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Abstract
Background Accurate detection and grading of fresh rib fractures are crucial for patient management but remain 
challenging due to the complexity of rib structures on CT images.

Methods Chest CT images from 383 patients with rib fractures were retrospectively analyzed. The dataset was 
divided into a training set (n = 306) and an internal testing set (n = 77). An external testing set of 50 patients from 
the public RibFrac dataset was included. Fractures were classified into severe and non-severe categories. A modified 
YOLO-based deep learning model was developed for detection and grading. Performance was compared with 
thoracic surgeons using precision, recall, mAP50, and F1 score.

Results The deep learning model showed excellent performance in diagnosing fresh rib fractures. For all fractures 
types in internal test set, the precision, recall, mAP50, and F1 score were 0.963, 0.934, 0.972, and 0.948, respectively. 
The model outperformed thoracic surgeons of varying experience levels (all p < 0.01).

Conclusion The proposed deep learning model can automatically detect and grade fresh rib fractures with accuracy 
comparable to that of physicians. This model helps improve diagnostic accuracy, reduce physician workload, save 
medical resources, and strengthen health care in resource-limited areas.

Clinical trial number Not applicable.
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Introduction
Rib fractures are the most common injuries in patients 
with blunt chest trauma [1, 2] and may be accompanied 
by severe complications such as pulmonary contusion, 
pneumonia, and hemopneumothorax [3, 4]. The number 
and displacement of rib fractures, as well as the presence 
of associated organ injuries, are correlated with mortality 
[5, 6]. Therefore, accurately identifying the number and 
severity of rib fractures is crucial.

With the increased use of chest multidetector com-
puted tomography scans, the detection rate of rib frac-
tures has significantly improved [7]. Compared to X-ray, 
CT offers greater contrast and resolution, providing a 
comprehensive view of the fracture site and enabling the 
detection of minor lesions and the assessment of other 
complications. However, the diversity and complexity 
of rib fracture shapes make it challenging to identify all 
fractures across hundreds of thin-slice CT images, often 
leading to missed diagnoses. The literature reports that 
20.7% of initial chest CT scan reports misidentify the 
number or location of fractured ribs [8], and even after 
rib reconstruction, 20.9% of rib fractures are missed [9].

Recently, deep learning algorithms have been applied 
in the field of medical image processing [10], including 
image registration [11, 12], detection [13–15], segmen-
tation [16–18] and disease prognosis [19, 20]. Notably, 
studies focusing on Alzheimer’s disease [21] and brain 
tumor classification [22], have highlighted the poten-
tial of next-generation convolutional architectures to 
enhance diagnostic accuracy and efficiency. Build-
ing upon these advancements, our study applies a deep 
learning approach to the detection and grading of fresh 
rib fractures. This approach not only aims to assist cli-
nicians in identifying fractures more accurately but also 
seeks to alleviate their workload and ultimately improve 
patient outcomes. Several studies have reported promis-
ing results in rib fractures detection [23–26]. Azuma et 
al. [27] developed and validated a convolutional neural 
network (CNN) model for detecting rib fractures, show-
ing that the CNN model could enhance the diagnostic 
ability of radiologists for any type of rib fracture. Zhou et 
al. [26] included clinical information in their CNN model, 
further improving diagnostic efficiency and reducing 
diagnosis time. However, the importance of fractures 
varies with their type. Chronic rib fractures usually do 
not require clinical intervention and do not affect treat-
ment decisions or patient prognosis. In contrast, fresh 
rib fractures often exhibit severe displacement and may 
be accompanied by organ injuries, especially severely 
displaced and comminuted rib fractures, which are often 
accompanied by fatal complications such as severe pul-
monary infection, persistent hemothorax, and massive 
hemoptysis [28]. Moreover, rapid and accurate detection 
of the severity of fresh rib fractures helps to implement 

necessary treatment measures, thereby improving patient 
prognosis. Therefore, accurately identifying the location 
and severity of fresh rib fractures is particularly impor-
tant. To the best of our knowledge, there is a scarcity 
of studies focusing on the graded diagnosis of fresh rib 
fractures, with an emphasis on those that are severely 
displaced.

