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Abstract
Objectives  To assess the predictive value of combining DCE-MRI, DKI, IVIM parameters, and clinical characteristics for 
neoadjuvant chemotherapy (NAC) efficacy in invasive ductal carcinoma.

Methods  We conducted a retrospective study of 77 patients with invasive ductal carcinoma, analyzing MRI data 
collected before NAC. Parameters extracted included DCE-MRI (Ktrans, Kep, Ve, wash-in, wash-out, TTP, iAUC), DKI (MK, 
MD), and IVIM (D, D*, f ). Differences between NAC responders and non-responders were assessed using t-tests or 
Mann-Whitney U tests. ROC curves and Spearman correlation analyses evaluated predictive accuracy.

Results  NAC responders had higher DCE-MRI-Kep, DKI-MD, IVIM-D, and IVIM-f values. Non-responders had higher 
DCE-MRI-Ve, DKI-MK, IVIM-D (kurtosis, skewness, entropy), and IVIM-f (entropy). The mean DKI-MK had the highest AUC 
(0.724), and IVIM-D interquartile range showed the highest sensitivity (94.12%). Combined parameters had the highest 
AUC (0.969), sensitivity (94.12%), and specificity (90.70%). HER2 status (OR, 0.187; 95% CI: 0.038, 0.914; P = 0.038) and 
tumor margin (OR, 20.643; 95% CI: 2.892, 147.365; P = 0.003) were identified as independent factors influencing the 
lack of significant efficacy of neoadjuvant chemotherapy (NAC) in breast cancer.

Conclusions  Combining DCE-MRI, DKI, and IVIM parameters effectively predicts NAC efficacy, providing valuable 
preoperative assessment insights.

Clinical trial number  Not applicable.

Advances in knowledge
This study innovatively integrates DCE-MRI, DKI, and IVIM imaging techniques and utilizes histogram-based analysis 
to enhance the prediction accuracy of neoadjuvant chemotherapy efficacy. It not only broadens the application 
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Introduction
Breast cancer is currently the most common malignant 
tumor among women, and both its incidence and mortal-
ity are still on the rise, posing a significant threat to wom-
en’s quality of life and health [1]. Among breast cancers, 
invasive ductal carcinoma (IDC) is the most common 
histological type, characterized by strong invasiveness, 
prone to infiltrating the chest wall, skin, or distant metas-
tases, requiring prompt and effective treatment. Neoad-
juvant chemotherapy (NAC) is the first-line treatment for 
locally advanced breast cancer (LABC), widely applied 
in clinical practice. Effective NAC prior to surgery can 
reduce the tumor size, downgrade the tumor stage, elimi-
nate or reduce micrometastases, increase the chances of 
surgery, and improve both disease-free survival and over-
all survival rates [2]. Predicting the efficacy of NAC not 
only enhances the precision of breast cancer treatment 
but also provides more personalized treatment plans and 
better prognostic evaluations. Comprehensive assess-
ment through imaging, molecular biomarkers, and clini-
cal indicators enables earlier detection of chemotherapy 
response and resistance, thus improving the overall 
treatment outcomes and quality of life for patients. Tra-
ditional imaging methods include mammography, ultra-
sound, CT, and MRI; among these, magnetic resonance 
imaging (MRI) is the most sensitive and advanced imag-
ing technique for breast cancer diagnosis, improving 
lesion detection, lesion characteristics, and the degree of 
surrounding soft tissue invasion [3]. Dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI), 
diffusion-weighted imaging (DWI), diffusional kurtosis 
imaging (DKI), and intravoxel incoherent motion (IVIM) 
are functional imaging techniques that enhance the dif-
ferentiation and diagnostic accuracy of benign and malig-
nant tumors, assisting in clinical decision-making and 
treatment efficacy evaluation.

DCE-MRI can potentially reflect tumor angiogenesis, 
blood flow, and vascular permeability, and it can display 
tumor morphological features with high spatial resolu-
tion, such as tumor size, enhancement pattern, tumor 
necrosis, chest wall involvement, tumor margins, and 
internal enhancement changes, which help assess the 
tumor’s response to NAC [4]. Diffusional Kurtosis Imag-
ing (DKI) extends the basic model of DWI by considering 
the non-Gaussian behavior of water molecule diffusion, 
improving the description of tissue microstructure. DKI 
captures higher-order statistical features of water mol-
ecule diffusion, such as mean diffusivity (MD) and mean 

kurtosis (MK), providing more information for quantify-
ing tissue heterogeneity. Compared to DWI, DKI offers 
more detailed and precise diffusion characteristics, espe-
cially in evaluating tissue complexity and tumor hetero-
geneity. In tumor tissue, due to high cellular density and 
irregular structures, water molecule diffusion is non-
Gaussian, and DKI can reveal this, whereas DWI can-
not differentiate anisotropy and complex microstructure 
within tissues. IVIM models decompose the diffusion 
signal into two components: the diffusion component (D 
value) related to microscopic tissue diffusion and the per-
fusion component (D* value) related to tissue microcir-
culation [5]. Compared to DWI, IVIM not only assesses 
the diffusion characteristics of water molecules but also 
separates the perfusion effects, which is valuable for eval-
uating tumor microcirculation and perfusion. IVIM pro-
vides comprehensive information on tumor perfusion, 
especially in tumors with a high density of blood vessels, 
which is more informative than DWI [6–8].

With advancements in medical imaging technology, 
multimodal imaging has become an essential method 
for predicting breast cancer treatment efficacy. Com-
pared to traditional single-modality imaging, combining 
DCE-MRI, DKI, and IVIM can comprehensively reflect 
the tumor’s microstructure and biological characteristics 
from multiple perspectives. Histogram features, by quan-
tifying the gray-level distribution of images, include com-
mon features such as 10th percentile, 90th percentile, 
energy, entropy, interquartile range, kurtosis, max, min, 
mean, median, range, skewness, uniformity, and vari-
ance. These serve as alternative markers of tumor hetero-
geneity, capable of quantifying the complex and uneven 
tumor microenvironment [7]. For example, kurtosis and 
entropy can reflect tumor tissue heterogeneity and irreg-
ularity, while the 10th and 90th percentiles provide infor-
mation on the distribution of different intensities within 
the tumor region [8]. These imaging features are closely 
related to the tumor’s biological behavior, microcircula-
tion status, and angiogenesis, providing more precise 
support for clinical treatment decisions. The integration 
of multimodal imaging parameters, morphological fea-
tures, and clinical data (such as ER, PR, HER2, and Ki-67) 
can improve the accuracy of NAC efficacy prediction. 
Compared to single imaging methods, this approach bet-
ter reflects individual tumor variations and promotes the 
development of personalized treatment for breast cancer 
[9, 10].

range of imaging parameters but also supports the development of personalized treatment plans based on 
comprehensive data.

