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Abstract
Background  Osteoporosis is a complex condition that drives research into its causes, diagnosis, treatment, and 
prevention, significantly affecting patients and healthcare providers in various aspects of life. Research is exploring 
orthopantomogram (OPG) radiography for osteoporosis screening instead of bone mineral density (BMD) 
assessments. Although this method uses various indicators, manual analysis can be challenging. Machine learning 
and deep learning techniques have been developed to address this. This systematic review and meta-analysis is the 
first to evaluate the accuracy of deep learning models in predicting osteoporosis from OPG radiographs, providing 
evidence for their performance and clinical use.

Methods  A literature search was conducted in MEDLINE, Scopus, and Web of Science up to February 10, 2025, using 
the keywords related to deep learning, osteoporosis, and panoramic radiography. We conducted title, abstract, and 
full-text screening based on inclusion/exclusion criteria. Meta-analysis was performed using a bivariate random-
effects model to pool diagnostic accuracy measures, and subgroup analyses explored sources of heterogeneity.

Results  We found 204 articles, removed 189 duplicates and irrelevant studies, assessed 15articles, and ultimately, 
seven studies were selected. The DL models showed AUC values of 66.8–99.8%, with sensitivity and specificity ranging 
from 59 to 97% and 64.9–100%, respectively. No significant differences in diagnostic accuracy were found among 
subgroups. AlexNet had the highest performance, achieving a sensitivity of 0.89 and a specificity of 0.99. Sensitivity 
analysis revealed that excluding outliers had little impact on the results. Deeks’ funnel plot indicated no significant 
publication bias (P = 0.54).

Conclusions  This systematic review indicates that deep learning models for osteoporosis diagnosis achieved 80% 
sensitivity, 92% specificity, and 93% AUC. Models like AlexNet and ResNet demonstrate effectiveness. These findings 
suggest that DL models are promising for noninvasive early detection, but more extensive multicenter studies are 
necessary to validate their efficacy in at-risk groups.
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Background
Osteoporosis is a complex, multidisciplinary disease that 
has led researchers from various medical fields to explore 
its etiology, detection, diagnosis, treatment, and preven-
tion [1]. This silent disease presents significant challenges 
not only for patients but also for healthcare providers, 
with profound occupational, social, and economic impli-
cations [2]. As the prevalence of osteoporosis rises, pro-
jections estimate that over 263 million individuals will be 
affected by 2034. Early diagnosis and timely screening are 
crucial in reducing the serious health complications asso-
ciated with this condition [3, 4].

Timely diagnosis and screening for osteoporosis are 
crucial in mitigating its serious health complications [5, 
6]. Among the various imaging techniques employed for 
osteoporosis detection, dual-energy X-ray absorptiom-
etry (DEXA) is recognized as the gold standard for its 
accuracy, provided it is correctly executed with appropri-
ate quantitative analyses [7]. However, DEXA can present 
challenges for patients with metal implants, incomplete 
or inaccurate health information, or those who cannot 
fully cooperate during the imaging process [8]. In such 
cases, clinicians may opt to analyze different body parts, 
such as the forearm, hip, or lumbar regions, or combine 
them to improve diagnostic precision. Alternative meth-
ods, like orthopantomogram (OPG) radiography, are 
also being investigated for their potential in osteoporosis 
screening [9].

OPG is a cost-effective imaging technique primarily 
used for evaluating the upper and lower jaws, diagnosing 
dental diseases, jaw injuries, and disorders, and screen-
ing for osteoporosis. It offers several indices for assess-
ing osteoporosis, including the lamina dura’s width, the 
mandibular cortex index (MCI), and the ante-gonial 
index [10]. However, the manual measurement of these 
indices is often labor-intensive and time-consuming, 
which can hinder effective feature recognition in radio-
graphic images and impact the reproducibility of clas-
sification methods. Artificial intelligence (AI) and deep 
learning (DL), a subset of AI, are transformative tools 
in medical imaging that enhance and automate diagnos-
tics while accurately analyzing complex medical images. 
Convolutional neural networks (CNNs), a prevalent DL 
architecture, are particularly effective at pattern recog-
nition in medical images, making them ideal for osteo-
porosis screening. By automating the detection and 
classification of radiographic indices, DL models reduce 
subjectivity, improve diagnostic consistency, and address 
the limitations of manual analysis. DL algorithms like 
AlexNet, ResNet, and VGG have been developed to 
assess osteoporosis from panoramic radiographs. These 
models improve the extraction of complex imaging fea-
tures, enhancing sensitivity and specificity over tradi-
tional methods. As deep learning continues to influence 

