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Abstract
Background  This study aimed to identify cerebral radiomic features related to migraine diagnosis and subtyping 
into migraine with aura (MwA) and migraine without aura (MwoA) and to develop predictive models based on these 
markers.

Method  We retrospectively analyzed MR imaging from 88 migraine patients (32 MwA and 56 MwoA) and 49 healthy 
control subjects (HCs). Features representing the gray matter morphometry and diffusion properties were extracted 
from participants via histogram analysis. These features were put through an all-relevant feature selection procedure 
within cross-validation loops to identify features with significant discriminative power for migraine diagnosis and 
subtyping. Based on the selected features, the predictive ability of the random forest models constructed from the 
previous sample was tested in an independent sample of 30 patients (10 MwA) and 17 HCs.

Result  No overall differences in total brain volume or gray matter volume were revealed between patients and HCs, 
or between MwA and MwoA (all P values > 0.05). Six features significantly differed between patients and HCs for 
migraine diagnosis, and four features distinguished MwA from MwoA for subtyping (all P values < 0.001). Four features 
were significantly correlated with headache severity score (all P values < 0.01). Based on these relevant features, the 
random forest models achieved accuracies of 80.9% in distinguishing patients from HCs and 76.7% in differentiating 
MwA from MwoA in the testing cohort.

Conclusion  Our findings suggest cerebral radiomic alterations in migraine patients may potentially serve as a 
biomarker to assist in migraine diagnosis and subtyping, contributing to personalized treatment strategy.

Clinical trial number  Not applicable.
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Background
Migraine is a primary neurologic disorder featured by 
complex manifestations beyond just headache. It affects 
over 1  billion people worldwide and has negative influ-
ences on both personal and socioeconomic levels [1]. It is 
majorly categorized into migraine without aura (MwoA) 
and migraine with aura (MwA). MwoA is considered the 
common type of migraine, while MwA has specific symp-
tomatic features. Migraine aura could manifest as visual, 
sensory, speech and/or language, motor, brainstem, and 
retinal symptoms [2, 3]. Compared to MwoA, patients 
with MwA experience fewer headache attacks but longer-
lasting headache attack duration (including the time of 
aura symptoms and the headache attack). Patients with 
MwA also exhibit a higher level of anxiety, which may 
more significantly affect their life quality [1, 3]. Addi-
tionally, MwoA may respond to acute treatments more 
quickly than MwA since there is no aura phase delaying 
the onset of headache [4]. Moreover, MwA patients have 
a higher risk of aura-related ischemic stroke and cardio-
vascular disease than MwoA [5, 6]. Therefore, accurate 
migraine subtyping, particularly for aura, based on an 
understanding of the disease mechanism, is preferred 
for aura-specific therapy, which may help to reduce the 
risk of aura-related vascular events [7]. However, diagno-
sis of migraine, as well as migraine subtyping into MwA 
and MwoA, is for now based solely on clinical criteria, 
which lack objective evidence and provide limited patho-
physiological information. Especially, given the diverse 
clinical manifestations of MwA, the incidence of misdi-
agnosis in clinical practice remains relatively high. For 
instance, visual aura symptoms may be transient, and 
the clinical presentation can resemble other neurologi-
cal conditions. Research has demonstrated that current 
criteria are insufficient for accurately diagnosing MwA 
in some cases due to overlapping features with other 
disorders, making it prone to misdiagnosis [8]. Clinical 
assessment alone cannot fully address the complexity of 
MwA symptoms, which may vary widely in presentation. 
Therefore, it is essential to develop methodologies that 
address these limitations and enable more accurate and 
objective diagnostic capabilities. To better understand 
the complex pattern of migraine manifestation and make 
optimal patient-specific decisions, neuroimaging markers 
that would improve migraine diagnosis and subtyping are 
highly desirable.

