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Abstract
Objective  The purpose of the current study is to explore the value of a nomogram that integrates clinical factors and 
MRI white matter hyperintensities (WMH) radiomics features in predicting the prognosis at 90 days for patients with 
acute ischemic stroke (AIS).

Methods  A total of 202 inpatients with acute anterior circulation ischemic stroke from the Department of Neurology, 
Xuzhou Central Hospital between September 2023 and March 2024 were retrospectively enrolled. Inpatient clinical 
data and cranial MRI images were acquired. In this study, the sample was randomly divided into a training cohort 
comprising 141 cases and a validation cohort of 61 cases in a 7:3 ratio. WMH lesions on fluid-attenuated inversion 
recovery (FLAIR) sequences were automatically segmented and manually adjusted using Matlab and ITK-SNAP 
software. The segmentation led to the identification of total white matter hyperintensity (TWMH), periventricular 
white matter hyperintensity (PWMH), and deep white matter hyperintensity (DWMH). Subsequently, radiomics 
features were meticulously extracted from these three distinct regions of interest (ROIs). Radiomic models for the 
three ROIs were developed using six machine learning algorithms. The clinical model was built by identifying clinical 
risk factors through univariate and multivariate logistic regression analyses. A combined model was subsequently 
developed incorporating the best radiomics model with significant clinical factors. To illustrate these risk factors, a 
graphical representation known as a nomogram was devised.

Results  Age, previous stroke history, coronary artery disease, admission blood glucose levels, homocysteine 
levels, and infarct volume were identified as independent clinical predictors of AIS prognosis. A total of 16, 21, and 
22 radiomics features were selected from TWMH, PWMH, and DWMH, respectively. The TWMH radiomics model 
using the SVM classifier exhibited the best predictive performance for AIS prognosis, achieving a sensitivity of 
90.0%, a specificity of 81.3%, an accuracy of 85.3%, and an AUC of 0.916 in the validation set. The combined model 
outperformed both the clinical and radiomics models, exhibiting exceptional predictive capabilities with a validation 
cohort sensitivity of 89.3%, specificity of 84.8%, accuracy of 86.9%, and AUC of 0.939.
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Introduction
In individuals afflicted with acute ischemic stroke (AIS), 
cranial MRI scans frequently reveal a significant preva-
lence of white matter hyperintensities (WMH) [1]. WMH 
serves as a notable imaging indicator of cerebral small 
vessel disease (CSVD) [2, 3], often presenting as distinct 
punctate or patchy abnormalities displaying high signal 
intensities in the white matter on T2-weighted imaging 
(T2WI) and fluid-attenuated inversion recovery (FLAIR) 
sequences [4, 5]. Depending on their locations, WMH 
can be classified as periventricular white matter hyperin-
tensities (PWMH) and deep white matter hyperintensi-
ties (DWMH) [6–8].

WMH has been linked to a range of medical condi-
tions and clinical results, including an elevated likelihood 
of experiencing a stroke and a less favorable prognosis 
after having a stroke [9, 10]. However, despite the estab-
lished association between WMH and adverse stroke 
outcomes, existing prognostic models for AIS predomi-
nantly rely on clinical factors such as age, time of onset, 
stroke severity, stroke history, hypertension, and diabe-
tes mellitus [11–13], or simplistic imaging metrics such 
as Fazekas scores [14, 15] or WMH volume [16, 17]. 
These approaches overlook the rich spatial and textural 
heterogeneity within WMH lesions, which may encode 
critical pathophysiological information about tissue vul-
nerability and recovery potential. Current studies analyz-
ing WMH in AIS face three key limitations. First, prior 
radiomics-based AIS prognosis models primarily focus 
on acute infarct regions, neglecting the prognostic value 
of chronic WMH lesions readily detectable on routine 
FLAIR sequences. Second, conventional methods rely 
on manual visual ratings [1, 18] or basic morphological 
descriptors (e.g., volume, shape irregularity) [16, 17], pri-
marily assess WMH in a limited, qualitative manner, fail-
ing to capture high-dimensional radiomic features that 
quantify subtle variations in lesion texture, edge sharp-
ness, or wavelet patterns. Third, while machine learn-
ing algorithms have shown promise in medical imaging, 
their application to WMH radiomics for AIS prognosis 
remains underexplored, with most studies still employing 
logistic regression rather than advanced classifiers like 
SVM or autoencoders.

Over the past few years, radiomics has experienced a 
rapid growth in its advancement, being characterized as 
the process of high-throughput extraction and detailed 
analysis of numerous high-dimensional imaging features 
directly from medical images. By analyzing differences 
in image gray levels or pixel intensities, radiomics can 
describe tissue heterogeneity and quantify differences 
that are invisible to the human eye, which is impor-
tant for the diagnosis and prognosis of the disease [19, 
20]. Besides, most traditional studies use conventional 
LR models, while machine learning can offer a wider 
range of algorithms to comprehensively investigate the 
rich information buried in imaging [21]. In this respect, 
radiomics combined with machine learning can be used 
to conduct quantitative analysis on the features of WMH 
at various locations to predict AIS prognosis. By lever-
aging radiomics in combination with machine learning, 
we aim to overcome the current limitations in AIS prog-
nosis prediction by utilizing a more sophisticated, data-
driven approach that integrates both clinical and imaging 
features.

