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Abstract
Background Microvascular invasion (MVI) is an important risk factor for early postoperative recurrence of 
hepatocellular carcinoma (HCC). Based on gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-
DTPA)-enhanced magnetic resonance imaging (MRI) images, we developed a novel radiomics model. It combined 
bi-regional features and two machine learning algorithms. The aim of this study was to validate its potential value for 
preoperative prediction of MVI.

Methods This retrospective study included 304 HCC patients (training cohort, 216 patients; testing cohort, 88 
patients) from three hospitals. Intratumoral and peritumoral volumes of interest were delineated in arterial phase, 
portal venous phase, and hepatobiliary phase images. Conventional radiomics (CR) and deep learning radiomics (DLR) 
features were extracted based on FeAture Explorer software and the 3D ResNet-18 extractor, respectively. Clinical 
variables were selected using univariate and multivariate analyses. Clinical, CR, DLR, CR-DLR, and clinical-radiomics 
(Clin-R) models were built using support vector machines. The predictive capacity of the models was assessed by the 
area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity.

Results The bi-regional CR-DLR model showed more gains and gave better predictive performance than the single-
regional models or single-machine learning models. Its AUC, accuracy, sensitivity, and specificity were 0.844, 76.9%, 
87.8%, and 69.1% in the training cohort and 0.740, 73.9%, 50%, and 84.5% in the testing cohort. Alpha-fetoprotein 
(odds ratio was 0.32) and maximum tumor diameter (odds ratio was 1.270) were independent predictors. The AUCs of 
the clinical model and the Clin-R model were 0.655 and 0.672, respectively. There was no significant difference in the 
AUCs between all the models (P > 0.005).

Conclusion Based on Gd-EOB-DTPA-enhanced MRI images, we focused on developing a radiomics model that 
combines bi-regional features and two machine learning algorithms (CR and DLR). The application of the new model 
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Introduction
Hepatocellular carcinoma (HCC) is the sixth most com-
mon malignant tumor and the fourth most lethal tumor 
worldwide [1]. The recurrence and metastasis rates are 
as high as 50–70% at 5 years after liver cancer resection 
and liver transplantation [2, 3]. Microvascular invasion 
(MVI) is defined as the invasion of tumor cells into the 
endothelial cell space of blood vessels [4]. It is an impor-
tant risk factor for early recurrence and poor prognosis 
after treatment for HCC [5]. The incidence rate of MVI in 
HCC is approximately 50%. Patients with HCC combined 
with MVI exhibit a markedly inferior prognosis com-
pared to those without MVI [6]. However, the precise 
identification of MVI necessitates a postoperative his-
topathological examination [7]. Therefore, preoperative 
identification of MVI is tremendously essential to guide 
individualized treatment decision-making [8].

Conventional radiomics (CR) employs machine 
learning algorithms to transform medical images into 
high-dimensional and qualitative features. From these, 
qualitative disease diagnosis models will be constructed 
[9]. Tian Y [10] developed CR models to predict preop-
erative MVI status with promising results. Deep learning 
is a type of algorithm that is capable of processing images 
and learning through an iterative process. Deep learning 
radiomics (DLR) deep mines potential imaging features 
through multitasking convolutional neural networks [11]. 
He X [12] developed an intratumoral DLR model based 
on enhanced computed tomography images, also with 
good MVI predictive power. Moreover, Huynh’s study 
[13] concluded that high-performance and cross-agency 
generalization of models can be achieved by combining 
CR and DLR models. Nevertheless, the extent to which 
the combination of CR and DLR models can enhance 
predictive efficacy in the MVI domain remains to be 
elucidated.

Moreover, the peritumoral environment has signifi-
cant potential. It may provide valuable insights into the 
clinical assessment of tumor aggressiveness [14]. The 
peritumoral CR model established by Chong [15] had 
demonstrated efficacy in predicting MVI. This lends 
support to the aforementioned perspective. However, 
few attempts have been made to evaluate the perfor-
mance of DLR mining peritumoral features. Accordingly, 
an exploration into this matter is to be conducted. And 
whether combining intratumoral and peritumoral 

features improves predictive efficacy is a question await-
ing investigation.

Consequently, we will construct a predictive model. 
The model will integrate bi-regional features (intra-
tumoral and peritumoral) with two machine learning 
algorithms (CR and DLR). It is hypothesized that this 
provides valuable utility for preoperative non-invasive 
prediction of MVI. Thus facilitating the implementation 
of clinically personalized treatment. This is the novelty of 
this study.