Keywords  Invasive ductal carcinoma, Neoadjuvant chemotherapy, Diffusion kurtosis imaging, Intravoxel incoherent 
motion imaging, Dynamic contrast-enhanced, Histogram parameters
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Materials and methods
Study population
A retrospective study was conducted to collect data from 
152 breast cancer patients who underwent MRI exami-
nations between January 2021 and October 2023 in the 
Radiology Department PACS system at our hospital. All 
patients were female, and after screening, 77 patients 
met the inclusion criteria. Inclusion criteria: (1) Diagno-
sis of breast cancer confirmed by biopsy (invasive ductal 
carcinoma); (2) Pre-neoadjuvant chemotherapy (NAC) 
MRI scans including 3.0T routine MRI, dynamic con-
trast-enhanced (DCE), diffusion kurtosis imaging (DKI), 

and intravoxel incoherent motion (IVIM) sequences; (3) 
Completion of 6–8 cycles of NAC; (4) Surgical treatment 
after NAC, with pathological Miller-Payne (MP) grad-
ing for efficacy assessment. Exclusion criteria: (1) Poor 
image quality (motion or artifact interference, low sig-
nal-to-noise ratio, insufficient resolution, low contrast); 
(2) Incomplete patient demographic and clinical data, as 
shown in Fig. 1.

The Miller-Payne Grading System is a standardized sys-
tem for assessing the pathological response of breast can-
cer patients to neoadjuvant chemotherapy (NAC) [11]. 
It evaluates the pathological changes in tumor tissue, 

Fig. 1  Flowchart of inclusion and exclusion criteria for breast cancer patients
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particularly the changes in tumor cell density. The grad-
ing system observes the degree of reduction in tumor 
cells, especially in terms of tumor necrosis, fibrosis, and 
changes in cellular density after chemotherapy, providing 
a precise reflection of NAC efficacy. Patients meeting the 
inclusion criteria were evaluated for NAC efficacy based 
on changes in tumor cell density using the Miller-Payne 
grading system: Grade I: No reduction in tumor cell 
density; Grade II: Tumor cell density reduced by < 30%; 
Grade III: Tumor cell density reduced by 30-90%; Grade 
IV: Tumor cell density reduced by > 90%, but residual 
tumor cell clusters or scattered single tumor cells pres-
ent; Grade V: No residual tumor cells, but ductal carci-
noma in situ components may remain [12, 13]. Based on 
the pathological response of the tumor, imaging results 
(presence/absence of tumor, abnormal enhancement in 
the lesion area), and clinical response, Grades IV and 
V were defined as the significant efficacy group, while 
Grades I, II, and III were defined as the non-significant 
efficacy group [14, 15]. The study protocol has been reg-
istered with the National Medical Research Registration 
System and approved by the affiliated medical institution 
and relevant regulatory departments.

MRI examination protocol
In this study, all cases were scanned using a Siemens 
3.0T magnetic resonance imaging (MRI) system with 
an 18-channel dedicated breast phased-array coil to 
acquire images. The imaging protocols included axial 
T1-weighted imaging (T1WI) with a repetition time (TR) 
of 6.04 ms, echo time (TE) of 2.46 ms, slice thickness of 
1.6 mm, field of view (FOV) of 360 mm × 360 mm, acqui-
sition matrix of 448 × 384, and one excitation. For axial 
T2-weighted imaging (T2WI), the TR was 6500 ms, TE 
was 84 ms, slice thickness was 4 mm, FOV was 400 mm × 
400 mm, acquisition matrix was 448 × 448, with one exci-
tation. Diffusion Kurtosis Imaging (DKI) and Intravoxel 
Incoherent Motion Imaging (IVIM) used TR of 6100 ms, 
TE of 54 ms, slice thickness of 4  mm, FOV of 340  mm 
× 340 mm, and an acquisition matrix of 190 × 190, with 

b-values set at 50, 450, 800, 1200, and 1600  s/mm². 
Dynamic Contrast-Enhanced MRI (DCE-MRI) was per-
formed with a TR of 7.14 ms, TE of 3.69 ms, inversion 
angle of 8°, slice thickness of 4 mm, matrix of 448 × 448, 
and FOV of 340 mm × 340 mm, with a scan time of 9.6 s 
per phase for a total of 35 phases. A 20 mL dose of Gado-
pentetate dimeglumine contrast agent was injected intra-
venously using a power injector at a rate of 2.0 mL/s, as 
detailed in Table 1.

Image processing and analysis
The original MR breast DCE, DKI, and IVIM images that 
met the inclusion criteria were exported from the PACS 
system in DICOM format and processed using Body Sta-
tion software for analysis. The DKI model was selected 
for functional calculation to obtain pseudo-color maps 
for MD and MK. Manual layer-by-layer delineation of the 
entire lesion ROI was performed by identifying the lesion 
on the MRI-enhanced images, ensuring that non-tumor 
tissue (such as normal tissue, necrosis, liquefaction, large 
blood vessels) was excluded as much as possible, and then 
saved. Using the same software, the IVIM model was 
applied for functional calculation to obtain pseudo-color 
maps for D, f, and D* values. The DKI lesion ROIs were 
copied onto the IVIM pseudo-color maps to ensure con-
sistency between the DKI and IVIM lesion delineation.