In this study, we identified various regions of inter-
est (ROIs) of WMH in different locations on FLAIR 
sequence, extracted radiomics features, and constructed 
models using multiple machine learning methods. We 
first chose the most effective radiomics model to com-
pute a Rad-score, which we then integrated with inde-
pendent clinical predictors to develop a combined model. 
This model aims to investigate the utility of WMH 
radiomics features in predicting the 90-day functional 
outcomes of patients with AIS. Our primary research 
questions were: (1) Which location’s WMH radiomics 
model has the best predictive efficacy for AIS prognosis? 
(2) Does combining the optimal WMH radiomics model 
with predictors improve the accuracy of prognostic pre-
diction in AIS patients?

Materials and methods
Study population
This retrospective analysis encompassed 202 patients 
with AIS accompanied by WMH, who were admitted to 
the Neurology Department of Xuzhou Central Hospi-
tal between September 2023 and March 2024. The sub-
jects were randomly assigned to training and validation 
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cohorts in a 7:3 ratio. Inclusion Criteria: (1) Patients 
diagnosed with AIS involving the anterior circulation; 
2) receiving standard conservative treatment without a 
history of thrombolytic therapy (including endovascular 
treatment such as mechanical thrombectomy and arte-
rial thrombolysis, and intravenous thrombolysis with 
alteplase or urokinase); 3) completion of cranial MRI 
scans, with DWI and ADC sequences confirming AIS 
and FLAIR sequence indicating WMH, with clear images 
meeting diagnostic requirements; 4) availability of com-
plete clinical data. Exclusion Criteria: (1) AIS occurring 
in the posterior circulation; (2) large infarctions, cere-
bral hemorrhage, traumatic brain injury, brain tumors, 
arteriovenous malformations, or brain surgeries that 
may affect WMH lesion segmentation; (3) non-vascular 
origins of white matter lesions (such as demyelination, 
metabolic, toxic, or infectious causes); (4) cases of mul-
tiple sclerosis, Alzheimer’s disease, and Parkinson’s dis-
ease that have been confirmed through diagnosis; (5) 
Instances of severe head movement during MRI scanning 
that result in substandard image quality; (6) Failures in 
the segmentation of WMH; (7) Incomplete clinical data 
or discontinued follow-up assessments. Figure 1 depicts 
the meticulous patient selection process. This study, 
which has been granted approval by the Medical Eth-
ics Committee of Xuzhou Central Hospital, dispenses 
with the need for informed consent from participants 
(approval number: XZXY-LK-20240709-0105).

Clinical data
Patient data was gathered from the hospital information 
system (HIS), encompassing fundamental demographic 
details, medical background, and laboratory findings dur-
ing hospitalization period. This encompassed vital vari-
ables such as age, gender, hypertension, hyperlipidemia, 
diabetes mellitus (DM), coronary artery disease (CAD), 
prior stroke history, smoking and drinking habits, admis-
sion blood pressure, admission blood glucose levels, 
Hemoglobin A1c (HbA1c) concentrations, lipid profiles, 
homocysteine (HCY) amounts, and infarct volume size. 
For the collection of prognostic data, trained physicians 
conducted telephone interviews or outpatient follow-ups 
at 90 days post-stroke. These assessments employed the 
modified Rankin Scale (mRS) to evaluate functional out-
comes. The prognosis was categorized as favorable with 
an mRS score ranging from 0 to 2, and unfavorable with 
a score of 3 to 6. Notably, the physicians were unaware of 
the patients’ imaging data during the assessment process. 
The 90-day time point was chosen for prognostic evalu-
ation in this study, as it is a widely accepted timeframe 
for assessing functional outcomes after AIS. Many clini-
cal studies and guidelines utilize 90 days as the standard 
period for evaluating stroke recovery and functional out-
comes [22–25]. This time point is considered optimal 
for assessing both short-term recovery and longer-term 
disability. Functional improvement was defined based on 
the change in the modified Rankin Scale (mRS) score. A 
clinically significant improvement was determined when 
a patient’s mRS score decreased by at least one point, 
typically moving from a higher score (e.g., 3 or more) to 

Fig. 1  Inclusion and exclusion flowchart of patients
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a lower score (e.g., 2 or less). This definition is commonly 
used in AIS prognostic studies and reflects meaningful 
changes in patients’ ability to perform daily activities and 
their quality of life.

MRI image acquisition
Upon admission, all enrolled patients underwent a com-
prehensive cranial MRI scan using high-end scanners. 
The MRI machines employed were either the GE Dis-
covery 750w 3.0T or the Philips Ingenia 3.0T scanner for 
precise image acquisition. The scanning parameters were 
meticulously set to capture detailed images of the cranial 
structure and potential abnormalities. Specifically, the 
scanning parameters included: axial T1-weighted imag-
ing (T1WI) with a repetition time (TR) ranging from 
2000 to 2150 ms and an echo time (TE) of 15–28 ms; 
axial T2-weighted imaging (T2WI) with a TR of 2130–
4300 ms and a TE of 80–130 ms; axial fluid-attenuated 
inversion recovery (FLAIR) sequence, which had a TR of 
6000–9000 ms and a TE of 100 ms; and axial diffusion-
weighted imaging (DWI) with a TR of 2773–5000 ms and 
a TE of 78–100 ms. The image slices were obtained with 
a thickness of 6.5  mm, an interslice gap of 1  mm and a 
field of view (FOV) spanning 230 mm across both hori-
zontally and vertically. For the purpose of this study, the 
axial FLAIR images were primarily utilized for detailed 
analysis.