In our study, we developed a deep learning-based 
model for the intelligent detection of fresh rib frac-
tures and graded diagnoses based on the severity of rib 
displacement, categorizing fractures into severe and 
non-severe. We conducted a comprehensive analysis of 
different subgroups of fracture severity and compared 
the model’s performance with that of experienced tho-
racic surgeons.

Methods
Data sets and classification criteria
A retrospective collection of initial chest CT scans of 
patients diagnosed with rib fractures from January 2021 
to April 2023 was conducted at the First Affiliated Hospi-
tal of Army Medical University (Hospital A) and Chongq-
ing Dianjiang People’s Hospital (Hospital B). This study 
obtained ethical approval from the Ethics Committee 
of the First Affiliated Hospital of Army Medical Univer-
sity (ID: KY2023062) and Chongqing Dianjiang People’s 
Hospital (ID: DYLL-LW-2023-03). All patient data were 
de-identified prior to analysis, and this retrospective 
study was conducted in accordance with the Declara-
tion of Helsinki. The inclusion criteria were patients 
aged ≥ 18 years with a history of trauma. Exclusion cri-
teria included: (1) old or healed fractures, (2) artifacts, 
(3) bone tumors or bone destruction, (4) postoperative 
patients.

A total of 383 patients from the two centers were ran-
domly divided into a training set (n = 306) and an inter-
nal testing set (n = 77). A rigorous randomization method 
was employed to minimize bias introduced by data parti-
tioning and ensure the reliability and scientific validity of 
the study results. The external testing dataset comprised 
50 CT scans from the public RibFrac dataset [29], and 
radiologists re-annotated the CT scans of these 50 cases. 
The specific screening criteria are shown in Fig. 1.

In this study, fractures were classified into non-severe 
and severe based on the severity. Non-severe fractures 
were defined as: (1) fissure fractures with bone defects 
between the ends of the cortical bone without displace-
ment, (2) cortical bone distortion or density changes, (3) 
fractures with angulation or displacement less than the 
rib diameter. Severe fractures were defined as: (1) frac-
tures with displacement greater than the rib diameter, (2) 
fractures with observed bone fragments or comminuted 
fractures (Fig. 2).
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CT acquisition
Patients were positioned supine, with their arms raised 
above their heads (for those unable to do so due to 
shoulder or upper limb injuries, arms were placed natu-
rally at their sides). The scanning range extended from 
the thoracic inlet to the lung bases or the entire ribcage. 
The scan was performed during a single breath-hold fol-
lowing inhalation. Two different CT scanners were uti-
lized for the examinations: Philips Brilliance 16 (Philips 
Medical Systems) and SOMATOM Definition (Siemens 
Healthineers). The tube voltage was set to 120  kV, with 
automatic modulation of the tube current. The slice 
interval ranged from 1 to 5 mm, and the slice thickness 
varied between 1 and 5 mm.

Image annotation
The CT slices in the training set were independently 
annotated by a thoracic surgeon with 5 years of experi-
ence and a radiologist with 5 years of experience. These 
two physicians used Makesense  (   h t t p s : / / w w w . m a k e s e n 
s e . a i /     ) to mark rib fractures with rectangular boxes and 
used different colors to indicate severity (Supplemen-
tary Fig.  1). In cases of uncertainty regarding fracture 
type, the two physicians discussed until a consensus was 
reached, or a third physician was involved to reach a final 
agreement. Annotations were made without access to 
any clinical information of the patients, and these anno-
tations were used as the ground truth for training the 
automated detection algorithm.

The internal and external test datasets were anno-
tated independently by another three thoracic surgeons 
-a junior, a middle grade, and a senior, and these anno-
tations were subsequently compared with the model’s 
predictions.