Neuroimaging markers reflecting morphological alter-
ation of gray matter in migraine patients are of great 
importance in explaining the possible mechanisms of 
migraine [9, 10]. Structural changes in gray matter are 
fundamental to variations in brain function and metabo-
lism. In addition, trigemino-thalamo-cortical pathway is 
considered an important possible theory of MwoA and 
is widely reported to be associated with regional gray 

matter (GM) changes [10–13]. Cortical spreading depres-
sion (CSD), characterized by propagating depolarization 
neurons and glia in cortical gray matter with a break-
down of normal ionic gradient that translates into neuro-
logic symptoms, has been considered as the prominently 
possible theory for migraine aura [2]. The topologic 
folding feature of the gray matter of the human gyren-
cephalic brain (highly folded), involving negative and 
positive Gaussian curvature, is strongly related to CSD 
progress [14]. In previous studies, gray matter macro-
morphological alterations in migraine patients have been 
demonstrated as changes in volume, cortical thickness, 
local gyrification index, and cortical surface area [15–17]. 
The indices of diffusion tensor imaging (DTI) imply the 
microstructural changes in gray matter, including the loss 
of myelinated fibers passing through gray matter, tissue 
compaction and gliosis, the loss of certain dendrite con-
nection, the breakdown of microstructural barriers to 
diffusion, ferritin-bound iron concentration, and so on 
[18, 19]. Gray matter structural integrity also relates to 
neuronal activity, which evokes local cerebral blood flow 
increase through neurovascular coupling (NVC), a pro-
cess of great importance in CSD [20]. Therefore, informa-
tion about macro- and micro-structural variations in gray 
matter in migraine patients is of great importance for 
better understanding the underlying mechanisms.

Radiomic features applied to machine learning mod-
els provide promising results with quantitative imaging 
information and play an increasingly important role in 
diagnosis prediction, treatment response, and progno-
sis [21]. The random forest algorithm builds multiple 
of decision trees during training and outputs the mode 
for classification or the mean prediction of the individ-
ual trees, showing superior performance in neuroimag-
ing feature capturing compared to traditional machine 
learning methodology with satisfactory accuracies in 
previous imaging studies [22, 23]. The robustness in han-
dling high-dimensional data and the ability to measure 
feature importance without extensive parameter tuning 
made the random forest algorithm ideal for our study. 
We applied rigorous feature selection to minimize over-
fitting and improve the model generalizability, followed 
by cross-validation to ensure stability and reliability. We 
plan to introduce improvements in imaging feature selec-
tion and validation that enhance the random forest algo-
rithm performance in neuroimaging feature extraction 
of migraine. Machine learning approaches were applied 
in the studies of migraine neuroimaging biomarker 
derived from functional MRI with promising accuracy 
[24, 25], highlighting its diagnostic value for migraine 
[26]. However, subtle morphometric radiomic char-
acteristics derived from brain gray matter in migraine 
patients, which are fundamentally associated with 
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trigemino-thalamo-cortical pathway and CSD mecha-
nism theories, remain indispensable.

Thus, the present study applied the random forest algo-
rithm and cross-validation to capture the morphometric 
radiomic features of migraine in the training group, aim-
ing to detect potential brain morphological markers with 
diagnostic value for migraine for classifying MwA and 
MwoA. The performance of the radiomic analysis would 
be further evaluated using external testing group.

Methods
Participants and clinical assessments
The human study was approved by the local ethics com-
mittee of our hospital (No.KY20200301-16), and written 
informed consent was obtained from each participant. 
Patients were recruited from the neurological wards. 
Ninety-seven patients were diagnosed with episodic 
migraine according to the third version of the Interna-
tional Classification of Headache Disorders (ICHD-3) 
[3]. Diagnostic criteria for migraine without aura and 
migraine with aura were then used to classify patients 
into MwoA and MwA groups. Patients with probable 
migraine, additional neurological disease other than 
migraine, severe head injury, drug abuse, use of preven-
tive medications, other major medical illness, brain vas-
cular disease, or hydrocephalus, as well as those who 
failed to complete the MR examination, were excluded 
from the study. In the end, 88 migraine patients were 
enrolled into the training group, including 56 MwoA 
and 32 MwA (22 with visual/retinal symptom, eight with 
sensory symptom, four with language symptom and one 
with motor symptom) patients. Forty-nine healthy con-
trol subjects (HCs) matched to patients in respect to 
age, sex and education were also enrolled into this study. 
They were recruited from the local population and had 
no personal or family history of migraine, or any other 
types of headaches. To minimize hormonal influences on 
cortical excitability, all female subjects were included at 
mid-cycle and excluded if pregnant or breastfeeding. All 
migraine patients and HCs were right-handers accord-
ing to self-report. The age and gender of both HCs and 
migraine patients, as well as the disease duration and 
migraine frequency of all migraine patients, were col-
lected according to self-reports. All patients completed 
a headache severity score assessment via a numeric pain 
rating scale. Fisher’s test for gender and two-tailed t-tests 
for continuous variables were conducted in the com-
parisons between groups. In addition, another group of 
migraine patients was recruited as an external testing 
cohort from the neurological wards. The same inclu-
sion and exclusion criteria for MwA and MwoA and the 
same clinical evaluations were applied to these patients. 
Finally, 30 migraine patients (10 MwA) and 17 HCs were 
included in the testing group.