Radiomics analysis
Workflow
The radiomics analysis workflow comprises several key 
steps, WMH lesion segmentation, feature extraction 
and selection, as well as model construction and analysis 
(Fig. 2).

Image segmentation
FLAIR images in DICOM format were converted to 
NIFTY format using MATLAB (version 2023b; Math-
Works). The converted images were imported into the 
SPM12 software package (SPM12, MATLAB version 
2023b; MathWorks, Natick, MA). The utilization of 
the lesion segmentation toolbox (LST) (version 3.0.0), 
equipped with the lesion prediction algorithm (LPA) 
[26], was pivotal in the automatic segmentation of WMH 
lesions. This process was overseen by two experienced 
neurodiagnostic radiologists, possessing more than five 
years of expertise, who verified the segmentation out-
comes with the ITK-SNAP software (version 4.0.2, acces-
sible at http://www.itksnap.org/). Any discrepancies in 
segmentation were meticulously rectified by them to 
determine the final ROIs. The modifications undertaken 
included several steps:1) The initial step involved the 
elimination of non-brain tissue, along with the removal 
of the brainstem and cerebellar hyperintensities.2) Sub-
sequently, adjustments were made to the white matter 
segmentation to exclude areas of apparent ischemia (AIS) 
that also appeared as hyperintensities on FLAIR images. 

Fig. 2  Study flowchart of the radiomics analysis
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After these corrections, the adjusted images were cat-
egorized as total white matter hyperintensities (TWMH). 
From this, PWMH and DWMH were meticulously out-
lined manually. Any disparities in interpretation between 
the two radiologists were resolved through extensive dis-
cussion and consensus building.

Feature extraction and selection
To ensure consistency in feature extraction across vari-
ous MRI machines, all MRI images were resampled to 
uniform voxel sizes of 1  mm × 1  mm × 1  mm. Feature 
extraction was performed using the FAE software [27] 
(FeAture Explorer v. 0.5.7), which is developed in Python 
and utilizes the PyRadiomics library (version 3.0.1) as 
its core computational engine. We save the images and 
the ROIs in NFITY format and store the files for each 
case in a separate subfolder in a root folder. Next, set 
the root folder as the source folder and check the path 
exists. Then, configure the feature extraction parameters, 
including image type settings and feature type settings, 
including first-order features, shape descriptors, texture 
characteristics, wavelet transformation features, and fea-
tures derived from the laplacian of gaussian filter trans-
form. These algorithms for obtaining radiomics features 
were referenced from the Image Biomarker Standardiza-
tion Initiative [28]. Each feature underwent Z-score nor-
malization for standardization. To assess the reliability 
of image segmentation, a subset of 30 patients was ran-
domly chosen. Two experienced neuroimaging diagnosti-
cians, possessing over five years of expertise in the field, 
manually fine-tuned the automatically segmented lesion 
images to delineate ROIs. This procedure facilitated fea-
ture extraction while ensuring precision. The segmen-
tation’s consistency was assessed using the interclass 
correlation coefficient (ICC). Only radiomics features 
with an ICC value equal to or exceeding 0.8 were deemed 
reliable and subsequently utilized for further dimension-
ality reduction analysis.

The radiomics features from all ROIs were carefully 
screened in three systematic steps. Firstly, we analyzed 
the relationship between each feature and prognosis 
using the Pearson correlation coefficient (PCC). Thereby, 
features with statistical significance less than 0.05 were 
identified. Secondly, we employed the recursive feature 
elimination (RFE) algorithm to identify the top 30 rele-
vant features, focusing on their importance for our anal-
ysis. Lastly, we applied the least absolute shrinkage and 
selection operator (LASSO) algorithm to determine the 
final set of features and their corresponding coefficients. 
This process provided valuable insights into the relative 
weightage assigned to each selected feature. Based on 
these chosen features and their coefficients, we create a 
feature importance plot, an extended visualization to bet-
ter communicate our results.

Radiomics model construction
With the selected radiomics features, we developed dif-
ferent WMH location radiomics models by a variety 
of machine learning methods, including support vec-
tor machine (SVM), linear discriminant analysis (LDA), 
naive Bayes classifier (NB), logistic regression (LR), 
LASSO regression (LR-Lasso), and autoencoder (AE). 
In selecting machine learning classifiers, we strategically 
aligned model strengths with task requirements: 1)SVM: 
maximize classification margins using kernel methods, 
excelling in high-dimensional, small-sample medical 
imaging data; 2) LDA: optimizes inter-class variance for 
multiclass tasks with inherent dimensionality reduction; 
3) NB: relying on feature independence assumptions, 
prioritizes computational efficiency but suits text-based 
applications better; 4) LR: provides probabilistic outputs 
and interpretability for clinical threshold determination; 
5) LR-Lasso: employs L1 regularization for sparse feature 
selection, enhancing model generalizability; 6) AE: lever-
age nonlinear encoding to extract latent representations 
from multi-sequence MRI data. These classifiers have 
been widely used in constructing predictive models and 
have shown excellent performance. Meanwhile, regard-
less of the machine learning classifier used, we employed 
a stratified 5-fold cross-validation strategy to evaluate 
model performance and optimize hyperparameters. The 
validation set was used solely for final model perfor-
mance evaluation and did not participate in any param-
eter optimization process. This strategy maximizes the 
use of data in cases of limited sample size while ensuring 
the stability of the evaluation results. The best combina-
tion of ROI and classifier was chosen to obtain the final 
radiomics model showing the best performance. Subse-
quently, the radiomics score (Rad-score) was determined 
by weighing the features and their corresponding coeffi-
cients, taking into account the context and classification 
techniques used.

