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Abstract
Purpose  To develop an automatic segmentation model for surgical marks, titanium clips, in target volume 
delineation of breast cancer radiotherapy after lumpectomy.

Methods  A two-stage deep-learning model is used to segment the titanium clips from CT image. The first network, 
Location Net, is designed to search the region containing all clips from CT. Then the second network, Segmentation 
Net, is designed to search the locations of clips from the previously detected region. Ablation studies are performed 
to evaluate the impact of various inputs for both networks. The two-stage deep-learning model is also compared with 
the other existing deep-learning methods including U-Net, V-Net and UNETR. The segmentation accuracy of these 
models is evaluated by three metrics: Dice Similarity Coefficient (DSC), 95% Hausdorff Distance (HD95), and Average 
Surface Distance (ASD).

Results  The DSC, HD95 and ASD of the two-stage model are 0.844, 2.008 mm and 0.333 mm, while their values are 
0.681, 2.494 mm and 0.785 mm for U-Net, 0.767, 2.331 mm and 0.497 mm for V-Net, 0.714, 2.660 mm and 0.772 mm 
for UNETR. The proposed 2-stage model achieved the best performance among the four models.

Conclusion  With the two-stage searching strategy the accuracy to detect titanium clips can be improved comparing 
to those existing deep-learning models with one-stage searching strategy. The proposed segmentation model 
can facilitate the delineation of tumor bed and subsequent target volume for breast cancer radiotherapy after 
lumpectomy.
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Introduction
Breast-conserving surgery (BCS) and whole-breast irra-
diation (WBI) is a standard alternative to mastectomy for 
most patients with early breast cancer [1, 2]. Boosting the 
tumor bed in addition to WBI can improve local control 
with mild side effects and acceptable cosmetic outcome 
[3, 4]. Sequential boost to the tumor bed (TB) was fre-
quently used but would extend treatment courses. Deliv-
ering a concurrent boost dose, simultaneously integrated 
boost (SIB), to TB could result in greater convenience for 
patients and utilization of radiation [5, 6]. SIB provides 
a localized dose enhancement in the area at highest risk 
without prolonging treatment duration. However, to 
reduce radiation toxicities to surrounding the organs at 
risks (OARs), such as lung, the advanced techniques for 
target volume delineation, treatment planning and deliv-
ery, and quality control are required [7, 8]. 

For many years, TB is defined according to a combina-
tion of information: tumor mass, surgical clip, seroma, 
scar, tumor cavity, etc [9]. According to the recommen-
dations of the International Commission on Radiation 
Units (ICRU) report 83, it is delineated based on the sur-
gical clip, the residual seroma, and the tumor cavity on 
post-operative CT image [10]. Studies have shown that 
the inter-operator variability of TB contouring is large 
and geographical misses are frequent [11]. Titanium clips 
are recommended to delineate the lumpectomy cavity 
region more accurately as anatomy on post-operative CT 
may be quite different from the one on pre-operative CT 
[12]. It is also essential for SIB as it uses smaller planning 
target volumes to reduce the risk of late normal tissue 
toxicity [13, 14].

The threshold-based methods are frequently used in 
clip segmentation as its intensity or Hounsfield Unit 
(HU) is much higher than that of soft tissue on CT image. 
Kazemimoghadam et al. utilized single-threshold-based 
method to segment clips with the mask of breast [15]. 
Buehler et al. applied top-hat transformation to correct 
for uneven background illumination after binarization of 
the CTs with threshold-based method [16]. Because the 
gray value of bony structures is higher than the threshold, 
this may cause wrong segmentation. Ng et al. made fur-
ther step to take the radius and the size of the segmented 
regions into account [17]. However, the limitations of 
threshold method are apparent. Firstly, it is required to 
specify the search region for clips, such as the mask of 
breast and the location of clips in adjacent images. Sec-
ondly, the HU of bony structures and metal is close to 
that of clips and cause wrong segmentation of clips.