Image acquisition and preprocessing
All participants in the training and testing groups were 
scanned at a 3.0T MRI scanner. (uMR 780, United Imag-
ing Healthcare, Shanghai, China) during the interic-
tal phase of migraine episodes. The MR examination 
contained a protocol of high-resolution three-dimen-
sional T1-weighted MR images (T1WI, a MATRIX 
sequence, resolution 1 × 1 × 1  mm [3], TI = 800ms, TR/
TE = 8.1 ms/3.7 ms, slices = 170, flip angle = 10°, acquisi-
tion matrix = 256 × 100, Field of View (FOV) = 256  mm 
× 256  mm, bandwidth = 250, accelerator factor = 3.5), 
and diffusion-weighted images (echo-planar imaging, 64 
weighted directions and 2 b0 images, b = 1000  s/mm2, 
resolution 2 × 2 × 2 mm [3], TE/TR = 85ms/12080ms, 
acquisition matrix = 128 × 100, FOV = 256  mm × 
256  mm, bandwidth = 1630, accelerator factor = 2.0, flip 
angle = 90°/180°).

The DTI data were preprocessed using the Functional 
Magnetic Resonance Imaging of the Brain software 
(FMRIB Software Library, FSL; University of Oxford, 
London). Motion and eddy current distortions were cor-
rected using the “eddy” script. A brain mask of the non-
diffusion-weighted image was created using the BET in 
FSL. Diffusion tensors were calculated using the “dtifit” 
script to obtain the following four diffusion parameters: 
fractional anisotropy (FA), mean diffusivity (MD), axial 
diffusivity (AD), and radial diffusivity (RD).

The extraction of radiomic features
All T1WIs were processed using the script of recon-all 
in Freesurfer with the Desikan-Killiany-Tourville atlas. 
A total of 2338 shape-related features (including mean, 
standard deviation, skew, and kurtosis of local thickness, 
mean curvature, convexity, geodesic depth, and travel 
depth) representing gray matter morphometry were 
extracted using the Mindboggle software, as detailed in 
the previous studies [27].

According to the Brainnetome atlas, which parcellates 
the brain into 210 cortical and 36 subcortical subregions 
[28], four types of histogram metrics (mean, standard 
deviation, skew, and kurtosis) were extracted from each 
of four parameter maps (FA, MD, AD and RD). A total 
of 1968 features representing the diffusion properties of 
gray matter regions were extracted from each partici-
pant’s DTI data.

Feature selection and model construction
There were 88 and 30 migraine patients in the train-
ing and testing groups, with nearly the same percentage 
of MwoA and MwA patients (P > 0.5 in a chi-squared 
test). The percentages of patients and HCs in the train-
ing and testing groups were also not significantly differ-
ent (P > 0.5 in a chi-squared test). Feature selection and 
model construction were performed simultaneously only 