medical diagnostics, evaluating its effectiveness in diag-
nosing osteoporosis is crucial [11].

This systematic review and meta-analysis aim to assess 
the diagnostic accuracy of DL models in predicting 
osteoporosis from OPG radiographs. As the first com-
prehensive review of its kind, it consolidates current 
evidence on the performance of these models and criti-
cally examines their clinical applications. By analyzing 
the strengths and limitations of DL techniques, this study 
provides valuable insights for future research focused on 
high-risk populations, such as postmenopausal women 
undergoing corticosteroid therapy. We hypothesize that 
various deep learning models do not significantly differ 
in accuracy for detecting osteoporosis from panoramic 
radiographs. Specifically, the null hypothesis (H0) states 
that these models have comparable accuracy and pre-
cision in detecting osteoporosis, allowing us to assess 
whether deep learning models provide a measurable 
improvement over traditional manual methods in osteo-
porosis detection.

Methods
Data resources and search strategy
This study followed the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) guide-
lines [12] (Fig.  1) and was registered in PROSPERO 
(CRD42024583964). A literature search was conducted 
in electronic databases, including MEDLINE (PubMed), 
Scopus, and Web of Science (WOS), to identify relevant 
articles up to February 10, 2025. The search used the fol-
lowing Medical Subject Headings (MeSH) and keywords: 
(“deep learning” or “transfer learning” or “convolutional 
neural network” or “CNN” or " artificial neural networks” 
or “artificial intelligence” or “automatic learning”) and 
(“osteoporosis” or “bone mineral density” or “BMD” 
or “bone loss” or “bone quality” or “bone micro-archi-
tecture”) and (“orthopantomography” or “panoramic 
radiograph” or “OPG”). The detailed search strategy is 
provided in Supplementary File 1. All records were man-
aged in Endnote 20, with duplicates removed.

Inclusion and exclusion criteria
Inclusion and exclusion criteria for eligible studies were 
established using the PICOS (Population, Interven-
tion, Comparison, Outcome, Study Design) framework 
(Table 1).

Study selection
Two reviewers (M.A. and A.T.) conducted the screening 
process independently and in duplicate. Each reviewer 
screened titles and abstracts to identify studies meeting 
the inclusion criteria, followed by an independent review 
of full-text articles to confirm eligibility. Discrepancies 
were discussed and resolved through consensus, and if 



Page 3 of 11Tarighatnia et al. BMC Medical Imaging           (2025) 25:86 

consensus could not be reached, a third reviewer (M.H.) 
made the final decision. We documented the articles 
screened and the reasons for exclusion at each stage.

Data extraction
Two investigators (M.A. and A.T.) independently 
extracted data from selected studies, including the first 
author’s name, publication year, study design, country, 
sample size, gender, imaging modality, reference test, 
DL model, and performance metrics (AUC, sensitivity, 
specificity, and accuracy). If multiple DL models were 
developed in one study, data from each model were gath-
ered. For each study, we extracted or calculated the true 
positives (TP), true negatives (TN), false positives (FP), 
and false negatives (FN). When reported directly, we 
recorded these values as is. If not explicitly provided, we 

calculated them from the reported sensitivity, specificity, 
and total number of cases (osteoporosis and non-osteo-
porosis) using following equations:

 	• TP = Sensitivity×(TP + FN).

where TP + FN represents the total number of dis-
eased cases.

 	• TN = Specificity×(TN + FP).

where TN + FP represents the total number of non-
diseased cases.

 	• Total number of cases (N) = TP + FN + TN + FP.

