loss 
improves throughout the training phase, it is overfit-
ting rather than learning. When accuracy enhances and 
loss shrinks, the model is learning. Figure  6 illustrates 
the accuracy and loss of the suggested model for the test 
and train information. The suggested model was given 40 
epochs to finish and used an entire set of 16,384 image 
patches for training and 1088 images for testing. Test 
outcomes during segmentation show that the model 
executed very effectively in both training and testing. 
The training and testing accuracy of the proposed model 
achieved 99.88 and 99.91 for 40 epochs respectively.

Pre-processing output for MA segmentation
Pre-processing is a multi-step procedure that gets raw 
data ready for a deep learning model. By eliminating 
extraneous portions from a rectangular zone that is rel-
evant within an image, cropping increases efficacy by 
highlighting key elements. Image specifications are stan-
dardized through resizing (512 × 512), which makes pro-
cessing more consistent. Enhancing key attributes in the 
green spectrum, that is, extracting the green channel 
which is particularly helpful in medical imaging improves 
model performance in tasks like segmentation. Local 
contrast is improved using CLAHE (Contrast Limited 
Adaptive Histogram Equalization), which makes features 
simpler to see and detect by the model. To improve fea-
ture identification, gamma adjustment brings the bright-
ness of an image closer to its normal level. Finally, by 
lowering noise in the image, denoising enhances qual-
ity and results in more precise feature extraction. These 
procedures work together to convert unprocessed images 
into easier-to-understand and useful information for 
deep learning. The results of various pre-processing 
methods are depicted in Fig. 7.

Next to denoising, patch extraction helps deep learning 
models to develop and operate more precisely by break-
ing up the original images into smaller, more useful por-
tions. It’s an essential preprocessing step that raises the 
entire ability and efficacy of the information in the image. 

Table 2  Hyper-parameter values
Parameter Values
Batch size 16
Image resolution 512 × 512
Optimizer Adam
Optimal learning rate 0.001 to 0.00001
Patch size 64 × 64
Epochs 40
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The denoised image has a dimension of 515 × 512, which 
can extract the 64 × 64 patches, creating a primary grid 
of 64 patches. Instead of using the whole image, a patch 
gives better results for tiny objects like segmenting tasks 

like microaneurysms. By concentrating on small patches, 
the model is better able to understand the background 
and foreground information. The sample denoised image 
and the corresponding patch-extracted image for this 

Fig. 6  Training and testing curves for model accuracy and loss
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denoised image is shown in Fig.  8. Then after extract-
ing the patches, it is very low in number (4096) to train 
the model, hence we have to increase the diversity of the 
training dataset we applied data augmentation like ran-
dom rotate 900, horizontal and vertical flip correspond-
ingly. Finally, we obtained 16,384 images for training the 
proposed model. Figure 9 represents the data-augmented 
patches.

MA segmentation results
We examined the suggested approach using the 
IDRiD fundus image dataset. We contrasted it with 

state-of-the-art MA segmentation and traditional image 
processing techniques to show how effective the CBAM-
AG-UNet is at segmenting small MAs. The appearance 
results of segmentation from our suggested segmentation 
network on a few fundus image patches from the IDRiD 
dataset are shown in Fig. 10. The current deep-learning 
techniques yield poor MA segmentation results because 
they are unable to maintain precise boundaries. We 
tested the CBAM-AG-UNet model’s performance on the 
IDRiD dataset for segmenting microaneurysms (MAs) in 
fundus images, comparing it to top-of-the segmentation 
approaches and standard image processing methods. Our 

Fig. 8  Sample denoised image and patch extracted from the denoised image

 

Fig. 7  (a). Input image (b). Cropped image (c). Resized image (d). Green channel (e). Gamma corrected image (f). De-noised image
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model obtained a remarkable 99.91% accuracy, indicat-
ing its ability to classify a large number of pixels accu-
rately. The Dice Score of 0.865 and IoU of 0.758 indicate 
it reliably recognizes and segments MA regions, high-
lighting the difficulty of distinguishing tiny and scattered 
MAs. However, the model’s high AUC-ROC score of 
0.996 demonstrates its ability to discriminate MAs from 
their surroundings across various levels. These findings 
emphasize the CBAM-AG-UNet’s ability to perform pre-
cise MA segmentation, which is critical for early diabetic 
retinopathy identification, while also indicating areas for 
additional improvement in obtaining finer segmentation 
details. In contrast, when compared to the ground truths, 
the suggested approach in Fig.  10(c) produces reliable 
results with high precision in patches with one or several 

MAs. We then present the quantitative findings to assess 
our CBAM-AG-UNet’s performance more precisely.