Page 4 of 11Wang et al. BMC Medical Imaging          (2025) 25:110 

in the training group. To select radiomic features with 
significant discriminative power for migraine diagnosis 
or MwA identification, all features were put into an all-
relevant feature selection procedure within cross-vali-
dation loops using the random forest algorithm (Fig.  1 
and Supplementary Figure S1). We repeated 100 times of 
10-fold cross validation, which resulted in a total of 1000 
training-validation cycles. In detail, the 10-fold cross 

validation involves dividing the dataset into 10 almost 
equal parts, using nine parts for training and the remain-
ing one part for validation at a time, and repeating this 
process 10 times with each part serving as the validation 
set once. For each iteration, a random forest classifier was 
constructed from the training set using the randomFor-
est package with default parameters in MATLAB (Math-
Works, Natick, MA). The performance of the classifier 

Fig. 1  The flowchart of an all-relevant feature selection procedure within 10-fold cross-validation loops, to identify features with significant discriminative 
power for classification
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was evaluated in the validation set. Among all iterations, 
different subsets of features were selected based on dif-
ferent folds. The selection frequency of each feature was 
defined as the number of iterations in which the feature 
was selected divided by the total number of iterations.

A permutation test (permuted 1000 times) was applied 
to identify the features with significantly higher selection 
frequency than random values as migraine-related or 
MwA-related selections. The statistical results were cor-
rected for multiple comparisons using the False Discov-
ery Rate (FDR) method for the corresponding p-value. 
Based on the identified features, the final random forest 
models were constructed from the training group and 
were further evaluated in the testing group.

After the feature selection, group comparisons and 
correlations with the headache severity score were per-
formed for all the features with significant discriminative 
power using two-tailed t-tests and Pearson’s correlation 
analysis in MATLAB (MathWorks, Natick, MA). Because 
men typically exhibit an 11–13% larger brain volume 
than women, we accounted for it by including gender and 
age covariates in all volumetric analyses.

Results
Demographic and clinical characteristics and macroscopic 
volumetric measurements
The demographic and clinical characteristics, as well as 
macroscopic cerebral volume measurements of all par-
ticipants were summarized in Table 1 and Supplementary 
Table 1. There were no significant differences in age, gen-
der, disease duration (time since diagnosis), or migraine 
frequency between MwA and MwoA patients, using a 
chi-squared test for gender and two-tailed t-tests for con-
tinuous variables (all P values > 0.05). The MwA group 
showed a higher headache severity score compared to the 
MwoA group (P < 0.01). Moreover, there were no signifi-
cant differences in total brain volume or gray matter vol-
ume between patients and HCs, nor between MwA and 
MwoA (all P values > 0.05), with gender and age included 
as covariates.

Significantly relevant radiomic features
In constructing the random forest classifiers to discrimi-
nate between migraine patients and HCs, six features 
were identified as significantly relevant to classifica-
tion by the permutation test (all P values < 0.01, Table 2; 
Fig.  2). Compared to HCs, the six features identified in 
patients included lower skewness of convexity in thala-
mus, higher mean of local thickness in postcentral sulcus, 

Table 1  The demographic and clinical characteristics and macroscopic cerebral volume measurements of all participants
MwA (n = 32) MwoA (n = 56) HC (n = 49) Patients 

versus HCs 
p-valuea

MwA 
versus 
MwoA 
p-valuea

Age (years) 35.4 ± 12.1 37.0 ± 8.9 37.4 ± 8.9 0.56 0.48
Gender (Male/Female) 7/25 11/45 16/33 0.11b 0.80b

Disease duration (years) 11.8 ± 8.7 14.4 ± 8.8 NA NA 0.19
Frequency (days per month) 4.1 ± 4.0 5.4 ± 6.6 NA NA 0.35
Headache severity score 6.0 ± 1.4 4.3 ± 1.2 NA NA < 0.01
Cortical gray matter volume (mm3) 432553.6 ± 22598.4 440723.2 ± 38454.2 432320.8 ± 25861.6 > 0.1 > 0.1
Subcortical gray matter volume (mm3) 59687.6 ± 3591.8 61099.4 ± 5889.6.8 59370.4 ± 6388.5 > 0.1 > 0.1
Total gray matter volume (mm3) 582754.2 ± 31497.8 602319.5 ± 49657.5 592792.6 ± 44949.8 > 0.1 > 0.1
Total brain volume (mm3) 1209944.5 ± 209687.7 1273486.6 ± 231421.3 1277152.6 ± 261605.0 > 0.1 > 0.1
HC: Healthy controls, MwA: migraine patients with aura, MwoA: migraine patients without aura, NA: not applicable