Over the past decade, there have been many convo-
lutional neural networks (CNN) proposed to semantic 
segment 3D medical image such as Computed Tomog-
raphy (CT) [18, 19] and Magnetic Resonance Imaging 
(MRI) [20, 21]. Through supervised learning [21, 22], The 

CNN can learn information about the target, including 
its surroundings and the global environment, in addition 
to its size and location. To adapt to 3D medical image 
segmentation, Cicek et al. [23] and Milletari et al. [24] 
employed 3D operators, such as 3D convolution kernel 
and 3D pooling kernel, in the U-Net [25] architecture. 
Isensee et al. [26] proposed nnU-Net which consists of 
U-Net and 3D U-Net. It outperformed in many chal-
lenges by enhancing data preprocess and advanced train-
ing strategy.

In the recent years, Transformers-based networks were 
developed in the field of natural language processing 
(NLP) [27, 28], and very powerful for tasks such as trans-
lation with attention mechanism. To introduce Trans-
formers into the field of image processing, Dosovitskiy 
et al. proposed Vision Transformers to split the image 
into many sub-blocks to simulate the words in NLP [29]. 
Hatamizadeh et al. [30, 31] introduced Transformers in 
U-Net by replacing the encoder with transformer blocks. 
These transformer blocks were connected to the decoder 
with skip-connection structure. Chen et al. [32] proposed 
to split the feature map from encoder into sub-blocks, 
and applied Transformers blocks to these sub-blocks.

The most networks for medical image segmentation 
are specify for large organs or objects, such as liver and 
tumor mass [33]. For the titanium clips which are smaller 
in size, the existing segmentation networks should be 
adjusted to address the issue of smaller markers. To solve 
it, Gao et al. proposed FocusNetv2 to segment small 
organs from CT [33]. It divided the segment task into 
multiple stages corresponding to four networks. A large 
amount of annotated data is needed to train this model. 
Tao et al. proposed Spine-transformers to segment the 
vertebras in two networks [34]. Comparing to vertebras, 
the clip is very small and hardly segmented accurately.

In this paper, we propose a two-stage model to locate 
the potential clip region and then detect clip locations 
from post-operative CTs for post-lumpectomy breast 
radiotherapy. The box region of clips is first identified 
from CT by the Location Net, and then the location of 
clip is detected by the Segmentation Net. The rest of this 
paper is organized as follows. In Sect.  “Materials and 
methods”, the architecture of the proposed two-stage 
segmentation model is introduced. In Sect. “Results”, the 
ablation studies with and without feature map are per-
formed and analyzed. The proposed model is also com-
pared with the other existing deep-learning segmentation 
models. In Sect.  “Discussion”, the merits and limitations 
of this study are discussed.

Materials and methods
Patient dataset
101 breast cancer patient undergone breast-conserving 
surgery (BCS) and eligible for whole breast irradiation 
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(WBI) plus boost irradiation were collected retrospec-
tively in two hospitals, including 82 cases from Fujian 
Cancer Hospital and 19 cases from National Cancer Hos-
pital, Chinese Academy of Medical Sciences and Peking 
Union Medical College (CAMS). The median age of 
patients was 52 years (range, 42–60 years), and the path-
ological diagnosis was all invasive ductal carcinoma with 
a stage of T1-T2N0M0. All patients underwent a lumpec-
tomy with sentinel lymph node dissection. Tumor-neg-
ative margins were ensured during a single operation. 
Equal or more than 5 titanium clips were used to mark 
the boundaries of the lumpectomy cavity. This study was 
approved by the Institutional Ethics Committee of Can-
cer Hospital, Chinese Academy of Medical Sciences and 
Peking Union Medical College/Clinical Oncology School 
of Fujian Medical University, Fujian Cancer Hospital (The 
ethics approval number: K2023-345-01). Informed Con-
sent was waived in this retrospective study.