Additionally, the MR Tissue4D software was used to 
manually delineate the core lesion area on the enhanced 
original images, obtaining quantitative parameters 
for DCE-MRI, including the volume transfer constant 
(Ktrans), rate constant (Kep), and the extravascular extra-
cellular volume fraction (Ve), as well as semi-quantita-
tive parameters such as wash-in, wash-out, time to peak 
(TTP), and the initial area under the curve (iAUC) within 
the first 60 s after contrast injection. This entire process 
was independently completed by two experienced radi-
ologists under double-blind conditions.

Table 1  MRI scan parameters
Parameters T1WI T2Dixon DKI IVIM Twist-Vibe
Spatial resolution, mm 0.8 × 0.8 × 1.6 0.9 × 0.9 × 4.0 1.8 × 1.8 × 4.0 1.8 × 1.8 × 4.0 1.0 × 1.0 × 4.0
TR/TE, ms 6.04/2.46 6500.00/84.00 6100.00/54.00 5700.00/54.00 7.14/3.69
Slice thickness, mm 1.6 4 4 4 4
Fat saturation No Dixon SPAIR SPAIR Water Ex
FOV, mm 360 × 360 400 × 400 340 × 340 340 × 340 340 × 340
Temporal resolution, s 53 91 211 211 9.6
Matrix 448 × 384 448 × 448 190 × 190 190 × 190 448 × 448
Distance factor, mm 0.32 1 0.8 0.8 4
Bandwidth, Hz/pixel 380 930 1754 1754 590
b value N/A N/A 50/450/800/1200/1600 50/450/800/1200/1600 N/A
Flip angles, degree 120 120 120 120 8
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Statistical analysis
Statistical analysis was performed using SPSS 25.0 soft-
ware. The intra-class correlation coefficient (ICC) was 
used to test the consistency of DCE, DKI, and IVIM his-
togram parameters between the two groups. The Kol-
mogorov-Smirnov test was applied to assess whether the 
continuous variables followed a normal distribution. For 
variables that followed a normal distribution, data were 
expressed as mean ± standard deviation (x ̄ ± s), and inter-
group comparisons were performed using the indepen-
dent two-sample t-test with Bonferroni correction. For 
variables that did not follow a normal distribution, data 
were described using median and interquartile range (M 
(P25, P75)), and comparisons between groups were made 
using the Mann-Whitney U test. Categorical variables 
were compared between groups using the chi-squared 
test or Fisher’s exact test, and data were presented as 
counts (%).Spearman rank correlation analysis was used 
to assess the correlation between various parameters and 
the lack of significant NAC efficacy. ROC curves were 
generated using MedCalc 22.0 software, and the diag-
nostic performance of each parameter in distinguishing 
NAC efficacy was evaluated using the area under the 
curve (AUC). The confidence intervals and odds ratios 
(OR) were calculated using the bootstrap method. The 
DeLong method was applied to compare the AUC dif-
ferences between parameters to determine whether the 
differences were statistically significant (P < 0.05). Vari-
ables with P < 0.01 from univariate (categorical and con-
tinuous) logistic regression analysis were included in the 
multivariate logistic regression analysis to identify inde-
pendent factors influencing NAC efficacy.

Results
Comparison of clinical data and MRI image characteristics
The results of the intra-class correlation coefficient (ICC) 
consistency test were as follows: DCE (0.821–0.997), DKI 
MD value (0.873–0.988), MK value (0.917–0.985), IVIM 
D value (0.830–0.977), f value (0.803–0.911), and D* 
value (0.902–0.990). All ICC values were greater than 0.7, 
indicating good consistency between the two sets of data.

According to the Miller-Payne grading system, the 
NAC efficacy group was divided into two groups: 6 
patients in grade I, 11 patients in grade II, and 17 patients 
in grade III, which were categorized as the non-signifi-
cant efficacy group (34 patients); 16 patients in grade IV 
and 27 patients in grade V, which were categorized as the 
significant efficacy group (43 patients). There were no 
statistically significant differences between the significant 
and non-significant efficacy groups regarding age, men-
strual status, lesion quadrant, tumor size, enhancement 
pattern, peritumoral edema, tumor necrosis, chest wall 
involvement, skin thickening, nipple retraction, P53 sta-
tus, immunohistochemical subtype, and axillary lymph 

node metastasis (P > 0.05).In this study, for the significant 
efficacy group, 35 patients (81%) had regular tumor mar-
gins, and 8 patients (19%) had star-like margins; in the 
non-significant efficacy group, 15 patients (44%) had reg-
ular margins, and 19 patients (56%) had star-like margins. 
In the significant efficacy group, 32 patients (74%) had 
heterogeneous internal enhancement, and 11 patients 
(26%) had ring-like or segmental enhancement; in the 
non-significant efficacy group, 17 patients (50%) had het-
erogeneous internal enhancement, and 17 patients (50%) 
had ring-like or segmental enhancement.In the signifi-
cant efficacy group, 32 patients (74%) had low ER expres-
sion (≤ 10%) and 11 patients (26%) had moderate/high ER 
expression (> 10%); in the non-significant efficacy group, 
14 patients (41%) had low ER expression and 20 patients 
(59%) had moderate/high ER expression. In the signifi-
cant efficacy group, 37 patients (86%) had low PR expres-
sion (≤ 10%) and 6 patients (14%) had moderate/high PR 
expression (> 10%); in the non-significant efficacy group, 
18 patients (53%) had low PR expression and 16 patients 
(47%) had moderate/high PR expression.In the signifi-
cant efficacy group, 1 patient (2%) had low Ki67 expres-
sion (≤ 14%) and 42 patients (98%) had moderate/high 
Ki67 expression (> 14%); in the non-significant efficacy 
group, 27 patients (79%) had low Ki67 expression and 7 
patients (21%) had moderate/high Ki67 expression.In the 
significant efficacy group, 14 patients (33%) were HER2-
negative and 29 patients (67%) were HER2-positive; in 
the non-significant efficacy group, 23 patients (68%) 
were HER2-negative and 11 patients (32%) were HER2-
positive. All of these findings were statistically significant 
(P < 0.05). Detailed clinical data and MR imaging features 
of patients with invasive ductal carcinoma of the breast 
before NAC treatment are shown in Table 2; Fig. 2.