Fig. 1  Preferred reporting items PRISMA flow diagram for systematic reviews and meta-analyses
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This data was recorded in an Excel spreadsheet. Discrep-
ancies in extraction were resolved through discussion, 
and a third reviewer (M.H.) was consulted when needed. 
The data extraction form is provided in Supplemental 
File 1, Table S2.

Assessment of risk of bias
Two raters (M.A. and A.T.) independently evaluated 
potential bias risks in selected studies using the QUA-
DAS-2 tool, which comprises four key domains: (1) 
patient selection, (2) index test, (3) reference stan-
dard, and (4) flow and timing [13]. Disagreements were 
resolved with input from the third author.

Statistical analysis
The included studies employed various metrics, includ-
ing sensitivity, specificity, and AUC, to evaluate the 
diagnostic performance of DL models. Sensitivity, speci-
ficity, and AUC summaries were calculated using bivari-
ate random-effects models for diagnostic meta-analysis. 
Forest plots illustrated pooled sensitivity and specificity 
with a 95% confidence interval (95% CI). To quantify the 
likelihood of positive or harmful tests, positive/negative 
likelihood ratios (LR+/LR-) were computed, leading to 

the calculation of the diagnostic odds ratio (DOR) and 
its 95% CI, along with a corresponding forest plot. The 
summary receiver-operating characteristic curve (SROC) 
was plotted using the bivariate method, and the AUC was 
calculated. Heterogeneity among studies was assessed 
using the inconsistency index (I2); an I2 > 50% indicated 
significant heterogeneity, prompting the application of a 
random effects model.

To explore potential sources of heterogeneity, we 
conducted sensitivity analyses, meta-regression, and 
subgroup analyses based on the DL methods (such as 
AlexNet, VGG, and ResNet). Subgroup analyses also 
compared the diagnostic accuracy of DL models within 
each group. Deeks’ funnel plot asymmetry test assessed 
publication bias with a statistically significant P-value 
of less than 0.05. All statistical analyses were conducted 
using the Midas and mandi packages in STATA version 
17 (StataCorp LP, College Station, TX) and Meta-Disc.

Results
Study selection
Figure  1 outlines our study selection process. We ini-
tially identified 204 articles through electronic database 
searches. After excluding 189 duplicates and unrelated 
articles, 15 studies were assessed for eligibility. Ulti-
mately, seven articles were selected after a full-text 
review.

Study characteristics
The selected articles, published between 2019 and 2025, 
included studies conducted in Japan (n = 2), South Korea 
(n = 2), Turkey (n = 1), Brazil (n = 1), and Germany (n = 1). 
A total of 4217 participants were involved, with 85% 
female, and the average age of participants exceeded 50 
years. In four studies, MCI served as the reference stan-
dard for confirming patients with osteoporosis [14–17], 
while three studies utilized DEXA [11, 18, 19]. The 
reviewed studies developed 21 DL models with various 
architectures, often utilizing transfer learning meth-
ods such as ResNet, VGG, and EfficientNet. Most stud-
ies implemented multiple DL models. Three studies 
employed k-fold cross-validation [16–18], while the oth-
ers used simple random sampling for dataset partition-
ing into training, validation, and testing sets [11, 14, 15, 
19]. All studies utilized an internal dataset for validation 
testing. Regarding hyperparameters, there was notable 
variability across studies. Optimization algorithms that 
reported in three studies, including Stochastic Gradi-
ent Descent (SGD) [16, 18, 19] and Adam [14]. Reported 
learning rates ranged from 0.001 [17, 19] to 0.1 [16], with 
one study using multiple values (0.001 and 0.01) [18]. 
four studies reported batch sizes, which varied between 
16 [19], 24 [14], 32 [16], and 50 [15]. The number of train-
ing epochs, reported in four studies, included 20 [15], 30 

Table 1  Inclusion and exclusion criteria based on the PICOS 
framework

Inclusion criteria Exclusion criteria
Popula-
tion (P)

Studies assessing patients with sus-
pected or diagnosed osteoporosis 
through panoramic radiographs.