Values are represented as the mean ± standard deviation, except for the gender distribution
aUnless otherwise indicated, p values were calculated with two-tailed t-tests
bp Value was obtained using a chi-squared test

Table 2  Significantly relevant features to discriminate migraine patients and healthy controls
Selection frequency (%) * Feature description Patients Healthy controls p-value
92.1 Skewness of convexity in thalamus -0.72 ± 0.12 -0.56 ± 0.08 < 0.001
91.3 Mean of local thickness in postcentral sulcus 2.15 ± 0.12 2.07 ± 0.11 < 0.001
88.4 Kurtosis of mean diffusivity in insula 5.54 ± 1.27 6.40 ± 1.44 < 0.001
86.1 Kurtosis of mean curvature in postcentral -0.27 ± 0.45 -0.48 ± 0.31 0.004
82.1 Skewness of travel depth in caudal middle frontal -0.47 ± 0.15 -0.31 ± 0.11 < 0.001
80.7 Standard deviation of fractional anisotropy in inferior parietal 0.18 ± 0.04 0.21 ± 0.06 < 0.001
* Defined as the number of iterations in which the feature was selected divided by the total number of iterations performed
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lower kurtosis of mean diffusivity in insula, higher kur-
tosis of mean curvature in postcentral, lower skew-
ness of travel depth in caudal middle frontal, and lower 
standard deviation of fractional anisotropy in inferior 
parietal. Four features showed significant differences 
between MwA and MwoA, relevant to subtyping, includ-
ing higher mean of travel depth in caudal middle fron-
tal, lower standard deviation of fractional anisotropy in 
postcentral, lower mean of convexity in lateral occipital, 
and lower mean of fractional anisotropy in thalamus in 
MwA compared to MwoA (all P values < 0.01, Table  3; 
Fig. 3). Several features were significantly correlated with 
the headache severity score in patients (Fig. 4), including 

the mean of local thickness in postcentral sulcus (r = 0.35, 
P = 0.009), kurtosis of mean curvature in postcentral (r 
=-0.38, P = 0.004), mean of travel depth in caudal middle 
frontal (r = 0.45, P < 0.001) and mean of fractional anisot-
ropy in thalamus (r =-0.37, P = 0.005).

Prediction outcomes in the testing group
Six potential radiomic markers of migraine patients and 
four markers of MwA patients were identified after the 
feature selection procedure in the training group. On 
basis of these markers, the random forest models con-
structed from the training group achieved accuracies of 
80.9% to identify migraine patients from HCs and 76.7% 

Table 3  Significantly relevant features to discriminate migraine patients with and without aura
Selection frequency (%) * Feature description MwA MwoA p-value
91.7 Mean of travel depth in caudal middle frontal 6.56 ± 0.69 6.04 ± 0.54 < 0.001
90.1 Standard deviation of fractional anisotropy in postcentral 0.14 ± 0.02 0.16 ± 0.02 < 0.001
85.3 Mean of convexity in lateral occipital -3.26 ± 0.26 -2.94 ± 0.29 < 0.001
81.2 Mean of fractional anisotropy in thalamus 0.37 ± 0.02 0.39 ± 0.03 0.004
MwA: migraine patients with aura, MwoA: migraine patients without aura

* Defined as the number of iterations in which the feature was selected divided by the total number of iterations performed

Fig. 2  Six identified connectivity features to discriminate migraine patients from HCs, using the all-relevant feature selection algorithm. These features 
were listed as follows: the skewness of convexity in thalamus (A) the mean of local thickness (LT) in postcentral sulcus (B) the kurtosis of mean diffusiv-
ity (MD) in insula (C) the kurtosis of mean curvature (MC) in postcentral (D) the skewness of travel depth (TD) in caudal middle frontal (E) the standard 
deviation (SD) of fractional anisotropy (FA) in inferior parietal (F). They all showed significant differences between patients and HC. Statistical significance 
is indicated by asterisks (***, P < 0.001; **, P < 0.01)
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in discriminating MwA patients from the MwoA in the 
testing group.