Clinical and combined model construction
To identify independent clinical predictors and construct 
a clinical model, univariate and multivariate logistic 
regression analyses were employed, selecting clinical fac-
tors with a significance level of P < 0.05. These clinically 
significant predictors were then combined with the Rad-
score from the most optimal radiomics model to develop 
an integrated clinical-radiomics model. The nomogram 
is generated based on the regression coefficients of the 
combined model. Each predictor is assigned a corre-
sponding weighted score, and the total score is con-
verted into the 90-day adverse prognosis probability for 
the patient through a calibration mapping function. The 
cutoff value for the Rad-score was determined through 
a receiver operating characteristic (ROC) curve analy-
sis, aiming to identify the threshold that maximizes both 
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sensitivity and specificity [29]. This optimal cutoff value 
was selected by calculating the Youden Index, which bal-
ances the trade-off between false positive and false nega-
tive rates. The cutoff was initially determined using the 
training dataset and subsequently validated on the testing 
dataset.

Model evaluation
We generated receiver operating characteristic curves 
and calculated the area under the curve (AUC), sensitiv-
ity, specificity, and accuracy metrics for each model. In 
order to assess how well the models predict AIS progno-
sis, we conducted a comparative analysis of the AUC val-
ues. Additionally, we constructed calibration curves and 
performed decision curve analysis (DCA) to evaluate the 
predictive accuracy and clinical decision-making appli-
cability of the models. The findings from these assess-
ments provide valuable insights into both performance 
and practical usability of the models in real-world clinical 
settings.

Statistical analysis
A comprehensive statistical analysis was carried out 
utilizing the SPSS version 25.0 and R software (version 
4.0.2). Initial assessments were conducted on the con-
tinuous variables through normality tests. Depending on 
the results, either the independent sample t-test or the 
Mann-Whitney U test was applied. The normally distrib-
uted data were expressed in terms of the mean ± standard 
deviation (x ± S), while the non-normally distributed data 
were displayed using the median along with the upper 
and lower quartiles [M (P25, P75)]. For categorical vari-
ables, a χ² test was employed for analysis and expressed 
in terms of frequency (%). The significance level was 
determined by a two-tailed p-value of less than 0.05, 
which was considered statistically significant in terms of 
its implications.

Results
Comparison of clinical characteristics
The study initially included 386 patients with AIS accom-
panied by WMH. After applying the exclusion criteria, 
a total of 202 patients with acute anterior circulation 
ischemic stroke accompanied by WMH were ultimately 
enrolled, comprising 132 males and 70 females. The 
excluded cases comprised 58 patients with AIS occurring 
in the posterior circulation, 45 patients with brain lesions 
affecting WMH segmentation, 10 patients with non-
vascular white matter lesions, 15 patients with multiple 
sclerosis, Alzheimer’s disease, and Parkinson’s disease, 18 
patients with poor image quality, 12 patients with failed 
WMH segmentation, and 26 patients with missing clini-
cal data. The patients were divided into two cohorts: the 
training cohort with 74 patients having a good prognosis 

and 67 with a poor prognosis, and the validation cohort 
with 31 patients showing a good prognosis and 30 indi-
cating a poor prognosis. The baseline clinical character-
istics or prognosis between these two cohorts did not 
exhibit any significant differences (P > 0.05). Table 1 pres-
ents the baseline clinical characteristics of the patients. 
Through extensive analysis, including univariate and 
multivariate logistic regression, independent clinical 
predictors of AIS prognosis were identified. These pre-
dictors included age, history of stroke, CAD, admission 
blood glucose level, homocysteine level, and infarct vol-
ume (Table 2). Using these five factors, a comprehensive 
clinical model was constructed to provide a better under-
standing of AIS prognosis.

Radiomics feature extraction and selection
The extraction of 1,688 features from three distinct ROIs, 
namely TWMH, PWMH, and DWMH, was accom-
plished through the FLAIR sequence. These features 
encompassed a range of categories, including first-order 
features, shape descriptors, texture characteristics, wave-
let transformation features, and features derived from the 
laplacian of gaussian filter transform. Subsequent to rig-
orous filtering using PCC, RFE, and LASSO techniques, 
a subset of features was selectively chosen. Specifically, 
from TWMH, 16 features were selected (comprising of 
3 shape descriptors, 3 texture characteristics, 8 wavelet 
transformation features, and 2 features from the Lapla-
cian of Gaussian filter transform). In the case of PWMH, 
21 features were chosen (including 6 texture character-
istics, 11 wavelet transformation features, and 4 features 
from the Laplacian of Gaussian filter). Lastly, for DWMH, 
22 features were handpicked (consisting of 9 texture 
characteristics, 12 wavelet transformation features, and 1 
feature from the Laplacian of Gaussian filter).