Analysis of DCE, DKI, and IVIM parameters
In the significant efficacy group of breast cancer patients, 
the DCE-MRI-Kep, DKI-MD (90th Percentile, Mean, 
Median, Max, Range), IVIM-D (90th Percentile, Inter-
quartile Range, Mean, Median, Variance, Uniformity), 
and IVIM-f (Interquartile Range) were higher than in 
the non-significant efficacy group. Meanwhile, the DCE-
MRI-Ve, DKI-MK (Mean, Median), IVIM-D (Kurtosis, 
Skewness, Entropy), and IVIM-f (Entropy) were lower in 
the significant efficacy group compared to the non-sig-
nificant efficacy group. All differences between the two 
groups were statistically significant (P < 0.05).

In the univariate logistic regression analysis (for both 
categorical and continuous variables), tumor margin, 
internal enhancement, ER expression, PR expression, 
HER2 status, Ki67 expression, DKI-D (90th Percentile, 
Max, Mean, Median, Range), DKI-K (Mean, Median), 
IVIM-D (90th Percentile, Entropy, Interquartile Range, 
Mean, Median, Kurtosis, Skewness, Uniformity, 



Page 6 of 15Chen et al. BMC Medical Imaging          (2025) 25:118 

Variance), and IVIM-f (Entropy, Interquartile Range) 
were all significantly associated with NAC efficacy 
(P < 0.05).To enhance the significance and stability of the 
model, avoid multicollinearity, reduce redundant vari-
ables, and control for potential confounding factors, we 
included variables with P < 0.01 in the multivariate binary 
logistic regression analysis. The results revealed that 
HER2 status (OR, 0.187; 95% CI: 0.038, 0.914; P = 0.038) 
and tumor margin (OR, 20.643; 95% CI: 2.892, 147.365; 
P = 0.003) were independent factors significantly associ-
ated with non-significant NAC efficacy in breast cancer 
(P < 0.05), as detailed in Tables 3, 4 and 5; Figs. 3 and 4.

Correlation analysis of DCE, DKI, and IVIM parameters with 
NAC efficacy
The results indicated that DCE-MRI-Kep, DKI-MD (90th 
Percentile, Mean, Median, Max, Range), IVIM-D (90th 
Percentile, Interquartile Range, Mean, Median, Vari-
ance, Uniformity), and IVIM-f (Interquartile Range) were 
positively correlated with the significant efficacy of neo-
adjuvant chemotherapy (NAC) in breast cancer (r_s > 0, 

P < 0.05). This suggests that the larger these parameters, 
the higher the NAC efficacy. Conversely, DCE-MRI-Ve, 
DKI-MK (Mean, Median), IVIM-D (Kurtosis, Skewness, 
Entropy), and IVIM-f (Entropy) were negatively corre-
lated with NAC efficacy (rs < 0, P < 0.05), indicating that 
the larger these parameters, the lower the NAC efficacy.

Among these parameters, DCE-MRI-Ve had the high-
est correlation with NAC efficacy (rs = 0.267). For DKI-
MD, the Max and Range values exhibited the highest 
correlation with NAC efficacy (rs = 0.357). In DKI-MK, 
the Mean value showed the highest correlation with NAC 
efficacy (rs = 0.386). Regarding IVIM-D, the Mean value 
had the highest correlation with NAC efficacy (rs = 0.367), 
and for IVIM-f, the Interquartile Range demonstrated 
the highest correlation with NAC efficacy (rs = 0.296), as 
detailed in Table 6.

Diagnostic efficacy analysis of individual and combined 
Whole-Histogram parameters
Among the single parameters, the DKI-MK Mean value 
had the largest area under the ROC curve (AUC = 0.724), 
while the IVIM-D Interquartile Range exhibited the high-
est sensitivity (94.12%). The DKI-MK Mean and IVIM-D 
Median values showed the highest specificity (90.70%).
In terms of combined parameters, the AUC, sensitivity, 
and specificity were highest when DCE-MRI was com-
bined with DKI and IVIM histogram parameters, with 
values of 0.969, 94.12%, and 90.70%, respectively.There 
were no significant differences in AUC between the 
single parameters (P > 0.05). However, significant differ-
ences in AUC were observed between the combined DCE 
parameter and the combinations of IVIM, DKI + IVIM, 
and DCE + DKI + IVIM (P < 0.05). Additionally, signifi-
cant differences were found between the combined DKI 
parameter and the DKI + IVIM and DCE + DKI + IVIM 
combinations (P < 0.05). Similarly, significant differ-
ences were seen between the IVIM parameter and 
the DKI + IVIM and DCE + DKI + IVIM combinations 
(P < 0.05), as detailed in Table 6; Fig. 5.

Discussion
Predictive value of pre-NAC MRI imaging characteristics, 
clinical features, and immunohistochemical factors for NAC 
efficacy in invasive ductal carcinoma of the breast
In this study, the preoperative lesion margin, inter-
nal enhancement patterns, ER expression, PR expres-
sion, Ki67 expression, and Her2 status in breast cancer 
patients were all statistically significantly associated with 
the efficacy of NAC. The number of patients with signifi-
cant therapeutic effects and a star-shaped lesion margin 
was significantly lower compared to those with a regular 
lesion margin, which may be attributed to the high activ-
ity and rapid proliferation rate of tumor cells, resulting 
in a high cell density and infiltration into surrounding 

Table 2  Clinical data and MR imaging features of breast Cancer 
NAC significant efficacy group and Non-significant efficacy group

Significant 
effi-
cacy group 
(N = 43)

Non-sig-
nificant ef-
ficacy group 
(N = 34)

Test 
statistic

P 
value

Lesion margin 11.59 0.001
Regular 35 (81%) 15 (44%)
Stellate 8 (19%) 19 (56%)
Internal 
enhancement

4.89 0.027

Heterogeneous 32 (74%) 17 (50%)
Rim enhancement 
or septations

11 (26%) 17 (50%)

ER expression 8.72 0.003
Low expression 
(≤10%)

32 (74%) 14 (41%)

Intermediate to high 
expression (>10%)

11 (26%) 20 (59%)

PR expression 10.2 0.001
Low expression 
(≤10%)

37 (86%) 18 (53%)

Intermediate to high 
expression (>10%)

6 (14%) 16 (47%)