Discussion
This study applied radiomic analysis to identify quan-
titative imaging features related to migraine diagnosis 
and subtyping into MwA and MwoA. Both macro- and 
micro- cerebral gray matter morphologic alterations were 
detected in migraine patients, including shape-related 
features of thalamus, postcentral and caudal middle fron-
tal, postcentral sulcus, and the diffusion index of insula 
and inferior parietal. The accuracy of the six features to 
diagnose migraine exceeded 80% in the external sample 
validation test. Meanwhile, the shape-related features of 
caudal middle frontal and lateral occipital, along with the 
diffusion index of postcentral and thalamus, significantly 
contributed to differentiating MwA from MwoA with 
accuracy exceeded 75% in the external validation test.

Consistent to previous studies, no overall difference in 
total gray matter volume was revealed between our MwA 
and MwoA groups [29], nor between our migraine group 
and HCs [30]. The cerebral shape-related index altera-
tions in our migraine patients, including lower negative 
values of skewness of convexity in thalamus and skew-
ness of travel depth in caudal middle frontal, higher 
mean local cortical thickness in postcentral sulcus, and 

negative value of kurtosis of mean curvature in postcen-
tral, showed focal cerebral topological feature consistent 
with previous studies. In a study on neuroanatomical sig-
natures, Chou et al. also found increased cortical thick-
ness in left postcentral sulcus in migraine patients [31]. 
However, there are also contradictory results demon-
strating decreased cortical thickness in postcentral sulcus 
in migraine patients [16, 29, 31]. The discrepant results 
of focal cortical thickness suggest maladaptive changes 
linked to cortical plasticity related to the chronic pro-
gression of headache attacks, such as the frequency of 
headaches, and may be affected by cortical folding involv-
ing ion imbalances [10]. Another morphological feature 
of postcentral, the higher negative kurtosis of the mean 
curvature, was also found in our migraine group, indicat-
ing the curvature of postcentral has more spatial varia-
tion. Similar to our findings, an increased gyrification 
index in left postcentral gyrus was reported in a group of 
32 MwoA patients [32]. Cerebral curvature alteration has 
also been reported in chronic and episodic migraine [33]. 
It is argued that the alterations of the cortex curvature 
index in migraine may be associated with neuro-hyper-
activity and ion gradient fluctuation [14]. Hyperneural 
activity and increased amplitude of low-frequency fluctu-
ation (ALFF) signals were detected in postcentral gyrus, 
encoding pain intensity in chronic migraine patients [34, 

Fig. 3  Four identified connectivity features to discriminate MwA from MwoA patients, using the all-relevant feature selection algorithm. These features 
were listed as follows: the mean of travel depth (TD) in caudal middle frontal (A) the standard deviation (SD) of fractional anisotropy (FA) in postcentral (B) 
the mean of convexity in lateral occipital (C) the mean of FA in thalamus (D). They all showed significant differences between MwA and MwoA patients. 
Statistical significance is indicated by asterisks (***, P < 0.001; **, P < 0.01)
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35]. Previous studies have demonstrated no significant 
difference in thalamus volume between migraine and 
healthy controls, but subtle volume alteration in sub-
thalamus regions [13, 36]. Similarly, we did not find any 
brain volume alteration in migraine, but we did observe 
lower negative skewness of convexity in thalamus. Alter-
ations in cerebral blood flow were detected in both thala-
mus and postcentral gyrus in migraine in our previous 
study [37]. Both thalamus and postcentral are critical 
components of the trigemino-thalamo-cortical pathway, 
which is considered an important headache circuit in 
migraine [7]. Thus, the morphological alteration detected 
in our results may also contribute to the understanding of 
migraine mechanism.