Radiomics model construction and evaluation
Drawing upon the radiomics features meticulously 
extracted from TWMH, PWMH, and DWMH, we con-
structed predictive models utilizing six distinct classi-
fiers: SVM, LDA, AE, LR, LR-Lasso, and NB. Table  3 
shows a performance comparison of radiomics models 
constructed with different ROI and classifier combina-
tions in the validation cohort, including sensitivity, speci-
ficity, accuracy, and AUC. The AUC values are visualized 
as a heatmap (Fig. 3) to better contrast the performance 
across models. Our results demonstrate that, irrespec-
tive of the classifier utilized, the AUC of the radiomics 
model based on TWMH consistently excelled those 
derived from PWMH and DWMH models in the vali-
dation cohort. Notably, the TWMH model employing 
the SVM classifier demonstrated superior performance 
(AUC of 0.968 in the training cohort and 0.916 in the val-
idation cohort). The LASSO selection process and feature 
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importance plot are presented in Fig.  4. In the training 
cohort, this model exhibited sensitivity of 0.971, speci-
ficity of 0.973, and accuracy of 0.972. When validated, it 
achieved a sensitivity of 0.900, specificity of 0.813, and 
accuracy of 0.853. Consequently, this model was chosen 
as the definitive radiomics model. The Rad-score for each 
individual was computed based on the selected features 
and their corresponding coefficients, which were fur-
ther integrated into the development of a comprehensive 
model.

Table 1  Comparison of prognosis and clinical baseline characteristics between the training and validation cohorts
Variables Training cohort(n = 141) Validation cohort(n = 61) t/χ2/Z P
Age (years) 70.05 ± 9.47 69.87 ± 7.30 0.133 0.894
Infarct volume (cm3) 4.58(3.16,7.69) 4.38(2.53,6.94) -1.097 0.273
Gender (%) 3.563 0.059
  Female 43(30.5) 27(44.3)
  Male 98(69.5) 34(55.7)
Hypertension (%) 0.356 0.551
  No 38(27.0) 14(23.0)
  Yes 103(73.0) 47(77.0)
Hyperlipidemia (%) 0.002 0.963
  No 132(93.6) 57(93.4)
  Yes 9(6.4) 4(6.6)
DM (%) 0.263 0.608
  No 99(70.2) 45(73.8)
  Yes 42(29.8) 16(26.2)
CAD (%) 1.418 0.234
  No 97 47
  Yes 44 14
Stroke history (%) 0.454 0.500
  No 72(51.1) 28(45.9)
  Yes 69(48.9) 33(54.1)
Smoking history (%) 0.097 0.755
  No 101(71.6) 45(73.8)
  Yes 40(28.4) 16(26.2)
Drinking history (%) 0.807 0.369
  No 105(74.5) 49(80.3)
  Yes 36(25.5) 12(19.7)
Systolic blood pressure (mmHg) 154.58 ± 22.60 152.25 ± 22.26 0.677 0.499
Diastolic blood pressure (mmHg) 88.51 ± 12.69 86.62 ± 13.01 0.964 0.336
Admission blood glucose (mmol/L) 7.15(5.26,8.79) 6.77(5.13,8.62) -0.703 0.482
HbA1c (%) 6.10(5.75,7.30) 6.30(5.70,7.65) -0.563 0.574
TC (mmol/L) 4.55(3.69,5.25) 4.25(3.69,4.80) -1.214 0.225
TG (mmol/L) 1.28(0.87,1.76) 1.22(0.83,1.83) -0.222 0.825
HDL (mmol/L) 1.17(0.97,1.34) 1.10(0.88,1.22) -1.993 0.056
LDL (mmol/L) 2.77(2.02,3.34) 2.52(2.04,3.02) -1.459 0.145
HCY (µmol/L) 13.79(11.28,18.94) 12.09(10.28,18.31) -1.467 0.142
Prognosis (%) 0.047 0.828
  Good (mRS 0–2) 74(52.5) 31(50.8)
  Poor (mRS 3–6) 67(47.5) 30(49.2)
Abbreviations: t: t-test; Z: Mann-Whitney test; χ²: Chi-square test; DM: Diabetes mellitus; CAD: coronary artery disease; HbA1c: Hemoglobin A1c; TC: total cholesterol; 
TG: triglyceride; HDL: high density lipoprotein; LDL: low density lipoprotein; HCY: homocysteine; mRS: the modified Rankin Scale

Table 2  Binary logistic regression analysis of clinical factors
Variables β Z P OR (95%CI)
Age 0.12 2.56 0.011 1.13(1.03 ~ 1.25)
Infarct Volume 0.26 2.08 0.037 1.29(1.02 ~ 1.65)
Admission blood glucose 0.32 2.39 0.017 1.37(1.06 ~ 1.78)
Stroke History 1.95 3.07 0.002 7.00(2.02 ~ 24.24)
CAD 1.72 2.36 0.018 5.58(1.34 ~ 23.28)
HCY 0.13 2.95 0.003 1.14(1.04 ~ 1.24)
Abbreviations: CI: confidence interval; CAD: coronary artery disease; HCY: 
homocysteine
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Construction and evaluation of the clinical-radiomics 
combined model
A logistic regression algorithm was utilized to inte-
grate independent clinical predictors with the optimal 
radiomics Rad-score, resulting in the development of 
a combined model. The performance of this integrated 
model was assessed using ROC curves and AUC values, 
which are presented in Fig.  5 and Table  4 for both the 
training and validation cohorts. In the training cohort, 
the combined model demonstrated superior predictive 
accuracy with an AUC of 0.972. Similarly, in the vali-
dation cohort, the AUC of this model was found to be 