HER2 status 9.37 0.002
Negative 14 (33%) 23 (68%)
Positive 29 (67%) 11 (32%)
Ki67 expression 4.98 0.026
Low expression 
(≤14%)

1 (2%) 27 (79%)

Intermediate to high 
expression (>14%)

42 (98%) 7 (21%)

Note: Normally distributed data is represented as X± S; non-normally distributed 
data is represented as M (P25, P75); and count data is represented as frequency 
(percentage)
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Table 3  Comparison of global histogram parameters in breast cancer NAC (Significant efficacy group vs. Non-significant efficacy 
group)
Variable Significant efficacy group (N = 43) Non-significant efficacy group (N = 34) t/Z value P value P value
DCE-Kep 0.646 (0.526, 0.806) 0.556 (0.456, 0.645) -1.980 0.048
DCE-Ve 0.077 (0.057, 0.126) 0.105 (0.082, 0.163) -2.329 0.020
DKI-MD-90Percentile 2.355 ± 0.396 2.100 ± 0.424 2.721 0.008
DKI-MD-Max 3.559 (2.890, 4.250) 2.684 (2.249, 3.690) -3.108 0.002
DKI-MD-Mean 1.582 (1.421, 1.710) 1.459 (1.254, 1.652) -2.472 0.013
DKI-MD-Median 1.610 ± 0.305 1.419 ± 0.279 2.838 0.006
DKI-MD-Range 3.550 (2.852, 3.988) 2.741 (2.261, 3.256) -3.108 0.002
DKI-MK-Mean 0.871 (0.777, 0.992) 1.054 (0.899, 1.266) -3.365 0.001
DKI-MK-Median 0.869 (0.772, 0.934) 0.986 (0.813, 1.155) -2.934 0.003
IVIM-D-90Percentile 1.373 ± 0.295 1.205 ± 0.213 2.801 0.006
IVIM-D-Entropy 0.532 (0.484, 0.552) 0.538 (0.518, 0.575) -2.088 0.037
IVIM-D-InterquartileRange 0.435 ± 0.152 0.331 ± 0.120 3.275 0.002
IVIM-D-Kurtosis 0.302 (0.274, 0.350) 0.347 (0.286, 0.409) -2.175 0.030
IVIM-D-Mean 0.953 ± 0.203 0.836 ± 0.139 2.876 0.005
IVIM-D-Median 0.932 (0.865, 0.987) 0.882 (0.745, 0.947) -2.729 0.006
IVIM-D-Skewness 0.102 ± 0.486 0.409 ± 0.685 -2.210 0.031
IVIM-D-Uniformity 0.375 (0.325, 0.428) 0.289 (0.219, 0.350) -2.232 0.026
IVIM-D-Variance 1.199 ± 0.604 0.875 ± 0.490 2.542 0.013
IVIM-f-Entropy 0.356 ± 0.041 0.376 ± 0.033 -2.304 0.024
IVIM-f-InterquartileRange 0.158 (0.128, 0.191) 0.120 (0.091, 0.172) -2.580 0.010
Note: Normally distributed data is represented as X ± S; non-normally distributed data is represented as M (P25, P75); and count data is represented as frequency 
(percentage)

Fig. 2  Comparison of categorical variables between the significant efficacy group and the non-significant efficacy group (P < 0.05)
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tissues, leading to fibrosis and a star-shaped margin 
appearance [16, 17]. This may cause the NAC effect to 
be less significant. In contrast, the number of patients 
with significant therapeutic effects and uneven internal 
enhancement was significantly higher compared to those 
with ring or segmented enhancement. This may be due 
to insufficient angiogenesis, the presence of necrotic or 
fibrotic areas within the tumor, which usually have poor 

blood and oxygen supply, making it difficult for therapeu-
tic agents to penetrate effectively, thus limiting the treat-
ment efficacy [18].

According to the latest guidelines from the American 
Society of Clinical Oncology (ASCO) and the College of 
American Pathologists (CAP), ER and PR immunohis-
tochemical (IHC) staining levels of 1–10% are classified 
as low expression. In this study, the number of patients 

Table 4  Univariate binary logistic regressioen analysis of neoadjuvant chemotherapy (NAC) efficacy in invasive ductal carcinoma of 
the breast

Coefficient Standard error Wald Degrees of freedom Significance OR 95% confidence interval 
for OR
Lower limit Upper limit

Lesion margin 1.712 0.522 10.745 1 0.001 5.542 1.991 15.427
Internal enhancement 1.068 0.490 4.755 1 0.029 2.909 1.114 7.596
ER expression 1.425 0.494 8.331 1 0.004 4.156 1.580 10.934
PR expression 1.701 0.558 9.285 1 0.002 5.481 1.835 16.374
HER2 status -1.604 0.498 10.388 1 0.001 0.201 0.076 0.533
Ki67 expression -2.388 1.097 4.736 1 0.030 0.092 0.011 0.789
DCE-Kep -1.084 0.852 1.618 1 0.203 0.338 0.064 1.798
DCE-Ve 2.819 1.793 2.471 1 0.116 16.755 0.499 562.846
DKI-D-90Percentile -0.002 0.001 6.305 1 0.012 0.998 0.997 1.000
DKI-D-Max -0.001 0.000 5.496 1 0.019 0.999 0.999 1.000
DKI-D-Mean -0.003 0.001 6.834 1 0.009 0.997 0.995 0.999
DKI-D-Median -0.002 0.001 6.683 1 0.010 0.998 0.996 0.999
DKI-D-Range -0.001 0.000 5.133 1 0.023 0.999 0.999 1.000
DKI-K-Mean 0.004 0.001 10.220 1 0.001 1.004 1.002 1.007
DKI-K-Median 0.004 0.002 8.345 1 0.004 1.004 1.001 1.007
IVIM-D-90Percentile -0.003 0.001 6.621 1 0.010 0.997 0.996 0.999
IVIM-D-Entropy 1.216 0.546 4.966 1 0.026 3.373 1.158 9.825
IVIM-D-InterquartileRange -0.006 0.002 8.525 1 0.004 0.994 0.991 0.998
IVIM-D-Kurtosis 0.642 0.323 3.942 1 0.047 1.900 1.008 3.581
IVIM-D-Mean -0.004 0.001 6.820 1 0.009 0.996 0.993 0.999
IVIM-D-Median -0.005 0.002 6.603 1 0.010 0.995 0.991 0.999
IVIM-D-Skewness 0.920 0.423 4.737 1 0.030 2.510 1.096 5.747
IVIM-D-Uniformity -38.850 19.255 4.071 1 0.044 0.000 0.000 0.329
IVIM-D-Variance 0.000 0.000 5.587 1 0.018 1.000 1.000 1.000
IVIM-f-Entropy 1.524 0.705 4.682 1 0.030 4.593 1.154 18.27
IVIM-f-InterquartileRange -0.009 0.004 4.067 1 0.044 0.991 0.983 1.000