The alteration of distribution metrics of diffusion indi-
ces (mean diffusivity in insula and fractional anisotropy 
in inferior parietal) in our patients suggests microstruc-
tural changes in gray matter. Similarly, lower grey matter 
density in the right inferior parietal was also observed 
in migraine, and a decreased local gyrification index 
in the left superior parietal was detected in a cohort of 
seventy-two pediatric MwoA patients [15]. The struc-
tural alteration of insula in migraine patients has been 
widely reported [16, 32], and it is the fundamental factor 
in neural function, both functional and structural con-
nectivity, and metabolism. Mean diffusivity (MD) reflects 
the average water molecule diffusion in all directions, 
while fractional anisotropy (FA) reflects the directional-
ity of diffusion. The diffusion index is primarily used to 

Fig. 4  Relationship between the disease severity and identified connectivity features. Significant correlations were revealed between the headache 
severity score and mean of local thickness (LT) in postcentral sulcus, kurtosis of mean diffusivity (MD) in insula, mean of travel depth (TD) in caudal middle 
frontal, and mean of fractional anisotropy (FA) in thalamus among all patients (A-D, all P values < 0.01, after FDR correction)
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estimate the integrity of white matter. Alterations in MD 
and FA in gray matter have been previously reported in 
migraine [38]. The changes of distribution metrics of dif-
fusion indices in our results are not visually observable 
but significantly contribute to differentiating migraine 
patients from HCs. The alteration of MD has been 
reported as a potentially earlier biomarker than volume 
in reflecting the microstructural integrity and organiza-
tional changes in gray matter [18]. Altered FA values in 
gray matter may reflect the composition and orientation 
of myelin, as well as the changes in glial cell density and 
orientation. Additionally, FA in gray matter has been 
reported to correlate with iron concentrations, possi-
bly due to the clustering effect of ferritin in vivo, which 
increases magnetic inhomogeneity [19]. The gray matter 
microstructural changes in insula and inferior parietal in 
our migraine group may correspond to their important 
roles in the salience network and pain modulation [39].

Taken together, the macro- and micro-cerebral mor-
phometric features, along with diffusion indices of gray 
matter from our results, may provide diagnostic tools for 
classifying migraine into MwA and MwoA (Fig. 2), which 
also adds imaging radiomics information of gray mat-
ter alteration of migraine subtypes. In previous studies, 
cerebral alterations in caudal middle frontal and occipital 
in MwA were reported, including cortical depth, cortical 
thickness, cerebral blood flow, and functional connectiv-
ity [37, 40–42]. Our results highlighted the higher abso-
lute values of mean convexity in lateral occipital and 
mean travel depth in caudal middle frontal in MwA com-
pared to MwoA, indicating greater variation in curvature, 
which represents more special variation. Cerebral cortex 
special variation affects the initiation, propagation, and 
cessation of extracellular K+ waves in CSD, widely recog-
nized as the underlying pathophysiological mechanism of 
MwA [14]. The alterations in the SD of FA in postcentral 
and mean FA in the thalamus in MwoA were greater than 
those in MwA, demonstrating gray matter microstruc-
ture differences between MwoA and MwA. The differ-
ence in microstructure of the postcentral and thalamus 
between MwoA and MwA may be attributed to different 
pain modulation pathways [2].

In terms of clinical symptoms, the headache severity 
score showed correlations with the morphological fea-
tures. The postcentral sulcus is a prominent structure in 
somatosensory processing and an important component 
in the trigemino-thalamo-cortical pathway, which has 
been widely reported as a possible mechanism underly-
ing migraine [7]. The positive correlation between head-
ache severity and cortical thickness of postcentral sulcus 
might be attributed to the hyperexcitability of neurons 
under the condition of pain in migraine. The caudal 
middle frontal plays a role in cognitive function and 
emotion processing in migraine [2, 7]. The fluctuation 