Patient CTs were non-contrast-enhanced and acquired 
averagely 10 weeks after surgery and used for radiother-
apy treatment planning. In postoperative CT simulation, 
the patients were in the supine position, immobilized on 
a breast bracket with no degree of incline, and placed 
using arm support (with both arms above the head). All 
CT images were scanned using a Somatom Definition 
AS 40 (Siemens Healthcare, Forchheim, Germany) or 

a Brilliance CT Big Bore (Philips Healthcare, Best, the 
Netherlands). Their dimensions are 512 × 512 with the 
slice number varied from 35 to 196. The slice thickness 
are 5.0  mm (some special cases are 3.0  mm). The pixel 
sizes of these CT images vary from 1.18 mm to 1.37 mm. 
All clip contours were delineated manually by the same 
physician and confirmed by one senior physician.

Two-stage segmentation model
A two-stage model is proposed for clip segmentation in 
post-lumpectomy breast cancer radiotherapy. As shown 
in Fig. 1, it consists of two components: Location Net and 
Segmentation Net. In the first stage, the Location Net 
is used to search for the region of interest (ROI) which 
contains all titanium clips. Its input is the CT images 
with HU rescaled to different window levels. In the sec-
ond stage, the Segmentation Net is used to search for 
the location of clips. Its input is the cropped CT images 
containing all clips and the feature maps obtained from 
the Location Net. As shown in Fig. 1, a modified U-Net, 
Res-SE-U-Net, is used in both stages. It consists of the 
up-sampling path, down-sampling path, and 5 skip-con-
nection structures, which can utilize the multi-scale fea-
tures and relieve vanishing gradient problem. In addition 
Res-SE-U-Net has 11 Res-blocks proposed in ResNet [35] 
and 1 SE-blocks proposed in SENet [36]. Both Res-block 

Fig. 1  The network architecture of the proposed model
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and SE-block improve the network ability in extracting 
image features.

The Location Net of the first stage is a Res-SE-U-Net 
with two 3D input channels and one 3D output chan-
nel. The first input channel is the CT images with HU 
in [− 200, 200]. The second input channel is the binary 
images with HU of CT images set to 0 when its value 
less than 300 and 1 otherwise. This processing enhances 
the features of bony structures and metal objects on the 
input image. The output is the predicted label image 
with 1 for clip pixel and 0 for non-clip pixel. As the label 
images obtained, the coordinates of the center of all clip 
pixels is determined and used as the center of volume to 
crop CT images in next stage. In the model training, the 
random patches of foreground/background are sampled 
at ratio 1:1. In the model inference, a sliding window 
approach with an overlapping of 0.25 for neighboring 
voxels was used.

The Segmentation Net is another Res-SE-U-Net with 
two 3D input channels and one 3D output channel. The 
first input channel is the CT image with HU in [-200 
200], which is the same as that of the Location Net. The 
second input channel is the feature maps which are cop-
ied from the last layer of the Location Net. This feature 
map contains condensed local and regional information 
of CT images. As the center of clips determined in pre-
vious stage, the ROI volume are cropped from the origi-
nal CT and feature maps. As a result, the portions of CT 
images and feature maps in the dimensions of 96 × 96 × 96 
are obtained and fed into Res-SE-U-Net in the second 
stage. The output is the predicted label image with 1 for 
clip pixel and 0 for non-clip pixel. In the model training, 
a center cropping in the size of 96 × 96 × 96 was applied 
to the input images based on the center of all clips in the 
labels with random spatial shifts. In the model inference, 
the sliding window approach with an overlapping of 0.25 
is also applied on the cropped CT image and feature map.

Since the air and treatment couch in the background 
occupied most of space in CT images while the human 
body only takes a small portion of the images, it is helpful 
to remove their effects and focus more on the interested 
region such as human body. For this goal, the thresh-
old method followed by the morphological method was 
applied to the CT images to enhance the pixels of human 
body. First, the air pixels in CT image are removed by 
setting all pixels with HU less than − 150 to 0. Next mor-
phological opening and closure methods were applied 
to correct for uneven foreground. Last, the largest con-
nected region was selected to remove the pixels of treat-
ment couch from CT images. To maintain consistent 
resolution across all images, CT and the corresponding 
label images were resampled to 2 × 2 × 2  mm in voxel 
sizes.