Model architecture
The model architecture: You-Only-Look-Once (YOLO) 
version 8 [30] is a real-time object detection algorithm 
that can detect and locate multiple objects in images or 

videos with relatively fast speed. While maintaining high 
detection accuracy, it significantly improves reason-
ing speed and is suitable for various computing devices, 
including mobile devices and embedded systems. The 
model architecture consists of three main components: 
the Backbone, the Neck, and the Head networks.

Although YOLOv8 has achieved notable success in 
fields such as autonomous driving and industrial inspec-
tion, it still exhibits significant shortcomings in the detec-
tion of small targets in medical imaging. To enhance 
YOLOv8’s capability in detecting small targets, we pro-
pose improvements by incorporating high-resolution fea-
ture maps and introducing a more sophisticated Feature 
Pyramid Network (FPN). The specific innovations are as 
follows:

1. Design of the C2f_EMA Module in YOLOv8: A C2f_
EMA module was designed in YOLOv8, which incorpo-
rates the EMA (Efficient Multi-scale Attention) attention 
mechanism. This modular design retains the original 
feature extraction capability of the C2f module while 
enhancing feature representation through the attention 
mechanism.

2. Integration of the Attention Mechanism: By embed-
ding the EMA attention mechanism into the C2f module 
of YOLOv8, the study achieves dynamic adjustment of 
channel and spatial dimension weights during the feature 
extraction and fusion stages, thereby improving the mod-
el’s discriminative ability.

3. Improved Feature Pyramid Network: The study 
enhances the FPN-PAN structure of YOLOv8 by intro-
ducing the new C2f_EMA module. This improvement 
facilitates the construction of a more efficient feature pyr-
amid network, leading to enhanced model performance.

Figure 3 illustrates the process of detecting rib fractures 
using the improved YOLOv8 model architecture with the 
C2f_EMA module and enhanced Feature Pyramid Net-
work, showcasing how feature maps are processed and 
the final detection result is achieved. These innovations 
collectively aim to address the limitations of YOLOv8 in 

Fig. 1 Flow chart of patient selection
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small target detection, particularly in the context of med-
ical imaging, by improving feature extraction, fusion, and 
multi-scale representation capabilities. These innovations 
collectively aim to address the limitations of YOLOv8 in 
small target detection, particularly in the context of med-
ical imaging, by improving feature extraction, fusion, and 
multi-scale representation capabilities.

As shown in Fig.  4, the input image is first passed 
through the Backbone to extract multi-scale features. The 
Backbone network (e.g., CSPDarknet53) generates multi-
scale feature maps through convolutional layers and 
downsampling operations [31, 32] capturing semantic 
information from low-level to high-level layers, thereby 
enhancing the feature extraction capability for small tar-
gets. To improve feature representation, we introduce the 

Fig. 2 Examples of two different types of rib fractures. The top row shows non-severe fractures, while the bottom row shows severe fractures. (a) Mild 
fracture with cortical distortion, where the outer layer of the rib is slightly disrupted but remains mostly intact. (b) Mild fracture with misalignment or 
displacement, but the displacement distance is less than the rib’s diameter. (c) Severe comminuted fracture, with the rib broken into multiple fragments. 
(d) Severe fracture with significant displacement, where the displacement distance exceeds the rib’s diameter
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C2f_EMA module, which combines the C2f structure 
with the EMA (Efficient Multi-scale Attention) mecha-
nism to dynamically adjust channel and spatial weights, 
enhancing the focus on important features.

Subsequently, the multi-scale features are fed into the 
Neck module for feature fusion. The Neck adopts the 
FPN (Feature Pyramid Network) and PAN (Path Aggre-
gation Network) structures, aggregating features through 
top-down and bottom-up paths to enhance multi-scale 
object detection capabilities. We also integrate the 
C2f_EMA module into the Neck, further optimizing the 
feature pyramid network and improving feature fusion 
performance.