Ablation study
An ablation study assesses the effects of structural modi-
fications and hyperparameter settings on segmentation 
performance. The structural ablation focuses on varia-
tions in network design, while hyperparameter tuning 
explores aspects like batch size, and patch size. This study 
aims to determine the optimal configuration for achiev-
ing superior segmentation results.

Structural ablation
The performance of CBAM-AG-UNet was evaluated 
with and without Attention Gates (AG) and for differ-
ent bottleneck depths. The proposed CBAM-AG-UNet, 

Fig. 9  Data-augmented patches. From left to right (a) patch extracted (b) random rotate 900 (c) horizontal flip (d) vertical flip
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with a 512-filter bottleneck, gives the utmost perfor-
mance, with a Dice score of 0.865, an IoU of 0.758, and 
an inference time of 0.3392  s, which is less compared 
to the other scenarios. We clearly stated that the atten-
tion gates allow the model to concentrate on the most 
important regions of the input, minimizing the amount 
of calculation required and improving the processing 

time, and memory usage was 17.11 MB. When AG was 
removed from the skip connections, the model’s per-
formance decreased extremely to a Dice score of 0.715, 
an IoU of 0.652, an inference time of 1.5184  s, and 
memory usage of 18.41  MB, which underlines the criti-
cal role of AG in improving segmentation accuracy. 
Moreover, reducing the bottleneck depth to 256 filters 

Fig. 10  Segmentation results of IDRiD dataset for microaneurysms showing (a). Original image, (b). Ground truth mask, (c). Predicted mask and (d). 
Overlayed image
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further reduced performance (Dice score: 0.698, IoU: 
0.645, inference time of 0.3556 s, and memory usage was 
17.35 MB). when AG is removed from skip connections 
with 256 as a bottleneck, further diminishing the perfor-
mance (Dice score: 0.612, IoU: 0.598, inference time of 
1.7214  s, and memory usage was 18.72 MB). From this, 
we observed the necessity of a deeper feature extraction 
process for effective lesion segmentation. These findings 
are described in Table 3, then validate that the inclusion 
of AG in skip connections and a deeper bottleneck are 
essential for achieving superior segmentation.

Hyperparameter experiments with CBAM-AG-UNet
For hyperparameter tuning various batch sizes and patch 
sizes were tested to examine their performance on seg-
mentation quality. A batch size of 16 showed the highest 
achievement (Dice: 0.865, IoU: 0.758), whereas increas-
ing it to 32 led to a performance drop (Dice: 0.685, IoU: 
0.630), likely due to unstable weight updates. Further-
more, 64 × 64 patches yield better results (Dice: 0.865, 
IoU: 0.758) than 128 × 128 patches (Dice: 0.678, IoU: 
0.625), indicating that smaller patches preserve min-
ute lesion features. As indicated in Table 4, these results 
emphasize how important it is to choose hyperparam-
eters properly to attain segmentation accuracy. Then 
the Dice loss is applied to the proposed method which 
decreases the performance (Dice: 0.412, IoU-0.402) 
and for Focal loss also performance is degraded such as 
(Dice:0.346, IoU: 0.312). Finally, the learning rate sched-
uler, the model automatically adapts the optimal learn-
ing rate from 0.001 to 0.00001enhance the convergence 
and prevents overfitting. These findings denote the 

importance of carefully selecting hyperparameters to 
achieve a balance between training efficiency and seg-
mentation accuracy, as described in Table 4.

This ablation investigation demonstrates that segmen-
tation performance is significantly improved by struc-
tural enhancements such as the addition of AG and 
a deeper bottleneck. The model’s efficiency is further 
enhanced by the meticulous selection of hyperparam-
eters, such as batch size, and patch size.