Table 5  Multivariable binary logistic regression analysis of neoadjuvant chemotherapy (NAC) efficacy in invasive ductal carcinoma of 
the breast

Coefficient Standard error Wald Degrees of freedom Significance OR 95% confidence interval 
for OR
Lower limit Upper limit

DKI-D-Mean -0.002 0.002 2.32 1 0.128 0.998 0.995 1.001
DKI-K-Mean 0.003 0.005 0.261 1 0.609 1.003 0.992 1.013
DKI-K-Median 0.003 0.006 0.201 1 0.654 1.003 0.992 1.014
IVIM-D-InterquartileRange -0.003 0.003 1.171 1 0.279 0.997 0.991 1.003
IVIM-D-Mean -0.004 0.002 2.719 1 0.099 0.996 0.992 1.001
Lesion margin 3.027 1.003 9.113 1 0.003 20.643 2.892 147.365
ER expression 0.733 1.191 0.379 1 0.538 2.081 0.201 21.503
PR expression 0.749 1.317 0.323 1 0.570 2.115 0.16 27.956
HER2 status -1.674 0.808 4.29 1 0.038 0.187 0.038 0.914
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with low ER and PR expression and significant NAC effi-
cacy was significantly higher than that of patients with 
medium/high expression. Low ER and PR expression in 
breast cancer may indicate that the tumor is less depen-
dent on estrogen and progesterone for growth, which 
may result in higher resistance to hormone therapy [19]. 
Therefore, these patients may respond better to NAC, 
which works through a different mechanism.

The expression levels of human epidermal growth fac-
tor receptor 2 (Her2) are classified into four grades, from 
0 to 3+, with IHC results of 3 + or 2 + combined with in 
situ hybridization (ISH) showing positivity being con-
sidered Her2-positive. In this study, the number of 
Her2-positive patients with significant NAC efficacy was 
significantly higher than that of Her2-negative patients. 
Her2 is a cell membrane receptor that plays an important 

role in regulating cell growth and division. Her2-positive 
breast cancer cells usually have higher proliferative activ-
ity, and these tumor cells may be more sensitive to che-
motherapy drugs [20, 21].

In previous studies, Ki67 IHC staining levels of 1–14% 
were considered low expression [22]. In this study, the 
number of patients with significant NAC efficacy and 
low Ki67 expression was significantly lower than that of 
patients with medium/high expression. Ki67 medium/
high expression reflects a higher proliferative activity of 
tumor cells. During NAC, chemotherapy drugs mainly 
target rapidly proliferating cancer cells, and therefore, 
tumors with medium/high Ki67 expression are more 
likely to be killed by chemotherapy drugs [23, 24].

Fig. 3  A ∼ F represents patients in the non-significant neoadjuvant chemotherapy (NAC) group, with tumor lesions in the upper outer quadrant of the 
breast. Pathological results indicate invasive ductal carcinoma with heterogeneous enhancement. Regions of interest (ROI) were delineated globally on 
the DKI raw images (A), then copied onto the color maps of MD (B), MK (C), D* value (D), D value (E), and f value (F), with global histogram parameters 
calculated. G ∼ L represents patients in the significant neoadjuvant chemotherapy (NAC) group, with tumor lesions in the right upper outer quadrant of 
the breast. Pathological results indicate invasive ductal carcinoma with heterogeneous enhancement. Regions of interest (ROI) were delineated globally 
on the DKI raw images (G), then copied onto the color maps of MD (H), MK (I), D* value (J), D value (K), and f value (L), with global histogram parameters 
calculated
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Fig. 4  Comparison of whole-lesion histogram parameters between significant efficacy group and non-significant efficacy group (P < 0.05)
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Table 6  Analysis of the correlation and diagnostic performance between quantitative and semi-quantitative parameters of DCE-MRI, 
as well as global histogram parameters of DKI and IVIM, and the non-significant efficacy of neoadjuvant chemotherapy (NAC) in breast 
cancer