Studies of patients with 
suspected or diagnosed 
osteoporosis based 
on images of the hip, 
femur, or lumbar spine.
Studies fewer than 10 
participants.

Inter-
vention 
(I)

Research on deep learning models 
for osteoporosis diagnosis

Research utilizing non-
deep learning tech-
niques (e.g., traditional 
machine learning and 
statistical methods)

Com-
parator 
(C)

Studies evaluating deep learning 
models against traditional diagnos-
tic methods, including dual-energy 
X-ray absorptiometry (DXA), man-
dibular cortical index (MCI), and 
expert radiologist assessments.

Out-
come 
(O)

● Studies reporting diagnostic ac-
curacy metrics, including sensitivity, 
specificity, and area under the curve 
(AUC).
● Studies that provide data for 
calculating these metrics.

Studies that do not 
report diagnostic 
accuracy or lack suf-
ficient data for metric 
calculation.

Study 
Design 
(S)

● Original peer-reviewed studies 
utilizing DL algorithms for osteopo-
rosis prediction or diagnosis.
● published in English language

Review, editorials, com-
mentaries, letters to the 
editor, case series, case 
reports, conference 
abstract and preprint 
articles
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[16], 100 [17, 18], and 150 [19]. Table 2 summarizes the 
information from the selected studies.

Risk of bias within studies
Using the QUADAS-2 method, we assessed the quality of 
the studies and potential bias. Most studies showed a low 
risk of bias in the “patient selection” and “reference stan-
dard” categories, though one was ambiguous. All studies 
were generally low risk in the “patient selection,” “index 
test,” and “reference standard” domains. Four studies had 
unclear assessments in the “flow and timing” domain. 
Detailed quality assessment results can be found in Sup-
plemental File 1, Fig. S1, and Table S3.

Diagnostic accuracy of deep learning models
The DL models developed in the included studies exhib-
ited AUC values from 66.8% [11] to 99.8% [14]. Their sen-
sitivity and specificity ranged from 59% [18] to 97% [14] 
and 64.9% [11] to 100% [14], respectively. Detailed results 
for these DL models can be found in Supplemental File 
1, Table S4. The pooled sensitivity and specificity were 
0.80 (95% CI: 0.74–0.86) and 0.92 (95% CI: 0.88–0.95). 
Figures  2 and 3 present forest plots with a 95% CI for 
sensitivities and specificities. Both sensitivity (I² = 94%, 
p < 0.001) and specificity (I² = 97%, p < 0.001) showed sig-
nificant heterogeneity. The bivariate approach yielded a 
pooled SROC curve with an AUC of 0.93 (95% CI: 0.91–
0.95) (Fig. 4), and the DOR for the DL models was 50.42 
(95% CI: 23.31–109.05). Additional details on the meta-
analysis of diagnostic accuracy are in Supplemental File 
2, Figs. S1-S5.

Meta-regression analysis and subgroup analysis
The meta-regression analysis aimed to identify sources 
of heterogeneity among studies. As illustrated in Fig.  5, 
validation methods and type of reference standard sig-
nificantly contributed to this heterogeneity. Additionally, 
Subgroup analyses were conducted based on DL meth-
ods (Table 3). The results have shown that no significant 
differences in diagnostic accuracy were found between 
subgroups, and in terms of DL methods, AlexNet, with a 
sensitivity of 0.89 and specificity of 0.99, had better per-
formance than another method.

Sensitivity analysis and publication bias
Sensitivity analyses were performed to identify sources 
of heterogeneity. The bivariate box plot (Supplementary 
file 21, Fig. S3) indicated two outlier models, which were 
subsequently excluded from the meta-analysis. The sen-
sitivity analysis showed that excluding these outliers had 
no significant impact (Supplementary File 2, Table S1). 
Additionally, Deeks’ funnel plot asymmetry test was con-
ducted to assess potential publication bias (Fig. 6), reveal-
ing no significant bias among the studies (P = 0.54).