Through the collaborative work of the Backbone and 
Neck, combined with the C2f_EMA module, the model 
can more efficiently extract and fuse multi-scale features, 
providing richer feature representations for the detec-
tion head (Head). This significantly improves the accu-
racy and robustness of small target detection, particularly 
excelling in complex scenarios such as medical imaging.

 Fb = Backbone (x)

 Fn = FPN − PAN (Fb)

 Y = Head (Fn)

x ∈ RH× W × 3, where Fb represents multi-scale fea-
tures, Fn is the fused feature map, and Y is the output of 
the detection head.

Model evaluation
To objectively assess the model’s performance, four eval-
uation metrics were calculated: mean average precision 
(mAP), precision, recall, and F1 score. For localization 

accuracy, mAP was used, which is a standard metric in 
artificial intelligence. The areas under the precision-recall 
curve (AUPRC), with values ranging between 0 and 1. 
To calculate mAP, intersection of union (IoU) is used, 
measuring the overlap between predictions and ground 
truth. We defined the IoU threshold as 0.5 to classify the 
prediction box as a true positive or false positive. An IoU 
of 0.5 was chosen because, in clinical CT examinations, 
such a prediction box can already prompt clinicians (Sup-
plementary Fig. 2). Precision is defined as the number of 
correctly predicted slices divided by the total number of 
predicted slices, while recall is defined as the number 
of samples correctly predicted as positive by the model 
divided by the total number of positive samples. The F1 
score is the harmonic mean of precision and recall, pro-
viding a balance between the two metrics. It is particu-
larly useful when the class distribution is imbalanced.

Statistical analysis
This study employed SPSS (version 26.0, IBM, NY for 
statistical analysis, with a two-tailed p-value threshold 
of < 0.05. Normality of continuous variables was assessed 
using the Kolmogorov-Smirnov test. Normally distrib-
uted data were presented as mean ± standard deviation, 
otherwise, M (P25-P75) were utilized. Categorical vari-
ables were expressed as frequencies and percentages.

For normally distributed data, two-sample t-tests were 
applied, and non-normally distributed data were ana-
lyzed using the Mann-Whitney U test. Categorical vari-
ables were compared using Chi-squared or Fisher’s exact 
test. The z-test was used to compare whether there was a 
statistical difference between the system and the thoracic 
surgeons.

Fig. 3 Rib fracture detection in CT images using a YOLO-based model with Exponential Moving Average (EMA). The input CT images are resized to 640px 
× 640px and processed through the model to generate feature maps. These maps are used to produce a class probability map and a bounding map, 
which are then passed through Non-Maximum Suppression (NMS) to yield the final detection of the fracture location
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Results
Patient characteristics
This study included data from 383 patients with rib 
fractures from two centers, comprising a total of 4673 
annotations. Among these annotations, 3,043 were for 
non-severe fractures and 1,630 for severe fractures. 
Of the 383 patients, 130 were from Hospital A and 253 
from Hospital B. We randomly selected 306 patients for 
the training set and 77 patients for the internal testing 
set. Our results showed no statistically significant differ-
ences in gender (P = 0.256) and age (P = 0.766) between 
the training and testing sets (Table 1). Additionally, there 

were no significant differences in age (P = 0.565) between 
patients from the two centers, and hospital A had a sig-
nificantly higher proportion of male patients compared 
to hospital B (P < 0.01) as detailed in Supplementary 
Table 1.

The training set consisted of 306 patients, with a total 
of 3,646 annotations, including 2,455 non-severe frac-
tures and 1,191 severe fractures. The internal testing set 
included 77 patients, with a total of 1,027 annotations, 
comprising 685 non-severe and 342 severe fractures. 
Additionally, we incorporated 50 patients from the public 

Fig. 4 The architecture of a YOLO-based model incorporating Exponential Moving Average (EMA). The backbone extracts features using CBS and C2f_
EMA modules, followed by spatial pyramid pooling (SPPf ) and feature fusion in the neck. The detection head generates outputs across multiple scales 
for object detection
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RibFrac dataset, with a total of 821 annotations, includ-
ing 660 non-severe fractures and 161 severe fractures.