Discussion
The ultimate goal of this study is to demonstrate that the 
suggested model outperforms the most effective deep 
learning algorithms for segmenting microaneurysms. 
The CBAM-AG-UNet model’s accuracy in detecting 
microaneurysms has improved. The majority of pres-
ent U-shaped approaches are good at segmenting huge 
objects, but they are not good at detecting minute items, 
which are very common in eye disorders. The feature 
relationships in the hidden layers are weaker than their 
initial inputs because of the downsampling and upsam-
pling procedures in U-Net. This leads to a loss of visual 
information and lower segmentation efficiency for the 
minute lesions, comparable with segmentation models. 
The proposed model outperforms existing methods in 
segmentation, notably targeting background and fore-
ground pixels, as well as the Dice coefficient as 0.865 IoU 
as 0.758, and AUC as 0.996. The segmentation imagery 
shows that the suggested model’s segmentation findings 
are more accurate with deep and exact feature extraction.

The suggested model distinguishes itself from the pre-
vious frameworks, MCA-UNet [35], Galance Seg [36], 
MSAG [37], TC-UNet [38], AFTE [39], PMC Net [40], 
L-Seg [41]. MCA-UNet combined semantic informa-
tion at various levels using the multi-scale feature fusion 
technique and gathered pertinent global dependencies 
using the cross-co-attention module. Incorporating gaze 
maps acquired while doctors view images, Galance Seg 
allows for top-down attention-driven coarse lesion local-
ization. Using indication points produced from saliency 
maps, bottom-up attention guiding further optimizes this 
process. Furthermore, a DKF module is used to improve 
the segmentation of unclear MAs that the basic model 
generates. Significantly, MSAG is excellent at identify-
ing a wide variety of lesion sizes and exhibits a balanced 
ability to identify across lesion types, both of which are 
essential for thorough DR assessment. In TC-Net a new 
feature fusion technique called LLCS (long-range depen-
dency concatenation strategy), combines the various 
feature maps from the Transformer and CNN branches 
to produce better segmentation results. To include both 
vascular and lesion details in the primary generator, 
AFB(attention fusion block) integrates self-attention and 
cross-attention techniques. To help the model locate 

Table 3  Structural ablation analysis of the proposed model
Ablation Dice IoU Total 

inference 
time(sec)

Memory 
usage dur-
ing infer-
ence (MB)

Unet + CBAM + AG with 512 
as a bottleneck (Proposed)

0.865 0.758 0.3392 17.11

Unet + CBAM with 512 as a 
bottleneck

0.715 0.652 1.5184 18.41

Unet + CBAM + AG with 256 
as a bottleneck

0.698 0.645 0.3556 17.35

Unet + CBAM with 256 as a 
bottleneck

0.612 0.598 1.7214 18.72

Table 4  Hyperparameter ablation study of the proposed model
Hyperparameter variation Dice IoU
Batch size 16 (Proposed) 0.865 0.758
Batch size 32 0.685 0.630
Patch size 64 × 64 (Proposed) 0.865 0.758
Patch size 128 × 128 0.678 0.625
Focal loss 0.346 0.312
Dice loss 0.415 0.402
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various lesions in complex fundus images more pre-
cisely, cross-attention is employed to efficiently integrate 
important vascular information, while self-attention 
is utilized to identify long-distance dependence links 
among lesions. Attention Gates (AG) in skip connections 
improve lesion localization, while CBAM modules in 
both the encoder and decoder layers are integrated into 
our CBAM-AG-UNet for adaptive feature improvement. 
By tackling these issues, our suggested approach guar-
antees more accurate and trustworthy microaneurysm 
identification, improving the segmentation process’s effi-
ciency and resilience. This approach ensures improved 
detection of tiny MAs, making sure that even faint 
microaneurysms are accurately segmented. As a result, 
our model achieves a Dice coefficient of 0.865, an IoU of 
0.758, an inference time of 0.3392 s, memory usage was 
17.11 MB and an AUC of 0.996, significantly outperform-
ing state-of-the-art segmentation models (as shown in 
Table 5).

A ‘-’ (dash) is used to indicate that some of the items 
in Table 5. employ different evaluation measures. While 
some studies evaluate performance using metrics such as 
Area Under the Curve (AUC), Dice coefficient, and Inter-
section over Union (IoU), others may report just one or 
two of these metrics. As a result, the missing numbers in 
these columns represent the various performance met-
rics used in those studies rather than representing partial 
results. In subsequent iterations of this study, we intend 
to connect the findings with widely used metrics such as 
IoU and Dice, acknowledging the necessity of standard-
ized evaluation criteria to enable comparisons.