Discussion
Diagnostic imaging results are assessed to confirm or 
exclude diseases in patients at clinics and para-clinic 
services. Radiological tests measure accuracy through 
sensitivity and specificity in relation to gold standard 
methods, which often exhibit an inverse relationship. 
The area under the receiver operating characteristic 
(ROC) curve indicates combined efficacy and serves as 

Table 2  This review includes a comprehensive summary of the data collected from the studies
Study/ Year Country Study Design Num-

ber of 
patients

Mean 
age

Center Ref-
er-
ence 
test

validation 
techniques

DL Methods Exter-
nal vali-
dation 
test

Nakamoto et 
al./ 2022 [15]

Japan Retrospective 100 > 50 single-center MCI Random 
sampling

AlexNet, VGG16,
GoogleNet

NO

Lee et 
al./2020[11]

South 
Korea

Retrospective 680 > 50 single-center DXA Random 
sampling

CNN, VGG-16, NO

Sukegawa et 
al./2022[18]

Japan Retrospective 778 > 50 single-center DXA 5-fold cross 
validation

EfficientNet b3,
ResNet50,
ResNet152,
ResNet18,
EfficientNet b0, EfficientNet b7

NO

Lee et 
al./2019[14]

South 
Korea

Retrospective 200 > 50 single-center MCI Random 
sampling

AlexNet NO

Tassoker et 
al./2022[16]

Turkey Retrospective 1488 > 50 single-center MCI 5-fold cross 
validation

AlexNet, GoogleNet, ResNet50, 
ShuffleNet, SqueezeNet

NO

Dias et 
al./2025[17]

Brazil Retrospective 471 > 50 single-center MCI 5-fold cross 
validation

EfficientNet b5
EfficientNet b6
EfficientNet b7

NO

Gaudin et 
al./2024[19]

Germany Retrospective 500 > 50 single-center DXA Random 
sampling

Densenet201 NO

Mean age: mean age of participants. Center: data gathering centers (Single center/Multicenter). DL method: deep learning method. MCI: mandibular cortex index. 
DXA: dual-energy X-ray absorptiometry. DL Methods: Deep learning methods. NA: Not Available
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a key accuracy metric. These scores are vital for analyz-
ing imaging in both quantitative and qualitative con-
texts. As a result, researchers are increasingly exploring 
the sensitivity and specificity of various medical imaging 
techniques for diagnosing osteoporosis in high-risk pop-
ulations [20, 21]. This area has seen considerable research 
activity. While each imaging method has pros and cons, 
integrating DL has emerged as a promising solution to 
address these limitations and enhance diagnostic efforts 
[22]. Some studies emphasize the diagnosis of dental 
issues, the distinction between primary and secondary 
tumors, and the poor prognosis associated with distant 
metastases to the mandible, along with the importance of 
timely treatment and management strategies. One study 
specifically demonstrated the correlation between clini-
cal findings and sensitivity to healthy and diseased dental 
conditions, such as caries and periapical lesions, using an 

artificial intelligence program. The role of medical imag-
ing and artificial intelligence in recognizing dental dis-
eases has been underscored in these studies [23, 24].

This systematic review and meta-analysis assessed the 
diagnostic accuracy of DL models in predicting osteo-
porosis. The results suggest that DL models are valuable 
tools for aiding radiologists and physicians in the early, 
non-invasive diagnosis of osteoporosis. This is crucial for 
improving prognosis, enabling effective treatment, and 
increasing survival rates.

Additionally, DL algorithms can enhance osteoporosis 
screening by analyzing panoramic images without dis-
rupting clinical workflows and demonstrate strong per-
formance in managing severe osteoporotic fractures. Yen 
et al. recently conducted a meta-analysis on DL model 
performance in diagnosing osteoporosis, reporting 
high diagnostic accuracy [25]. However, that study had 

Fig. 2  Forest plot showing the pooled sensitivity of Deep Learning for predicting osteoporosis
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limitations, including the absence of specific analyses like 
meta-regression, subgroup analysis, and publication bias 
assessment. It focused on pelvic and waist images while 
providing minimal attention to OPG images and did not 
explore different DL techniques. Furthermore, it lacked 
results such as DOR and LR. Our study comprehensively 
addresses these gaps by evaluating and comparing these 
parameters without the mentioned limitations.