Performance of the models
In the internal test set, the overall precision for all frac-
ture types was 0.963, recall was 0.934, mAP50 was 0.972, 
and the F1 score was 0.948. For external test dataset, 

precision was 0.880, recall was 0.796, mAP50 was 0.857, 
and F1 score was 0.836 (Table 2).

We visualized the model’s performance using the preci-
sion-recall (PR) curve. Figure 5a illustrates the PR curves 
for the internal test set, where the AUPRC values are 
0.964 for non-severe fractures, 0.981 for severe fractures, 
and 0.972 for all classes combined. Figure 5b shows the 
PR curves for the external test set, with AUPRC values of 
0.843 for Non-severe fractures, 0.872 for Severe fractures, 
and 0.857 for all classes combined. These results demon-
strate that our model exhibits excellent performance on 
the external test set, indicating good generalizability. Fig-
ure 6 presents examples of rib fractures successfully iden-
tified by our model. Additionally, a confusion matrix has 
been created to illustrate the model’s performance on the 
internal and external testing set (Supplementary Fig. 3).

To further demonstrate the effectiveness of the 
model, we performed comparative experiments with the 
YOLOv8x and EfficientVit-M3 models, respectively, for 
the two different datasets and for non-severe fractures 
and severe fractures. The experimental results show that 
the F1-score of the proposed model on the internal veri-
fication set is higher than other models, and the accuracy 
and recall rate of the proposed model on the external 
verification set are 5% higher than other models, which 
further indicates the effectiveness of the model in detect-
ing small targets (Table 3).

Comparison of the performance between our model and 
thoracic surgeons
Table  4, and Fig.  7 present a comparison of precision, 
recall, and F1 score between three thoracic surgeons of 

Table 1 Patient’s radiologic and clinical information in training, 
internal and external testing datasets
Characteristic Training 

data set
Internal 
testing 
data set

External 
testing 
data set

P 
value

No. of patients, n (%) 306 77 50 -
Age, years, M (Q1, Q3) 57 

(48 ~ 69)
55 
(53 ~ 62)

- 0.256

Gender, male, n (%) 202 
(66.0%)

59 (76.6%) - 0.766

No. of fracture annota-
tions (total)

3646 1027 821 -

Annotations of non-
severe fracture

2455 685 660 -

Annotations of Severe 
fracture

1191 342 161 -

Table 2 Model performance internal and external data sets
Fracture type Precision Recall mAP50 F1 score
Internal Testing data set 0.963 0.934 0.972 0.948
Non-Severe Fracture 0.957 0.909 0.964 0.932
Severe Fracture 0.968 0.959 0.981 0.963
External Testing data set 0.880 0.796 0.857 0.836
Non-Severe Fracture 0.867 0.774 0.843 0.818
Severe Fracture 0.892 0.819 0.872 0.854

Fig. 5 Precision-Recall curves depicting the model’s diagnostic performance for fracture identification. (a) Internal test set results: The model demon-
strates high Average Precision (AP) scores, with an AP of 0.964 for non-severe fractures and 0.981 for severe fractures, culminating in a combined AP of 
0.972 for all classes. (b) External test set results: The model maintains robust performance with APs of 0.843 for non-severe fractures, 0.872 for severe 
fractures, and an aggregate AP of 0.857 across all classes

 



Page 8 of 12Li et al. BMC Medical Imaging           (2025) 25:98 

varying experience levels and our model. For non-severe 
fractures, the F1 score ranged from 0.660 to 0.862 across 
surgeons, with senior surgeon achieving the highest 
score. For severe fractures, senior surgeon again per-
formed the best with an F1 score of 0.880, while junior 
surgeon had the lowest at 0.648. In overall performance, 
senior surgeon led with an F1 score of 0.869, while our 
model outperformed all surgeons in both precision and 
recall, demonstrating its superior capability in rib frac-
ture detection. These results emphasize the model’s 

potential in improving detection accuracy compared to 
experienced clinicians.