The datasets from two hospitals are randomly divided 
into training (90 cases), validation (6 cases), and test (5 
cases) sets. Hierarchical sampling is applied based on the 
hospital source of the case. The training, validation, and 
test sets were used for model learning, hyper-parameter 
selection, and model evaluation, respectively. In the pro-
cess of hyper-parameter selection, a grid search strategy 
was applied, and the network hyper-parameter including 
learning rate, weight of loss function, and number of net 
layers were adjusted based on the DICE of the validation 
set. During this process, the test set was not used to avoid 
data leakage.

The Location Net is first trained. During the training 
of the Segmentation Net, the parameters of the Location 
Net are fixed. Data augmentation strategies were used 
including random rotation, random flip in axial, sagittal 
and coronal views and random shift intensity in the range 
from 0.9 to 1.1. The model is implemented with PyTorch, 
Lightning and Monai on a single NVIDIA RTX 3090. The 
ADAM optimizer is used to train the models with a lin-
ear warmup of 50 epochs and using a cosine annealing 
learning rate scheduler. All models use a batch size of 2 
for 1000 epochs, and initial learning rate of 1e-4.

Experiments
Ablation studies were conducted to evaluate the impact 
of feature map on the model performance. Four combi-
nations are tested with the same network architecture 
but with different input images. In the first test the Loca-
tion Net has one input channel (CT image) while the Seg-
mentation Net has one input channel (CT image). In the 
second test the Location Net has two input channels (CT 
image and Binary image) while the Segmentation Net 
has one input channel (CT image). In the third test the 
Location Net has one input channel (CT image) while the 
Segmentation Net has two input channels (CT image and 
Feature Map). In the four test the Location Net has two 
inputs (CT image and Binary Image) while the Segmenta-
tion Net has two inputs (CT image and Feature Map).

The proposed method is also compared with three 
existing deep-learning models: 3D U-Net, V-Net and 
UNETR. All the models are trained and validated on 
the same CT datasets as the proposed model. 3D U-Net 
[23] and V-Net [24] are both modified U-Net and use 
3D operators for 3D medical image segmentation. The 
architecture of 3D U-Net is similar to the architecture of 
U-Net which consists of an encoder with down-sampling 
and a decoder with an up-sampling. 3D U-Net replaces 
the 2D convolutional kernels in U-Net with 3D convo-
lutional kernels and 2D pooling kernels with 3D pool-
ing kernels. In addition, 3D U-Net introduces weighted 
softmax as its objective function to focus itself more on 
the specified target. Compared with U-Net learning from 
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each slice separately, 3D U-Net can utilize the 3D fea-
tures between the slices of 3D medical images.

Compared with 3D U-Net, V-Net applied 3D convo-
lutional kernels with a stride of 2, instead of 3D pooling 
kernels to down-sample the feature map in the decoder. 
V-Net also introduced residual connections from ResNet 
to relieve the vanishing gradient caused by the large scale 
of the network. In addition, a novel objective function 
based on the Dice coefficient is introduced to solve the 
problem that the foreground region with a small volume 
is often missing or only partially detected.

To apply Transformers in the field of 3D medical 
image segmentation, UNETR [30] replaces the encoder 
of U-Net with 12 Transformer modules and connected 
them to the decoder every 3 modules with skip con-
nections directly. Since Transformer only works on 1D 
sequences, UNETR needs to convert the image into sev-
eral sequences like sentences and words in NLP. Thus, 
UNETR split the image into patches without overlap-
ping and then flattened them as sequences. As a result, 
the model can further utilize the global and local features 
to improve the performance by the attention mechanism 
from the Transformer.