0.939. These results indicate that the combined model 
outperformed both the clinical model and the radiomics 
model.

Construction and validation of the nomogram
To enhance the comprehension and visualization of the 
integrated model, we have devised a nomogram as an 
assessment instrument (Fig.  6). The nomogram clearly 
illustrates the relative significance of each variable in a 
conspicuous manner. In the forefront of the diagram, 
a scale is showcased, featuring a comprehensive list of 
predictive variables on the left side. Each variable is allo-
cated a distinct score, and the segment lengths accurately 
depict their respective impact on forecasting AIS prog-
nosis. By meticulously calculating the weighted scores of 
each variable for an individual patient, a comprehensive 
total score can be derived, which subsequently aids in 
determining the anticipated probability of AIS prognosis.

Model evaluation
The calibration curves for the clinical model, the optimal 
radiomics model, and the combined model were all plot-
ted distinctly in Fig.  7. Through the Hosmer-Lemeshow 
test, it was determined that all models exhibited P-values 
exceeding 0.05, signifying their strong calibration capa-
bilities. Notably, the combined model demonstrated 
the most remarkable agreement between predicted and 
actual outcomes in the prognosis of AIS, outperforming 
the other two models in calibration accuracy. Further 
analysis through DCA, as presented in Fig.  8, revealed 
that the combined model consistently displayed a higher 
AUC in both the training and validation cohorts com-
pared to the clinical and radiomics models. This indicates 
that across various high-risk thresholds, the combined 
model offers a greater clinical net benefit compared to 
the individual clinical and radiomics models, as well as 
the strategies of “intervening on all” or “intervening on 
none.”

Discussion
In this research, we derived radiomics features from vari-
ous WMH locations using FLAIR images. The most effec-
tive radiomics model was subsequently integrated with 
baseline patient data to assess the predictive accuracy 
of combined model in evaluating the prognosis of AIS 
patients. Initially, multivariate logistic regression analysis 
disclosed that age, CAD, prior stroke history, admission 
blood glucose levels, homocysteine concentrations, and 
infarct volume are independent clinical predictors with 
significant prognostic value. Subsequently, an examina-
tion of numerous radiomics prediction models revealed 
that the model encompassing both PWMH and DWMH, 
termed the TWMH model, demonstrated superior per-
formance. Utilizing the SVM classifier, the TWMH 

Table 3  The performance of radiomics models combining 
different rois and classifiers in the validation cohort
ROI Classifier Sen Spe Acc AUC (95%CI)
TWMH SVM 0.897 0.813 0.853 0.916(0.849–0.983)

LDA 0.931 0.781 0.853 0.909(0.836–0.983)
AE 0.793 0.906 0.853 0.881(0.791–0.972)
LR 0.897 0.875 0.885 0.906(0.832–0.980)
LR-Lasso 0.897 0.875 0.885 0.911(0.839–0.982)
NB 0.897 0.804 0.839 0.914(0.843–0.985)

PWMH SVM 0.931 0.856 0.787 0.851(0.756–0.946)
LDA 0.755 0.806 0.787 0.830(0.718–0.932)
AE 0.686 0.816 0.754 0.778(0.661–0.895)
LR 0.828 0.781 0.803 0.849(0.752–0.947)
LR-Lasso 0.828 0.781 0.803 0.863(0.771–0.955)
NB 0.724 0.906 0.630 0.878(0.791–0.964)

DWMH SVM 0.690 0.813 0.754 0.763(0.640–0.886)
LDA 0.759 0.875 0.820 0.818(0.705–0.931)
AE 0.548 0.738 0.705 0.724(0.594–0.854)
LR 0.690 0.813 0.754 0.782(0.665-0.900)
LR-Lasso 0.690 0.813 0.754 0.788(0.673–0.903)
NB 0.724 0.750 0.738 0.743(0.612–0.873)

Abbreviations: TWMH: Total White Matter Hyperintensities; PWMH: 
Periventricular White Matter Hyperintensities; DWMH: Deep White Matter 
Hyperintensities; SVM: support vector machine; LDA: linear discriminant 
analysis; AE: autoencoder; LR: logistic regression; LR-Lasso: LASSO regression; 
NB: naive Bayes; Sen: Sensitivity; Spe: Specificity; Acc: Accuracy; AUC: area under 
the curve; CI: confidence interval

Fig. 3  AUC of machine learning predictive models based on radiomics 
features of TWMH, PWMH and DWMH
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Table 4  Performance of the clinical model, radiomics model, and combined model
Model Training cohort Validation cohort

Sen Spe Acc AUC (95%CI) Sen Spe Acc AUC (95%CI)
Clinical Model 0.865 0.910 0.887 0.954(0.924–0.983) 0.774 0.800 0.787 0.867(0.773–0.960)
Radiomics Model 0.971 0.973 0.972 0.968(0.935-1.000) 0.897 0.813 0.853 0.916(0.849–0.983)
Combined Model 0.935 0.906 0.922 0.972(0.951–0.993) 0.893 0.848 0.869 0.939(0.878–0.999)
Abbreviations: Sen: Sensitivity; Spe: Specificity; Acc: Accuracy; AUC: area under the curve; CI: confidence interval

Fig. 5  ROC curves of the clinical model, radiomics model, and combined model in the training (A) and validation (B) cohort. ROC receiver operating 
characteristic

 

Fig. 4  Overview of the LASSO selection process for TWMH radiomics (A, B) and retained feature importance plot (C)
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radiomics model, grounded in FLAIR sequences, exhib-
ited unparalleled predictive accuracy. To enhance the 
model’s predictive capability, a nomogram was developed 
by amalgamating various clinical factors. Furthermore, 

the enhanced predictive performance of the combined 
model was further underscored through DCA, which 
also facilitated a comparative assessment of the clinical 
utility of each model component.