Discussion
Chest CT scans are often the preferred imaging modality 
for patients with chest trauma because they can identify 
many injuries that may be missed by chest X-rays, includ-
ing pulmonary contusions, hemothorax, pneumothorax, 
and rib fractures. Moreover, rib fractures are considered 
indicators of severe trauma [33]. Traditional detection 

Fig. 6 Overview of fracture cases identified by the model, encompassing non-severe and severe fracture recognition cases. a and b: Non-severe fractures 
identified by the model, Fig. 6c and d: Severe fractures identified by the model
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methods require physicians to meticulously evaluate the 
entire CT scan, which is a time-consuming and error-
prone process, particularly for less experienced radiolo-
gists or thoracic surgeons. Additionally, the number and 
displacement of rib fractures are related to the follow-
up treatment plan [34, 35]. Therefore, thoracic surgeons 
should prioritize different types of rib fractures. Chronic 
rib fractures, characterized by the presence of a mature 
callus or an invisible fracture line, do not require clini-
cal intervention and do not affect treatment decisions or 

patient prognosis, making their detection unnecessary. 
In contrast, timely identification and localization of fresh 
rib fractures are crucial, especially in emergency settings, 
as severely displaced rib fractures may be associated with 
internal organ injuries, significantly impacting patient 
outcomes [36].

To address this issue, we developed a deep learning-
based intelligent diagnostic model for the classification 
and detection of fresh rib fractures, which was validated 
on both internal multicenter datasets and external public 

Table 3 Performance comparison of rib fracture detection models on internal and external testing datasets
Model Internal testing data set External testing data set

Precision Recall mAP50 F1 score Precision Recall mAP50 F1 score
yolov8x-DAttention All classes 0.869 0.829 0.897 0.848 0.794 0.657 0.758 0.718

Non-severe fracture 0.845 0.829 0.892 0.838 0.742 0.667 0.735 0.700
Severe fracture 0.893 0.828 0.901 0.860 0.846 0.646 0.780 0.732

efficientVit-M3 All classes 0.894 0.782 0.882 0.834 0.642 0.485 0.517 0.554
Non-severe fracture 0.860 0.762 0.857 0.806 0.580 0.411 0.450 0.480
Severe fracture 0.929 0.801 0.908 0.860 0.703 0.559 0.584 0.620

YOLOv8x All classes 0.828 0.826 0.889 0.824 0.777 0.618 0.731 0.688
Non-severe fracture 0.766 0.816 0.865 0.788 0.725 0.596 0.685 0.654
Severe fracture 0.890 0.836 0.914 0.862 0.829 0.64 0.777 0.722

Ours All classes 0.963 0.934 0.972 0.948 0.880 0.796 0.857 0.836
Non-severe fracture 0.957 0.909 0.964 0.932 0.867 0.774 0.843 0.818
Severe fracture 0.968 0.959 0.981 0.963 0.892 0.819 0.872 0.854

Table 4 Comparison of diagnostic performance between thoracic surgeons and our model
Senior Surgeon Middle grade surgeon Junior surgeon

Fracture type Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score
Non-severe fracture 0.802 0.932 0.862 0.669 0.736 0.701 0.651 0.670 0.660
Severe fracture 0.922 0.842 0.880 0.793 0.774 0.783 0.606 0.695 0.645
All classes 0.845 0.895 0.869 0.713 0.751 0.731 0.635 0.678 0.656

Fig. 7 Performance comparison between our model and doctors. (a): doctor’s performance on the precision-recall curve. (b): The Statistical results of 
precision, recall and F1 score on internal test dataset. mAP: mean average precision, JT: Junior Thoracic surgeon, MT: Middle grade Thoracic surgeon, SR: 
Senior Thoracic surgeon, Model: Deep learning system for fresh rib fracture detection and grading model
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datasets. The model outperformed experienced thoracic 
surgeons and demonstrated exceptional performance.