Evaluations
To quantify the segmentation accuracy, three metrics 
are employed including DSC, 95% Hausdorff Distance 
(HD95), and Average Surface Distance (ASD). let Gi and 
Pi denote the ground truth and prediction values for 
voxel i and G′  and P ′  denote ground truth and predic-
tion surface point sets respectively.

DSC measures the spatial overlap between the pre-
dicted segmentation and the ground truth segmentation 
defined as follows:

	
Dice (G, P ) =

2
∑

iGiPi∑
iGi +

∑
iPi

� (1)

The value of a DSC ranges from 0 to 1, while 0 indi-
cates that there is no overlap between the predicted and 
ground truth segmentation, and 1 indicates that they 
overlap completely.

HD quantifies how closely the surfaces between the 
predicted and the ground truth segmentation. It mea-
sures the max distances between ground truth and pre-
diction surface point sets defined as follows:

HD (G′ , P ′ ) = max
{

max
g′ ∈ G′

min
p′ ∈ P ′

||g′ − p′ ||, max
p′ ∈ P ′

min
g′ ∈ G′

||p′ − g′ ||
}

� (2)

HD is sensitive to the edges of segmented regions. To 
eliminate the effects of outliers HD95 is mostly used and 
calculates the 95% largest distances for model evaluation.

ASD is also used to quantify the quality of segmenta-
tion result. It measures the average distance between the 
ground truth and prediction surfaces instead of the over-
lap of two volumes, and it is formally defined as follows:

ASD (G′ , P ′ ) = 1
|G′ | + |P ′ |

(∑
p′ ∈ P ′

min
g′ ∈ G′

||p′ − g′ || +
∑

g′ ∈ G′
min

p′ ∈ P ′
||g′ − p′ ||

)
� (3)

The value range of both HD95 and ASD is greater than 0, 
while the larger value indicates the long distance between 
the surface of predicted and ground truth segmentation.

Results
Ablation studies
For model with location network, the segmentation 
accuracy of the proposed model with and without fea-
ture inputs is shown in Table 1. For model without both 
feature maps, the DSC is 0.722 while HD95 and ASD are 
2.290  mm and 0.819  mm, respectively. For model with 
binary image and without feature map, the DSC increases 
by 3.8% while HD95 and ASD decrease by to 5.4% and 
30.1%, respectively. For model without binary image 
and with feature map, the DSC increases by 13.5% while 
HD95 and ASD decrease by to 12.6% and 53.7%, respec-
tively. For model with binary image and feature map, the 
DSC increases by 16.8% while HD95 and ASD decrease 
by to 12.3% and 59.3%, respectively. The result shows that 
the input of feature map has the greater impact than that 
of binary image on the segmentation accuracy. Without 
both of these feature inputs the segmentation accuracy of 
the proposed model could be significantly reduced.

For model without location network (only seg-
mentation net is used), the DSC, HD95 and ASD are 
0.714 ± 0.061, 2.372 ± 0.304  mm and 0.829 ± 0.148  mm, 
respectively. Comparing to the model with both loca-
tion and segmentation nets, the DSC decreases by 1.1-
15.4% while HD95 and ASD increase by 3.5-18.1% and 
1.2-148.9%, respectively. The introduction of location 
network can provide valuable feature map around clips. 
If this feature map wasn’t used in segmentation net, then 
the accuracy is improved slightly. If it wasn’t used in seg-
mentation net, the accuracy is improved apparently as 

Table 1  Ablation studies for impact of the feature inputs
Location net Segmentation net Metrics
CT Image Binary Image CT Image Feature Map DSC HD95 (mm) ASD (mm)
✓ × ✓ × 0.722 ± 0.077 2.290 ± 0.361 0.819 ± 0.139
✓ ✓ ✓ × 0.749 ± 0.206 2.166 ± 0.331 0.573 ± 0.608
✓ × ✓ ✓ 0.819 ± 0.047 2.000 ± 0.405 0.379 ± 0.102
✓ ✓ ✓ ✓ 0.844 ± 0.064 2.008 ± 0.016 0.333 ± 0.138
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shown in third and fourth lines of Table  1. This result 
shows that the location net is important for the accuracy 
of clip segmentation.