The studies reviewed demonstrated that the effec-
tiveness of a DL model is assessed using high-accuracy 
metrics such as AUC, sensitivity, and specificity, which 
effectively differentiate between patients and healthy 
individuals. The combined metrics were AUC 0.93 (95% 
CI: 0.91–0.95), sensitivity 0.80 (95% CI: 0.74–0.86), and 
specificity 0.92 (95% CI: 0.88–0.95). Similarly, Yen et al. 
reported an AUROC of 0.88, a sensitivity of 0.81, and a 
specificity of 0.87 [25]. Additionally, our results show that 
DL models outperform other machine learning methods 
in osteoporosis prediction, aligning with Rahim et al.‘s 

study [26]. However, this research area is still emerging, 
and further studies are necessary to validate the general-
izability of these results and enhance DL model perfor-
mance for clinical applications.

This meta-analysis found a pooled diagnostic odds ratio 
(DOR) of 50.42 (95% CI: 23–109), indicating that DL is 
generally superior for diagnosing osteoporosis compared 
to traditional machine learning techniques. Likelihood 
ratios (LR) are crucial metrics that reflect disease fre-
quency and enhance clinical judgment [27]. The study 
reported a pooled positive likelihood ratio (LR+) of 10.67 
(range 6.4–17.6), suggesting that predictions of osteopo-
rosis using DL are 10.67 times more likely to be correct 
than pessimistic predictions, demonstrating a substan-
tial positive predictive value for identifying actual cases 
of osteoporosis. Additionally, a pooled negative likeli-
hood ratio (LR−) of 0.21 (range 0.15–0.29) was observed, 
indicating effective identification of individuals without 
osteoporosis. Rahim et al. reported LR + and LR − rates of 

Fig. 3  Forest plot illustrating the pooled specificity of Deep Learning in predictions
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3.7 and 0.22 for ML models predicting osteoporosis [26]. 
Thus, our results suggest that DL outperforms other ML 
algorithms in this context.

This study provides the first comprehensive evaluation 
of the diagnostic accuracy of DL models for predicting 
osteoporosis from panoramic radiographs, serving as a 
valuable reference for future research. Despite significant 
challenges posed by heterogeneity in our meta-analysis, 
we identified and addressed its sources to enhance the 
robustness of our results. The analysis revealed con-
siderable heterogeneity, indicated by high I2 values. To 
explore its sources, we conducted meta-regression, find-
ing that variations in characteristics such as validation 
methods may influence prediction performance across 
studies. Additionally, we performed a subgroup analysis 
based on DL techniques, revealing that most studies uti-
lized transfer learning models like AlexNet and ResNet, 
which are notably effective for osteoporosis diagnosis 
[28]. However, factors like dataset size, image quality, and 
training parameters significantly impact performance. 
Future research should standardize methods and report-
ing practices to mitigate heterogeneity. We evaluated 
publication bias in our analysis and found no significant 
bias, as confirmed by the Deek’s funnel plot test, which 
strengthens the reliability of our findings. Nonetheless, 
Caution is necessary in interpreting these results due to 
possible unrecognized biases. External validation of DL 
models is essential for clinical reliability [29, 30], but all 
reviewed studies depended exclusively on internal vali-
dation. Therefore, implementing external validation is 
essential for accurately assessing DL model performance. 