In recent times, radiomics has experienced rapid 
growth as a non-invasive analytical technique that 
enables the automated extraction of high-dimensional 
characteristics. Radiomics characteristics are highly 
effective in describing the distribution of grayscale and 
voxel relationships within images, thereby quantifying 
internal heterogeneity in lesions that cannot be visually 
perceived. This facilitates the comprehensive quanti-
fication of medical images, enhancing the role of imag-
ing data in disease diagnosis and prognostic prediction 
[30–37]. Currently, numerous studies have developed 
prognostic prediction models for AIS by extracting 
radiomic features from lesions identified on multimodal 
MRI sequences [38–40]. Notably, Yu et al. constructed a 
radiomics model incorporating features simultaneously 
derived from DWI, ADC, FLAIR, SWI, and T1-weighted 

Fig. 8  Decision curve analysis of the clinical model, radiomics model, and combined model in the training (A) and validation (B) cohort

 

Fig. 7  Calibration curves of the clinical model, radiomics model, and combined model in the training (A) and validation (B) cohort

 

Fig. 6  A nomogram based on clinical-radiomics combined model for pre-
dicting AIS outcomes
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sequences, which achieved an AUC exceeding 0.90 in 
predicting AIS prognosis [40]. However, these studies 
primarily concentrate on stroke lesion areas with lim-
ited exploration into the association between WMH, 
commonly observed in imaging scans, and AIS progno-
sis. A few studies have reported that AIS patients with 
higher WMH burden face an elevated risk of unfavor-
able outcomes. For example, Christoph J. Griessenauer 
et al. demonstrated that increased WMH volume within 
a specific range is significantly correlated with 90-day 
functional outcomes in AIS patients [16], while Rashid 
Ghaznawi et al. found that larger and more irregularly 
shaped WMH is associated with a higher risk of vascu-
lar death in AIS [17]. However, these studies’ analyses of 
WMH are limited to simple visual ratings or morphologi-
cal indicators, which fail to capture the comprehensive 
information contained within WMH. To address this 
gap, our study innovatively extracts radiomics features 
from WMH in different locations based on the FLAIR 
sequence and utilized machine learning algorithms to 
assess the predictive capability of WMH radiomics fea-
tures for AIS prognosis. Our results indicate that the 
TWMH radiomics model exhibited the best predictive 
performance, outperforming both PWMH and DWMH 
models. The SVM classifier achieved the best predictive 
accuracy, with an AUC of 0.968 in the training cohort 
and 0.916 in the validation cohort. We hypothesize that 
the superior performance of the TWMH model may 
be attributed to its coverage of the entire WMH lesion, 
allowing the extracted features to better represent subtle 
differences between pathological and normal tissues. 
These findings suggest that a more comprehensive inclu-
sion of lesion tissues in clinical research can provide 
broader imaging information. Furthermore, the PWMH 
models, constructed using six different machine learning 
methods, consistently outperformed the DWMH models 
in predictive efficacy. This aligns with previous studies [1, 
17], which indicated that PWMH is more sensitive than 
DWMH in predicting AIS prognosis. This may be attrib-
uted to their distinct pathophysiological mechanisms: 
(1) PWMH is associated with a more pronounced hypo-
perfusion mechanism. The periventricular white matter 
is located in a watershed area and primarily supplied by 
terminal arteries, making its blood supply more unstable, 
thus rendering it more susceptible to hemodynamic dis-
turbances and ischemic manifestations [2, 41]; (2) The 
occurrence of DWMH is primarily related to the disrup-
tion of the BBB and increased interstitial fluid [42], with 
DWMH showing more axonal damage, vacuolation, and 
demyelination [43].

We extracted and selected 16 independent radiomics 
features from the TWMH lesions, including 3 shape fea-
tures, 3 texture features, 8 wavelet transform features, 
and 2 Laplacian of Gaussian filter features. These features 

are critical for predicting AIS prognosis, as they provide 
a comprehensive depiction of the heterogeneity of WMH 
in AIS patients. They also offer a certain degree of expla-
nation regarding the potential impact of WMH pathology 
on AIS prognosis. The elevated components within these 
feature analyses were associated with poorer AIS out-
comes, further quantifying specific imaging biomarkers 
related to the prognosis of AIS in connection with WMH.