Correlation coefficient (rs)a AUC 95%CI Sensitivity (%) Specificity (%) PPV NPV Accuracy
DCE-Kep -0.227 0.632 0.515–0.739 76.47 51.16 0.553 0.733 0.623
DCE-Ve 0.267 0.647 0.530–0.753 85.29 44.19 0.547 0.791 0.623
DKI-D-90Percentile -0.299 0.674 0.557–0.776 50.00 81.40 0.680 0.673 0.675
DKI-D-Max -0.357 0.707 0.593–0.805 67.65 72.09 0.657 0.738 0.701
DKI-D-Mean -0.284 0.665 0.548–0.768 41.18 90.7 0.778 0.661 0.688
DKI-D-Median -0.290 0.669 0.552–0.772 50.00 83.72 0.708 0.679 0.688
DKI-D-Range -0.357 0.707 0.593–0.805 73.53 69.77 0.657 0.769 0.714
DKI-K-Mean 0.386 0.724 0.611–0.820 70.59 67.44 0.631 0.743 0.688
DKI-K-Median 0.337 0.696 0.580–0.795 58.82 81.40 0.714 0.714 0.714
IVIM-D-90Percentile -0.317 0.684 0.568–0.785 88.24 46.51 0.566 0.833 0.649
IVIM-D-Entropy 0.239 0.639 0.522–0.746 47.06 79.07 0.640 0.653 0.649
IVIM-D-InterquartileRange -0.339 0.697 0.582–0.797 94.12 41.86 0.561 0.900 0.649
IVIM-D-Kurtosis 0.250 0.645 0.528–0.751 58.82 67.44 0.588 0.674 0.636
IVIM-D-Mean -0.367 0.713 0.559–0.811 64.71 79.07 0.709 0.739 0.727
IVIM-D-Median -0.313 0.682 0.556–0.783 44.12 90.70 0.789 0.672 0.701
IVIM-D-Skewness 0.224 0.630 0.513–0.738 55.88 76.74 0.655 0.687 0.675
IVIM-D-Uniformity -0.256 0.642 0.525–0.748 41.18 81.40 0.636 0.636 0.636
IVIM-D-Variance -0.287 0.667 0.550–0.770 85.29 51.16 0.579 0.814 0.662
IVIM-f-Entropy 0.247 0.644 0.526–0.750 79.41 46.51 0.539 0.740 0.610
IVIM-f-InterquartileRange -0.296 0.672 0.556–0.775 52.94 81.40 0.692 0.686 0.688
DCE 0.676 0.560–0.778 91.18 37.21 0.534 0.842 0.610
DKI 0.826 0.722–0.903 70.59 90.70 0.857 0.795 0.818
IVIM 0.885 0.792–0.947 100.00 62.79 0.679 1.000 0.792
DKI + IVIM 0.950 0.875–0.987 91.18 88.37 0.861 0.926 0.896
DCE + DKI + IVIM 0.969 0.901–0.995 94.12 90.70 0.888 0.951 0.922

Fig. 5  The ROC curve for independent histogram parameters with higher diagnostic efficacy (A) and the ROC curve for combined histogram parameters 
(B)
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Value of pre-treatment quantitative parameters (Ktrans, 
Kep, Ve) and semi-quantitative parameters (Wash-in, Wash-
out, TTP, and iAUC) in predicting NAC efficacy in invasive 
ductal carcinoma of the breast
DCE-MRI quantitative and semi-quantitative param-
eters can accurately reflect tumor neovascular density, 
blood flow, and vessel wall permeability. In this study, the 
pre-treatment quantification of Kep and Ve parameters 
showed a statistically significant correlation with NAC 
efficacy. The results indicated that the average Kep value 
in the NAC-effective group was higher than that in the 
non-effective group, while the average Ve value was lower 
in the effective group compared to the non-effective 
group. Kep reflects the exchange rate between the extra-
cellular space (EES) and blood vessels, while Ve indi-
cates the size of the extracellular space, both of which are 
related to vascular permeability. As Kep and Ve values 
increase, the drug is more likely to penetrate and reach 
the lesion, enhancing the NAC efficacy.

However, the results of this study revealed that the Ve 
value in the effective group was lower than that in the 
non-effective group. Although Ve reflects the propor-
tion of extracellular fluid in the tumor, it does not have a 
direct correlation with chemotherapy effects like tumor 
cell death, necrosis, or apoptosis, particularly in the early 
stages of chemotherapy. The tumor microenvironment 
changes might not immediately affect the Ve value.

Previous studies have shown that longitudinal changes 
in Kep values, particularly after the second cycle of NAC, 
could predict overall treatment efficacy. In those stud-
ies, the Kep value significantly decreased two weeks after 
treatment in the PCR group, while the Ve value showed 
no significant change [25, 26]. Importantly, predict-
ing NAC efficacy before treatment is more desirable in 
clinical settings. Single baseline parameter predictions of 
NAC efficacy can have considerable errors, emphasizing 
the necessity of combining multi-parametric MRI tech-
niques to predict NAC efficacy before treatment.

Value of histogram parameters MD and MK from the 
DKI model in predicting NAC efficacy in invasive ductal 
carcinoma of the breast
In the DKI model, the parameter MD reflects the over-
all diffusion level of water molecules and the resistance 
to diffusion, while MK mainly indicates the complexity 
of tissue microstructure [27]. In this study, the results 
showed that the NAC-effective group had higher MD 
values (90th Percentile, mean, median, max, and range) 
compared to the non-effective group. The 90th Percen-
tile value may represent regions within the lesion with 
lower cellular density, such as necrotic, liquefied, or cys-
tic areas. Higher mean and median values suggest lower 
cellular density within the lesion, with expanded tissue 
gaps, allowing for increased diffusion of water molecules 

and decreased resistance, thus enhancing water content 
in the tissue [28]. Higher max and range values may indi-
cate that the areas with the most free diffusion of water 
molecules and lower cellular density are more abundant 
within the lesion.

On the other hand, the MK values (mean, median) in 
the NAC-effective group were lower than those in the 
non-effective group. These values may be associated with 
tumor cell heterogeneity and microstructural complex-
ity [29]. Lower mean and median values suggest a lower 
degree of deviation in the distribution of water molecule 
diffusion displacement and a less complex structure. The 
results indicate that in the NAC-effective group, MD val-
ues (90th Percentile, mean, median, max, range) were 
higher, while MK values (mean, median) were lower 
than in the non-effective group. This suggests that before 
NAC, tumors in the effective group had lower cellular 
density, less heterogeneity, and less complex microstruc-
tures, which is indicative of a better response to NAC. 
These findings are consistent with baseline study results 
by Zheng et al. [30].

Predictive value of histogram parameters D, F, and D 
from the IVIM model in pre-treatment assessment of NAC 
efficacy for invasive ductal carcinoma of the breast
In the IVIM model, the parameters D and f reflect the 
true diffusion coefficient of water molecules and perfu-
sion information, respectively [31]. The results of this 
study showed that in the NAC-effective group, the values 
of IVIM-D (90th Percentile, Interquartile Range, Mean, 
Median, Variance, Uniformity) and IVIM-f (Interquartile 
Range) were higher than those in the non-effective group. 
Higher IVIM-D (Mean, Median, Variance) values may 
be associated with lower tumor cell density, larger extra-
cellular spaces, and lower diffusion resistance for water 
molecules. These areas with reduced diffusion resistance 
align with the DKI-MD results, where lower resistance 
facilitates greater diffusion. Additionally, higher values of 
IVIM-D and IVIM-f (Interquartile Range) may indicate 
a wider distribution of water molecule diffusion or per-
fusion values within the tissue, suggesting effective drug 
penetration during NAC.