Recently, Yao et al. [37] developed a deep learning-
based rib fracture detection system that achieved high-
performance detection and diagnosis of rib fractures on 
chest CT images, significantly reducing physician work-
load and minimizing misdiagnoses. However, this study 
only addressed the binary classification of fracture pres-
ence. Zhou et al. [38] developed a convolutional neural 
network (CNN) model that classified fractures into fresh, 
healing, and old fractures but did not perform a graded 
diagnosis for precise fracture diagnosis. Zhou et al. [26] 
reported the use of clinical information in their CNN 
model, which similarly improved diagnostic efficiency 
and reduced diagnosis time. Xiong et al. [39] found that 
the performance of radiologists on night shifts was infe-
rior to that on day shifts, and the use of a deep learning-
based computer-aided diagnosis (CAD) system for rib 
fractures helped night shift radiologists achieve perfor-
mance levels comparable to their daytime performance. 
Unlike previous studies, our research focused on fresh 
rib fractures, as their rapid localization and diagnosis are 
crucial components of intelligent diagnosis and treat-
ment of acute chest trauma. Chronic rib fractures do not 
affect treatment decisions or patient outcomes, making 
the focus on fresh rib fractures more aligned with real 
clinical scenarios. Our model can also intelligently grade 
fractures based on their severity, aiding in treatment 
decisions and prognosis evaluation for posttraumatic rib 
fractures.

Our model’s performance is also comparable to that of 
physicians, making it suitable as the “first reader.” This 
approach can help improve diagnostic accuracy, reduce 
diagnosis time, and reduce the workload of physicians, 
additionally, it can aid in building medical resources in 
under resourced areas.

In our model improvements, we optimized the Back-
bone, Neck, and Head networks to enhance feature 
extraction, fusion, and detection capabilities. The Back-
bone, designed to extract deep features from medical 
images, alternates between CBS modules (Convolution, 
Batch Normalization, and SiLU activation) and C2f_EMA 
modules, which include convolution layers and parallel 
Bottleneck_EMA branches for richer feature representa-
tion. It concludes with the SPPF module, which combines 
multiple Maxpool and Concat operations to capture 
critical global information. In the Neck, we focused on 
refining and consolidating multi-scale features using an 
Upsample operation and the C2f_EMA module to merge 
and process features across different levels, improving 
detection accuracy and robustness. Finally, the Head 
network, composed of additional C2f_EMA modules, 
integrates and processes refined features before passing 
them to the Detect layer, where bounding boxes and class 

predictions are generated. This comprehensive multi-
level integration allows our model to achieve high-preci-
sion detection in medical images.

Limitations of the study
Our study had several limitations. First, while the model 
can mark the fracture locations on CT images, it cannot 
provide the specific anatomical details, such as identify-
ing which rib is fractured. Second, our sample size could 
be further expanded, and we plan to include more cen-
ters in future studies. Finally, prospective studies remain 
relatively scarce. We aim to collect more data and con-
duct prospective studies to further validate and optimize 
the model.

Conclusion
In summary, we developed a deep learning-based intel-
ligent detection model for the detection and grading of 
fresh rib fractures. The model demonstrated high frac-
ture detection rates and localization accuracy. It is suit-
able as a “first reader” to assist physicians in quickly and 
accurately determining the condition of patients with rib 
fractures, reducing diagnostic time, improving diagnostic 
accuracy, and enhancing physician efficiency. Addition-
ally, the model can help strengthen medical resources 
in under resourced areas, including rural and township 
regions.
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