Conclusion
In this study, we proposed a unique UNet architecture 
for microaneurysm segmentation in which the encoder 
and decoder use Convolutional Block Attention Modules 
(CBAM) and the skip connections use Attention Gates 
(AG). The encoder’s incorporation of CBAM enhances 

feature extraction and ensures that the most relevant and 
instructional features are extracted by leveraging chan-
nel and spatial attention processes. The Attention Gates 
in the skip connections further refine this information by 
emphasizing significant features, which makes it easier 
to allow the decoder to get critical data. Adding CBAM 
inside the decoder also refines upsampled features while 
retaining high-quality visualization and spatial informa-
tion. The comprehensive technique known as Three-fold 
Attention significantly raises segmentation accuracy. 
Several experiments demonstrated that our approach 
outperformed earlier ones, indicating its potential for 
improved clinical microaneurysm detection and exami-
nation. According to our findings, medical image seg-
mentation can be enhanced by attention mechanisms, 
which pave the way for further research and development 
in this area.
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Table 5  Comparison of our proposed CBAM-AG-UNet with the 
state-of-the-art approaches on the IDRiD dataset
Author Method/model Dice IoU AUC
Wang et al. [35] MCA-UNet 0.3850 - 0.9912
Jiang et al. [36] Galance Seg 0.3944 - -
Xu et al. [37] MSAG 0.4920 - -
Zhang et al. [38] TC-UNet 0.5696 0.6968 0.9881
Xu et al. [39] Attention fusion

transformer encoder 
(AFTE)

- 0.2834 -

He et al. [40] PMC Net - - 0.4694
Song guo et al. 
[41]

end-to-end unified 
framework
L-Seg

- - 0.4627

Proposed 
method

CBAM-AG-UNet 
Framework

0.865 0.758 0.996

https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid
https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid


Page 17 of 17Vanaja and Prakasam BMC Medical Imaging           (2025) 25:83 

References
1.	 Ahmed NGA, Hamza MF, Hassan SN. Knowledge, practice and attitude of 

diabetic patients regarding the prevention of diabetic retinopathy. J Surv 
Fisher Sci. 2023;10(3S):3896–908.

2.	 Bai Y, Zhang X, Wang C, Gu H, Zhao M, Shi F. Microaneurysms detection 
in retinal fundus images based on shape constraint with region-context 
features. Biomed Signal Process Control. 2023;85:104903.

3.	 Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors 
of diabetic retinopathy. Diabetes Care. 2012;35(3):556–64.

4.	 Fleming AD, Philip S, Goatman KA, Olson JA, Sharp PF. Automated microan-
eurysm detection using local contrast normalization and local vessel detec-
tion, IEEE Trans Med Imag. 2006;25(9):1223–1232.

5.	 Quellec G, Lamard M, Josselin PM, Cazuguel G, Cochener B, Roux C. Optimal 
wavelet transform for the detection of microaneurysms in retina photo-
graphs, IEEE Trans. Med. Imag. Sep. 2008;27(9):1230–1241.

6.	 Chudzik P, Majumdar S, Caliva F, Al-Diri B, Hunter A. Microa aneurysm detec-
tion using fully convolutional neural networks. Comput Methods Programs 
Biomed. May 2018;158:185–92.

7.	 Zhang X, et al. T-net: hierarchical pyramid network for microaneurysm detec-
tion in retinal fundus image. IEEE Trans Instrum Meas. 2023;72:1–13. ​h​t​t​p​​s​:​/​​/​d​
o​i​​.​o​​r​g​/​​1​0​.​​1​1​0​9​​/​T​​I​M​.​2​0​2​3​.​3​2​8​6​0​0​3.

8.	 Zhang X, Kuang Y, Yao J. Detection of microaneurysms in color fundus 
images based on local fourier transform. Biomed Signal Process Control. 
2022;76(Jul):Art103648.

9.	 Soares I, Castelo-Branco M, Pinheiro A. Jan., Microaneurysms detection in 
retinal images using a multi-scale approach. Biomed Signal Process Control, 
79, 2023, Art. 104184.