of curvature (travel depth) in the caudal middle frontal 
may influence cognitive and emotional processing, which 
could exacerbate the perception of pain and contribute to 
higher headache severity. Moreover, these positive cor-
relations might indicate an interaction between sensory 
processing, emotion, and cognitive factors in migraine. 
As headache severity increases, the brain might engage 
sensory processing (via the postcentral sulcus) and emo-
tional and cognitive processing (via the caudal middle 
frontal area) to a greater level. The negative correlations 
between headache severity and mean FA in thalamus, as 
well as the kurtosis of MD in insula, imply that as head-
ache severity increases, the microstructure of insula and 
thalamus become less variable in terms of water molecule 
diffusion. This might reflect a form of plasticity and adap-
tive response, where the microstructures become more 
uniform in the face of repeated or severe headaches in 
migraine [43–45]. In our previous study, hyper-perfu-
sion in postcentral sulcus also worsened the headache 
(positively correlated), while hypo-perfusion in thalamus 
alleviated the headache (negatively correlated) [37]. The 
results of our two studies (same cohorts) suggest that the 
multiple index alterations of the same brain area possibly 
interact with each other and contribute to clinical mani-
festations. Also, the microstructural alteration may have 
interactions with the vasculature, together affecting the 
headache severity.

The cost-benefit trade-off of using neuroimaging bio-
markers in migraine diagnosis is significant, with MRI 
costs ranging from $500 to $1,000 in North America and 
Europe. However, these costs are justified by the potential 
benefits. Early-stage neuroimaging insights are critical 
for accurate diagnosis and timely intervention, which can 
prevent fatal complications such as ischemic stroke or 
cardiovascular disease [5, 6]. Neuroimaging biomarkers 
offer objective, reproducible results that clinical assess-
ments may miss, potentially reducing misdiagnosis and 
improving patient outcomes in the long term. Thus, the 
costs of neuroimaging may be outweighed by its ability to 
guide effective therapy and prevent severe consequences.

This study has some limitations. Compared with the 
training sample, the sample size of MwA in the testing 
group was relatively small. Due to the relatively limited 
sample size in a single cohort, our diagnosis models need 
to be further tested and confirmed with more samples 
from multiple institutions. We did not account for poten-
tial confounders such as smoking, alcohol consumption, 
and Body Mass Composition, which could affect the 
interpretation of our findings and we will consider incor-
porating these variables more comprehensively in future 
studies. There exists heterogeneity in migraine with aura, 
which is probably associated with the pathophysiological 
mechanism of aura. However, we did not categorize our 
MwA group into specific subtypes, such as typical aura 
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migraine, brainstem aura migraine, hemiplegic migraine, 
or retinal migraine. In our further studies, we will focus on 
collecting and investigating various subtypes of the MwA 
group to explore potentially distinct neuroimaging bio-
markers and their clinical implications. We applied cross-
validation to assess the generalizability of our model, it is 
still possible that optimistic performance estimates may 
result from overfitting. Our radiomics analysis identified 
possible macro- and micro-morphological feature dif-
ferences between MwA and MwoA, which are valuable, 
but the mathematic indices alone can’t provide direct 
explanation of the clinical symptoms or the underlying 
mechanisms. One possible strategy to improve the inter-
pretability and relevance of radiomic indices is to integrate 
radiomic data with clinical information, such as patient 
history, or to apply multimodal data fusion. The cohort 
results of our research, including the cerebral blood flow 
alterations [37] and functional and structural connectiv-
ity [46], along with present findings, provide fundamental 
preliminary work for further multimodal data fusion stud-
ies to bridge the gap between radiomics findings and clini-
cal practice. These approaches could help align radiomics 
findings with clinical saturation, creating more compre-
hensive models that better capture migraine’s complexity 
and enhancing their application in personalized diagnos-
tics and treatments. Since migraine is a dynamic neuro-
logical disorder, a larger group of patients with continuous 
longitudinal follow-up studies are still needed to pro-
vide insights into how these imaging markers evolve and 
whether they correlate with clinical assessments.

Conclusions
The main finding of this study is that the cerebral mor-
phologic feature derived from the MR imaging radiomics 
analysis aligns with existing theories and previous reports 
by distinguishing migraine from HC and revealing subtle 
brain microstructural differences between MwA and MwA 
that are not visually detectable. We applied MRI radiomics-
based analysis to identify imaging biomarkers, which could 
potentially aid clinicians in accurately diagnosing migraine 
and MwA with objective, non-invasive evidence. Despite 
the challenges, our study holds promise for broader applica-
tion across diverse patient populations and clinical settings, 
representing a valuable step towards better understanding 
the disease patterns of migraine, various aura symptoms, 
and unclear underlying physio-pathological mechanisms.
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