On the other hand, the IVIM-D (Kurtosis, Skewness, 
Entropy) and IVIM-f (Entropy) values were lower in the 
NAC-effective group, which may reflect higher tissue het-
erogeneity, uneven water molecule diffusion, and greater 
dispersion. This indicates less significant NAC efficacy, a 
result consistent with Kim et al.‘s study [32]. In this study, 
no significant difference in IVIM-D* values was found 
between the two groups. This suggests that IVIM-D* may 
have a lower sensitivity to tumor blood perfusion char-
acteristics, as it primarily reflects the perfusion effects 
of microvessels, while NAC not only affects blood flow 
but also includes mechanisms such as cell proliferation, 
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apoptosis, and necrosis. Therefore, D* values may not 
comprehensively reflect the complex effects of chemo-
therapy on tumors, especially when tumor microenviron-
ment changes occur. The change in D* values may not be 
as sensitive or consistent as other imaging parameters 
(such as Ktrans, MD, etc.) [33].

Baseline studies predict NAC efficacy in invasive duc-
tal carcinoma of the breast without observing dynamic 
changes of variables during NAC. However, the integra-
tion of multi-parametric imaging and clinical features 
provides a more comprehensive reflection of the corre-
lation between breast cancer lesions and NAC efficacy, 
offering an effective reference for clinical treatment plan-
ning before NAC.

Clinical application and challenges of multimodal 
imaging and predictive models in predicting neoadjuvant 
chemotherapy efficacy in breast cancer
In clinical practice, predictive models can be integrated 
into decision support systems (DSS) to assist oncologists 
in comprehensively assessing patients based on imag-
ing and clinical features, thereby optimizing neoadju-
vant chemotherapy (NAC) treatment plans. Automated 
image analysis and data integration can rapidly compute 
tumor-related parameters, provide early efficacy predic-
tions, support the selection of the most appropriate treat-
ment regimen, and allow for regular strategy adjustments 
based on patient response and imaging changes.

To address the challenges in model application, the 
first step is to standardize imaging acquisition protocols 
and ensure data quality consistency through multi-center 
collaboration and equipment calibration. Additionally, 
deep learning technologies can be employed to mitigate 
the impact of equipment variability. Secondly, regular 
training sessions should be conducted to enhance clini-
cians’ understanding and operational skills in multimodal 
imaging analysis and predictive modeling, boosting their 
confidence and competency. Furthermore, large-scale 
multi-center studies are necessary to validate the stability 
and reliability of the models and optimize their predictive 
accuracy. Finally, it is essential to encourage clinicians 
to combine their clinical experience with model outputs 
for joint decision-making, avoiding excessive reliance 
on algorithms and ensuring that treatment plans remain 
personalized and precise. Integrating these predictive 
models into clinical workflows is expected to improve the 
accuracy of NAC efficacy predictions in breast cancer, 
advancing precision medicine, particularly in the realms 
of personalized treatment and early efficacy assessment.

Limitations of this study
First, this study is based on a single-center dataset with 
a limited sample size, which may affect the generaliz-
ability of the model. A smaller sample size may result 

in insufficient statistical power, making it challenging to 
reliably detect the significance of some variables. Second, 
the study is retrospective in design, which may introduce 
selection bias, and the quality of the data could be con-
strained. Prospective studies or multi-center data valida-
tion could enhance the reliability of the results. Third, the 
model was trained and tested solely on internal datasets, 
which may lead to overfitting and reduce its applicability 
to independent datasets. External independent cohorts 
are required for validation to improve the model’s robust-
ness. Fourth, the different molecular subtypes of breast 
cancer (such as Luminal A, Luminal B, triple-negative, 
and HER2-positive) and variations in chemotherapy regi-
mens result in varying NAC sensitivity. This study did not 
perform an in-depth analysis of these subtypes and treat-
ment regimens, which could impact the clinical appli-
cability of the model. Fifth, despite using a double-blind 
condition for image segmentation and analysis, manual 
layer-by-layer delineation of the tumor ROI still relies on 
the subjective judgment of the radiologists. There may 
be variability in the delineation between different radi-
ologists, especially when defining tumor boundaries or 
regions, which could be influenced by their experience 
and technical expertise. The use of deep learning algo-
rithms, such as convolutional neural networks (CNNs), 
for automatic segmentation, combined with radiologists’ 
review and correction, could reduce the error in manual 
segmentation, improving the consistency and efficiency 
of the delineation process.

Conclusion
Based on the results of this study, quantitative and 
semi-quantitative parameters from dynamic contrast-
enhanced imaging (DCE-MRI) combined with diffu-
sion kurtosis imaging (DKI) and intravoxel incoherent 
motion imaging (IVIM) full-field histogram parameters 
have significant clinical value in predicting the efficacy 
of neoadjuvant chemotherapy (NAC) in patients with 
invasive ductal carcinoma of the breast. Parameters such 
as Kep from DCE-MRI, MD from DKI, and D and f val-
ues from IVIM show significant differences between the 
NAC effective and non-effective groups, with strong 
correlations to the treatment outcome.In particular, the 
combined use of DCE-MRI, DKI, and IVIM histogram 
parameters significantly improves prediction accuracy, 
with high diagnostic efficacy reflected in the AUC, sensi-
tivity, and specificity values.

Additionally, immunohistochemical markers (such as 
ER, PR, HER2 status) and tumor morphological features 
(such as margin morphology and internal enhancement 
patterns) also play important roles in determining NAC 
efficacy. The combination of these clinical features with 
imaging parameters further enhances the accuracy of 
efficacy prediction.This study provides clinicians with a 
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comprehensive predictive model based on imaging and 
immunohistochemical data, offering a more precise basis 
for assessing NAC efficacy in patients with invasive duc-
tal carcinoma of the breast before and after treatment. It 
also supports individualized treatment decision-making.

Therefore, the combined application of DCE-MRI, 
DKI, and IVIM can serve as a powerful imaging tool for 
the early assessment and prediction of NAC efficacy in 
breast cancer patients, with broad clinical application 
prospects. 
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