10.	 Zhang X, Ma Y, Gong Q, Yao J. Aug., Automatic detection of microaneurysms 
in fundus images based on multiple preprocessing fusion to extract features. 
Biomed Signal Process Control, 85, 2023, Art. 104879.

11.	 Gao W, Fan B, Fang Y, Shan M, Song N. Detection and location of microaneu-
rysms in fundus images based on improved YOLOv4 with IFCM, IET Image 
Process. Sep. 2023;17(11):3349–3357.

12.	 Wang Z, Li X, Yao M, Li J, Jiang Q, Yan B. A new detection model of microan-
eurysms based on improved FC-DenseNet. Sci Rep. Jan. 2022;12(1):950.

13.	 Tan JH et al. Dec., Automated segmentation of exudates, hemorrhages, 
microaneurysms using single convolutional neural network, Inf. Sci. 
2017;420:66–76.

14.	 Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedi-
cal image segmentation. 2015;arXiv:1505.04597.

15.	 Zhang Z, Liu Q, Wang Y. Road extraction by deep residual U net. IEEE Geosci 
Remote Sens Lett. 2018;15:749–53.

16.	 Kou C, Li W, Liang W, Yu Z, Hao J. Microaneurysms segmentation with a U-Net 
based on recurrent residual convolutional neural network, J. Med. Imag. Jun. 
2019;6(2):1.

17.	 Kou C, Li W, Yu Z, Yuan L. An enhanced residual U-Net for microan-
eurysms and exudates segmentation in fundus images. IEEE Access. 
2020;8:185514–25.

18.	 Qomariah D, Tjandrasa H, Fatichah C. Segmentation of microa neurysms for 
early detection of diabetic retinopathy using MResUNet, Int. J. Intell. Eng. Syst. 
Jun. 2021;14(3):359–373.

19.	 Xu Y, Zhou Z, Li X, Zhang N, Zhang M, Wei P. FFU-net: Feature fusion U-net 
for lesion segmentation of diabetic retinopathy, BioMed Res. Int. Jan. 
2021;2021:1–12.

20.	 Bhargav PR, Puhan NB. Novel contra harmonic cor relative attention loss 
for microaneurysm segmentation in fundus images, IEEE Sensors Lett. Jul. 
2023;7(7):1–4. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​1​0​9​​/​L​​S​E​N​S​.​2​0​2​3​.​3​2​9​0​5​9​7

21.	 Chen J, Chen C, Huang W, Zhang J, Debattista K, Han J. Dynamic contrastive 
learning guided by class confidence and confusion degree for medical image 
segmentation. Pattern Recogn. 2024;145:109881.

22.	 Behera SS, Puhan NB. High boost 3-D attention network for cross-spectral 
periocular recognition, IEEE Sensors Lett. Sep. 2022;6(9):1–4.

23.	 Zhang Z, Liu Q, Wang Y. Road extraction by deep residual U-Net. IEEE Geosci 
Remote Sens Lett. May 2018;15(5):749–53.

24.	 Oktay O et al. Attention U-Net: learning where to look for the pancreas, 2018, 
arXiv:1804.03999.

25.	 Dosovitskiy A et al. An image is worth 16×16 words: Transformers for image 
recognition at scale, 2020, arXiv:2010.11929.

26.	 Guo D, Terzopoulos D. A transformer-based network for anisotropic 3D medi-
cal image segmentation, in Proc. 25th Int. Conf. Pattern Recognit. (ICPR), Jan. 
2021:8857–8861.

27.	 Chen C-F, Fan Q, Panda R. CrossViT: Cross-attention multi-scale vision trans-
former for image classification, in 2021 IEEE/CVF International Conference on 
Computer Vision (ICCV). 2021:347–356.

28.	 Ding M, Qu A, Zhong H, Liang H. A transformer-based network for pathology 
image classification, in: 2021 IEEE International Conference on Bioinformatics 
and Biomedicine (BIBM). 2021:2028–2034.

29.	 Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y, Lu L, Alan LY. Yuyin Zhou, Transunet: 
Transformers Make Strong Encoders for Medical Image Segmentation. 2021 
arXiv preprint arXiv:2102.04306.