Our clinical model suggests that poor prognosis in AIS 
can be predicted by factors such as advanced age, coro-
nary heart disease, a history of stroke, high blood sugar 
levels, elevated homocysteine levels, and a large infarct 
volume. This aligns with the results of several studies that 
have shown a direct correlation between hyperglycemia 
and an elevated likelihood of unfavorable outcomes in 
AIS [44–46]. This may be due to hyperglycemia exacer-
bating mitochondrial damage in the ischemic penumbra, 
resulting in acidosis within the infarct area, which wors-
ens ischemic brain injury. Additionally, hyperglycemia 
causes BBB disruption, worsening cerebral edema, which 
further aggravates brain injury and hinders symptom 
recovery in AIS patients [45]. Therefore, actively control-
ling blood glucose in AIS patients plays a crucial role in 
improving neurological outcomes. Since CAD and AIS 
share certain similar mechanisms, CAD patients are at 
higher risk of cardiovascular complications after an acute 
AIS episode, which partially contributes to poorer AIS 
prognosis [47]. Zhong et al.‘s study [48] discovered a nota-
ble association between homocysteine levels and progno-
sis in patients with AIS. This could be due to heightened 
oxidative stress caused by increased homocysteine levels 
leading to inflammation-induced damage to endothelial 
cells as well as stimulation of vascular smooth muscle cell 
proliferation, thereby worsening atherosclerosis. Conse-
quently, this elevates the likelihood of early neurological 
decline and mortality among individuals with AIS. Exten-
sive research has indicated that relying solely on either 
clinical or radiomics models tends to yield inconsistent 
outcomes. Henceforth, we integrated both clinical factors 
and radiomics features into an amalgamated model for 
enhanced accuracy in prediction. Our conclusive find-
ings demonstrate that when compared separately against 
individual clinical or radiomics models, this combined 
approach exhibits optimal predictive performance while 
also showcasing superior calibration ability alongside 
practicality for real-world application in clinics.in the 
training cohort, it achieved a sensitivity of 0.935, specific-
ity of 0.906, and an accuracy rate of 0.922. When applied 
to the validation cohort, the model displayed sensitiv-
ity of 0.893, specificity of 0.848, and an accuracy level 
of 0.869. While there may be slight fluctuations in these 
metrics, the model consistently exhibits excellent perfor-
mance across various measurements and can be proved 
to be valuable and constructive in clinical practice. First, 



Page 12 of 14Xia et al. BMC Medical Imaging           (2025) 25:91 

this model provides clinicians with a risk assessment 
tool based on multidimensional data, helping to improve 
the accuracy of AIS prognosis evaluation. By compre-
hensively analyzing radiomics features and clinical data, 
doctors can gain a full understanding of a patient’s risk 
status, enabling more personalized and precise treat-
ment decisions. This model not only enhances decision-
making efficiency and shortens the time required for 
AIS prognosis evaluation, but it also has the potential to 
improve cost-effectiveness. The automatic extraction of 
radiomics features combined with clinical data analysis 
reduces reliance on manual data interpretation, thereby 
lowering diagnostic and consultation costs. Additionally, 
the nomogram, as a visualization tool for the combined 
model, further simplifies the decision-making process 
for clinicians. By integrating multiple clinical variables 
and Rad-scores into an intuitive diagram, the nomogram 
provides doctors with a simple and efficient way to assess 
individualized patient risk. In clinical practice, physicians 
can use the nomogram to quickly calculate a patient’s 
total risk score based on their specific data. Each variable 
on the nomogram has a corresponding score, and doc-
tors can sum the scores of different factors based on the 
patient’s condition to arrive at a risk score, which then 
guides the treatment plan. The nomogram provides clini-
cians with a quantifiable assessment tool, reducing bias 
from subjective judgment. Its applicability across diverse 
hospital settings, particularly in resource-limited regions, 
underscores its popularity and practicality.

There are certain limitations within this study. First, as 
a single-center retrospective investigation with a small 
sample size and the absence of an external validation 
cohort to evaluate the model’s predictive performance, 
the clinical and demographic characteristics of patients 
from a single institution may differ from those in other 
hospitals or regions. Consequently, the study population 
may not fully represent broader populations, potentially 
compromising the generalizability and external validity 
of the model. Second, variability in post-discharge reha-
bilitation care—influenced by patients’ socioeconomic 
status and access to healthcare resources—may introduce 
heterogeneity in mRS scores. Furthermore, this study 
employed a semi-automated segmentation technique 
that involved manual adjustments for regions of interest. 
While this method demonstrated a certain level of accu-
racy, it did introduce subjectivity during the exclusion of 
AIS lesions while delineating WMH lesions. To address 
these limitations, we will further conduct large-scale, 
prospective, multicenter studies incorporating broader 
cohorts and external validation cohorts to strengthen the 
robustness of the predictive model, while exploring deep 
learning-based lesion segmentation methods to enhance 
the precision of feature analysis.

Conclusion
In conclusion, this study conducted a comprehensive 
radiomics feature analysis of WMH across distinct brain 
regions, identifying the most robust imaging biomarkers 
through advanced machine learning techniques. Further-
more, we developed and validated a potent nomogram 
integrating clinical risk factors with TWMH radiomics 
features to predict 90-day functional outcomes in AIS 
patients following conservative management. The com-
bined model demonstrated superior predictive perfor-
mance, achieving AUCs of 0.972 and 0.939 in the training 
and validation cohorts, respectively. Future research 
should prioritize prospective multicenter validation with 
expanded sample sizes and incorporation of automated 
segmentation algorithms to enhance the model’s robust-
ness, applicability, and generalizability.
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