The segmentation results of a patient case by the pro-
posed model with different feature inputs are shown in 
Fig. 2a and d, and the clips delineated manually by physi-
cian is shown in Fig. 2e. In Fig. 2a and b two clips on the 
left and in the middle are detected as one clip by models. 
Both models in Fig.  2a and b have no input channel of 
feature map in the second stage. In Fig. 2c and d, three 
clips are clearly identified and there is no wrong segmen-
tation. Both models in Fig. 2c and d have input channel 
of feature map in the second stage. Among the four mod-
els, the proposed model shows the closet result to that 
of manual result, and which outperforms the other three 
models.

Model comparison
Table  2 shows the segmentation accuracy by the pro-
posed model, threshold method and three existing deep-
learning models. For 3D U-Net, the DSC is 0.681 while 
HD95 and ASD are 2.494  mm and 0.785  mm, respec-
tively. For V-Net, the DSC increases by 12.6% while HD95 
and ASD decrease by to 6.5% and 36.7%, respectively. For 
UNETR, the DSC increases by 4.85% and ASD decrease 
by 1.65%, but HD95 increase by to 6.66%. For the pro-
posed model with both feature inputs, the DSC increases 
by 23.9% while HD95 and ASD decrease by to 19.5% and 
57.5%. Compared with deep learning-based methods, the 
threshold method reduces DICE by 50%, while HD95 and 
ASD have significantly increased due to misidentification 
by the threshold method. Among the five models, the 
proposed model has the highest DSC and lowest HD95 
and ASD, which outperforms the other four models.

The segmentation results of a patient case by the pro-
posed model and the other three existing deep-learning 
models are shown in Fig.  3a and d, and the clips delin-
eated manually by physician is shown in Fig. 3e. In Fig. 3a 
there is a wrong clip labeled on the surface of breast by 
3D U-Net. The shape of this object has similar density 
to that of clip but its location is on the surface which is 
wrong. In Fig. 3b the left portion of middle clip is labeled 
as a portion of the left clip, and the right portion of 

Table 2  Comparison of the proposed and three deep-learning 
models
Models DSC HD95 (mm) ASD (mm)
Threshold 0.403 ± 0.161 43.871 ± 35.208 12.352 ± 13.563
3D U-Net 0.681 ± 0.101 2.494 ± 0.304 0.785 ± 1.550
V-Net 0.767 ± 0.088 2.331 ± 0.175 0.497 ± 0.809
UNETR 0.714 ± 0.305 2.660 ± 1.165 0.772 ± 0.889
Proposed 0.844 ± 0.064 2.008 ± 0.016 0.333 ± 0.138

Fig. 3  Clips segmented by the proposed and three other existing deep-learning models. (a) The segmentation result by 3D U-Net, (b) The segmentation 
result by V-Net, (c) The segmentation result by UNETR, (d) The segmentation result by the propose method, and (e) Clip contour delineated manually by 
physician. The red areas indicate the regions detected by the proposed models or delineated by physician

 

Fig. 2  Clips segmented by the proposed model with different feature inputs. (a) The model output without both binary image and feature map, (b) The 
model output with binary image and without feature map input, (c) The model output without binary image and with feature map input, (d) The model 
output with both binary image and feature map, and (e) True clip contour delineated manually by physician. The red areas indicate the regions detected 
by the proposed models or delineated by physician
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middle clip is missed by V-Net. In Fig. 3c the left clip and 
the middle clip are segmented but labeled as one clip by 
UNETR. In Fig. 3d three clips are clearly segmented and 
correctly labeled by the proposed model. Among the four 
tested models, the proposed two-stage model outper-
forms the other three models and shows the closet result 
to that of manual one.