30.	 Cao H, Wang Y, Chen J, Jiang D, Zhang X, Qi T, Wang M. Swin-unet: Unet-like 
Pure Transformer for Medical Image Segmentation. 2021 arXiv preprint 
arXiv:2105.05537.

31.	 Li Y, Wang Z, Yin L, Zhu Z, Qi G, Liu Y. X-Net: a dual Encoding-Decoding 
method in medical image segmentation. The Visual Computer. 2021:1–11.

32.	 Chen J, Zhang J, Debattista K, Han J. Semi-supervised unpaired medical 
image segmentation through task-affinity consistency. IEEE Trans Med Imag-
ing. 2022;42(3):594–605.

33.	 Sonali SS, Singh AK, et al. An approach for de-noising and contrast 
enhancement of retinal fundus image using CLAHE. Opt Laser Technol. 
2019;110:87–98.

34.	 Woo S, Park J, Lee J, Kweon I. CBAM: Convolutional block attention module. 
arXiv 2018;1:3–19. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​0​7​​/​9​​7​8​-​3​-​0​3​0​-​0​1​2​3​4​-​2

35.	 Wang H, Cao P, Yang J, Zaiane O. MCA-UNet: multi-scale cross co-attentional 
U-Net for automatic medical image segmentation. Health Inform Sci Syst. 
2023;11(1):10.

36.	 Jiang, H., Gao, M., Liu, Z., Tang, C., Zhang, X., Jiang, S., … Liu, J. GlanceSeg:Real-
time microaneurysm lesion segmentation with gaze-map-guided foundation 
model for early detection of diabetic retinopathy. IEEE Journal of Biomedical 
and Health Informatics. 2024.

37.	 Xu C, He S, Li H. An attentional mechanism model for segmenting multiple 
lesion regions in the diabetic retina. Sci Rep. 2024;14(1):21354.

38.	 Zhang Z, Sun G, Zheng K, Yang JK, Zhu XR, Li Y. TC-Net: A joint learning frame-
work based on CNN and vision transformer for multi-lesion medical image 
segmentation. Comput Biol Med. 2023;161:106967.

39.	 Xu C, Guo X, Yang G, Cui Y, Su L, Dong H, Che S. Prior-guided attention fusion 
transformer for multi-lesion segmentation of diabetic retinopathy. Sci Rep. 
2024;14(1):20892.

40.	 He A, Wang K, Li T, Bo W, Kang H, Fu H. Progressive multiscale consistent 
network for multiclass fundus lesion segmentation. IEEE Trans Med Imaging. 
2022;41(11):3146–57.

41.	 Guo S, Li T, Kang H, Li N, Zhang Y, Wang K. L-Seg: an end-to-end unified 
framework for multi-lesion segmentation of fundus images. Neurocomput-
ing. 2019;349:52–63.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://doi.org/10.1109/TIM.2023.3286003
https://doi.org/10.1109/TIM.2023.3286003
https://doi.org/10.1109/LSENS.2023.3290597
https://doi.org/10.1007/978-3-030-01234-2

	﻿Convolutional block attention gate-based Unet framework for microaneurysm segmentation using retinal fundus images
	﻿Abstract
	﻿Introduction
	﻿﻿Research contributions

	﻿﻿Related works
	﻿﻿Materials and methods
	﻿﻿Dataset
	﻿﻿Data pre-processing
	﻿Proposed CBAM-AG-based UNet architecture
	﻿﻿CBAM module
	﻿﻿Channel attention module
	﻿﻿Spatial attention module
	﻿﻿Sequential vs. parallel arrangement



	﻿﻿Three-fold attention module
	﻿﻿Attention gate

	﻿﻿Loss function
	﻿Performance metrics
	﻿Accuracy
	﻿Area under the curve - receiver operating characteristic (AUC-ROC)
	﻿Dice similarity coefficient
	﻿Intersection of union

	﻿Experimental results
	﻿Simulation environment
	﻿Training and testing of the model
	﻿Pre-processing output for MA segmentation
	﻿MA segmentation results

	﻿Ablation study
	﻿Structural ablation
	﻿Hyperparameter experiments with CBAM-AG-UNet

	﻿Discussion
	﻿Conclusion
	﻿References