In addition, the few numbers of studies and single-center 
data were the limitation of our study; therefore, multi-
center data and further research is needed to broaden 
the evidence. A key limitation of this study is the incom-
plete and inconsistent reporting of hyperparameters in 
several included studies. While we diligently analyzed 
the available data concerning critical parameters such 
as optimization algorithms, learning rates, batch sizes, 
and epoch, it became evident that many of the studies 
either neglected to report these essential details entirely 
or provided information that was deemed inadequate for 
comprehensive analysis. This lack of transparency poses 
significant challenges, as it hinders our ability to con-
duct a thorough evaluation regarding how these various 
hyperparameters influence model performance. Further-
more, this reporting issue contributes to the considerable 
heterogeneity observed in our meta-analysis, making it 
difficult to draw reliable conclusions across the differ-
ent studies reviewed. To improve the comparability and 
reproducibility of deep learning models used in osteo-
porosis prediction, it is imperative that future research 
endeavors adhere to accepted standardized reporting 
guidelines for hyperparameters. By following such guide-
lines, researchers can provide a clearer picture of their 
methodologies and findings. Drawing from the insights 
gained and existing limitations highlighted in this study, 
it is anticipated that future research efforts will increas-
ingly focus on standardizing documentation practices. 
This standardization is crucial for enabling more rigor-
ous and meaningful evaluations of deep learning model 
performance. In turn, such improvements are expected 
to enhance the accuracy and precision of quantitative 
analyses within the field. Additionally, it would be benefi-
cial for future studies to delve deeper into exploring the 
effects of specific hyperparameter settings through more 
structure-oriented subgroup or sensitivity analyses. This 
deeper exploration could lead to a better understand-
ing of how varying these parameters impacts diagnostic 
accuracy, ultimately providing clearer insights into opti-
mizing deep learning approaches in osteoporosis predic-
tion and related applications.

While DL shows strong potential in predicting osteo-
porosis, additional research is necessary to validate these 
findings through prospective clinical trials. Further 
efforts should focus on developing and optimizing DL 
models for clinical integration. Lastly, strategies must be 
established to address the ethical and societal implica-
tions of using DL in osteoporosis prediction.

Conclusions
This review and meta-analysis revealed that DL models 
for osteoporosis diagnosis achieved pooled sensitivity, 
specificity, and AUC of 80%, 92%, and 93%, respectively, 
outperforming other algorithms. Transfer learning 

Fig. 4  Summary receiver-operating curves (SROC) using the bivariate 
approach
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Table 3  The results of subgroup analyses
Subgroup DL models

N (%)
Sen
(95%CI)

Spe
(95%CI)

PLR
(95%CI)

NLR
(95%CI)

DOR (95%CI)

Overall 21 (100) 0.80
(0.74–0.86)

0.92
(0.88–0.95)

10.67
(6.4–17.6)

0.21
(0.15–0.29)

50.42
(23–109)

DL Methods
AlexNet 3(14) 0.89

(0.73–0.96)
0.99
(0.49-1)

94
(-353-541)

0.11
(0.04–0.22)

822
(-3852-5497)

VGG 2(9.5) 0.90
(0.85–0.92)

0.81
(0.77–0.84)

4.73
(3.81–5.65)

0.13
(0.09–0.18)

35
(20–50)

ResNet 4(19) 0.67
(0.62–0.72)

0.92
(0.88–0.94)

8.27
(4.81–11.72)

0.36
(0.29–0.42)

23
(9–37)

EfficientNet 6(29) 0.86
(0.70–0.94)

0.94
(0.89–0.96)

13.57
(4.52–22.6)

0.15
(0.02–0.28)

89
(-47-227)

GoogleNet 2(9.5) 0.8
(0.78–0.83)

0.94
(0.66–0.99)

14
(-14-42.21)

0.2
(0.17–0.25)

67
(-76-210)

Other 4(19) 0.73
(0.68–0.79)

0.90
(0.71–0.97)

7.05
(-1.34-15.46)

0.3
(0.21–0.39)

22
(-11-58)

Sen: sensitivity, Spe: specificity, PLR: positive likelihood ratios, NLR: negative likelihood ratios, DOR: diagnostic odds ratio, DL Methods: deep learning methods

Fig. 5  Meta-regression and subgroup analysis
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models like VGG and ResNet showed enhanced perfor-
mance, suggesting their effectiveness. Our findings indi-
cate that DL models can facilitate early detection with 
high sensitivity and specificity, functioning as promising 
non-invasive diagnostic tools. However, further research, 
including more extensive multi-center studies, must 
refine these algorithms and validate their effectiveness in 
at-risk populations.
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