Discussion
In clinical practice, the surgical clip is the major indica-
tor for the tumor bed. The physician needs to locate the 
clips and expand certain margin to form target volume 
of the boost region. With the automatic clip contour-
ing method, the workload for the physician to manually 
locate the clips is greatly reduced. As surgical clip is small 
and adjacent to rib, to identify them from CT images is 
not easy. To build a deep-learning model on a training set 
consisting of paired CT image and label image is an effi-
cient way. But, as the clip is too small, the focus of net-
work learning could be missed or distracted by the larger 
object or textures.

To solve this issue, a two-stage model is proposed to 
deal with segmentation in two different resolutions. 
A Location Net is first applied to search the region of 
interest containing all clips, and then a Segmentation 
Net is used to search for accurate location of clips on 
the enlarged image (cropped ROI volume). As demon-
strated in Fig. 3, the two-stage model can not only detect 
clips from soft tissue with higher contrast background, 
but also can distinguish the clip from the adjacent bony 
structures with lower contrast background.

The role of binary image and feature map for the pro-
posed model is crucial. Binary Image provides the regions 
with higher density that the clips may exist, although 
these regions could contain bony structures and metal. 
With the introduction of binary image, DSC increases 
modestly while ASD decreases considerably as shown in 
Table 1. Feature map provides more useful features from 
the last layer of the Location Net. With the introduction 
of feature map, DSC increases considerably while ASD 
decreases considerably as shown in Table 1. While both 
binary image and feature map introduced, the DSC and 
ASD can be further improved as shown in Table 1. This 
indicates that the local and regional point and texture 
information could be utilized to improve the segmenta-
tion accuracy of the learning model.

Compared with previous studies that used threshold-
based methods, the proposed method can automati-
cally searches for the area where the clips are located, 
and require no need for beforehand assignment of the 
search area for the clips. Besides, the proposed method 
can reduce the inaccurate-segmentation caused by adja-
cent bone structures of which HU values are relatively 
close. Comparing with the other existing deep-learning 

models, the two-stage model achieved the better results 
in clip segmentation in this study. The proposed model 
detects clips correctly from the normal tissue and bony 
structures. However, the other models could fail due 
to the impact of surrounding artifacts. For example 
as shown in Fig. 3a the pixel on the surface of breast is 
wrongly detected as clip due the similar contrast of 
high-density object. Even clips are correctly segmented 
from normal tissues, their volume could be wrong. For 
example, as shown in Fig. 3b part of clip is detected and 
labeled as another clip on the left. In addition, the edge 
of clips could be merged with the neighboring high-
density object. For example as shown in Fig. 3c two close 
clips are segmented but labeled as one clip. Therefore, 
the segmenting clip from normal tissue in CT image is 
a challenging task, which needs advanced deep-learning 
models and searching strategies.

Although the excellent performance of the proposed 
two-stage model for clips segmentation in this study, 
there are several aspects to be improved. First, there are 
few patient cases undergone breast-conserving surgery 
and eligible for whole breast irradiation plus boost irradi-
ation. To build a robust model, more representative cases 
collected from multiple institutes is needed. In this study, 
only two institutes’ patient data are available and the total 
number of cases is 101. This is insufficient in training a 
model with high generalizability and only used to dem-
onstrate the effectiveness of the deep-learning model. In 
the future, it is advantageous to introduce pre-training 
model learned in the other similar medical image appli-
cation, which can relieve the burden of the insufficient 
training data. Second, the proposed model employed 
two generic networks with the same architectures. It 
could be improved by adopting different networks which 
are more appropriate for the respective goals. In addi-
tion, it could be beneficial to introduce attention mecha-
nism and adversarial network to further improve model 
performance.

Conclusion
The proposed two-stage model provides an effective way 
to segment clip for target volume delineation in post-
lumpectomy breast cancer radiotherapy. The result shows 
that with the feature inputs the segmentation accuracy 
could be improved significantly. Also the propose model 
outperforms the other existing deep-learning models due 
to the introduction of two-stage searching strategy. It is 
promising to apply the current model to automatic delin-
eation of target volume in integrated tumor bed boost of 
whole-breast irradiation after lumpectomy.
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