The objective of this study is to gain further insight into 
the potential of combining CR and DLR. This will result 
in the creation of models that are both high-perform-
ing and generalizable across institutions. Furthermore, 
integrating intratumoral and peritumoral data provides 
more comprehensive information on tumor heterogene-
ity. Both have the potential to offer enhanced benefits in 
the prediction of MVI. Thus our model can be applied 
to medical research and diagnosis to assist clinical treat-
ment. The flowchart of this multicentre study is shown in 
Fig. 1.

Materials and methods
This study was conducted in accordance with the ethi-
cal standards set forth in the Declaration of Helsinki. It 
was also approved by the Medical Ethics Committees of 
the First People’s Hospital of Taicang, the Third Affiliated 
Hospital of Nantong University, and the First Affiliated 
Hospital of Soochow University. The necessity of written 
informed consent was waived due to the retrospective 
study design. The approval numbers are as follows: 2022-
ky-203, EK2023025, and 2,024,269, respectively.

Patient criteria
Patients with surgically pathology-confirmed HCC were 
enrolled at three hospitals from January 2016 to Decem-
ber 2023. Inclusion criteria: (1) HCC was confirmed by 
postoperative pathology; (2) the presence of MVI could 
be diagnosed by postoperative pathology; (3) gadolin-
ium-ethoxybenzyl-diethylenetriamine pentaacetic acid 
(Gd-EOB-DTPA)-enhanced magnetic resonance imag-
ing (MRI) was received within two weeks before sur-
gery; (4) the images were complete and clear; and (5) the 
data of laboratory tests were complete within two weeks 
before surgery. Exclusion criteria: (1) prior local treat-
ment of tumor before surgery, including radiofrequency 

will provide a more accurate and non-invasive diagnostic solution for medical imaging. It will provide valuable 
information for clinical personalized treatment, thereby improving patient prognosis.

Clinical trial number Not applicable.

Keywords Hepatocellular carcinoma, Microvascular invasion, Conventional radiomics, Deep learning radiomics, 
Magnetic resonance imaging, Gd-EOB-DTPA



Page 3 of 13Zhu et al. BMC Medical Imaging          (2025) 25:105 

ablation, radiation therapy, or TACE; (2) invasion of great 
vessels such as the portal vein, hepatic vein, or inferior 
vena cava, or the presence of a cancerous embolus was 
detected on MRI images; (3) extrahepatic metastasis. The 
flowchart of the patients enrolled in the study is shown in 
Fig. 2.

Clinical data
Seven clinical data points of patients were recorded, 
including gender, age, maximum tumor diameter, alpha-
fetoprotein (AFP), alanine aminotransferase (ALT), 
aspartate aminotransferase (AST), and viral hepatitis 
status.

MRI examination methods
A Siemens Skyra 3.0T, a Philips Medical Systems 
3.0T, and a GE Discovery 750 3.0T MR scanner with a 
16-channel abdominal phased array coil were used. The 
patients were fasted and dehydrated for 4–6  h prior to 
the examination and were positioned in a supine posi-
tion. The images were captured in three planes: trans-
verse, coronal, and sagittal. The scanning sequence is 
described in the Supplementary Methods A. The con-
trast agent Gd-EOB-DTPA (Bayerische Medizintechnik 
GmbH, Germany), measured at a volume of 0.1 mL/kg, 
was injected intravenously. Images of the arterial phase 
(AP), portal venous phase (PP), and hepatobiliary phase 

(HBP) were obtained 25–30 s, 55–60 s, and 20 min after 
the completion of the contrast injection, respectively.

Dataset description
The dataset comprised AP, PP, and HBP images of preop-
erative Gd-EOB-DTPA-enhanced MRI of HCC patients 
(Fig. 3). The images we used were 3D images with sizes 
ranging from 288 × 288 × 90 to 640 × 400 × 60. Images 
were downloaded from the hospital imaging platforms in 
DICOM format and transformed into the NII.GZ format 
for subsequent operations.

A total of 304 HCC patients were included. The train-
ing cohort was from the First Affiliated Hospital of 
Soochow University, including 216 cases (170 males, 
46 females, mean age 58.8 years, range 26–87 years), 
of which 90 MVI + and 126 MVI- patients. The testing 
cohort was from the Third Affiliated Hospital of Nantong 
University and the First People’s Hospital of Taicang City, 
including 88 cases (53 males, 35 females, mean age 58.3 
years, range 34–79 years), of which 30 were MVI + and 58 
were MVI-.

Implementation environment
Our operations were carried out on the computer Lenovo 
ThinkPad X13, which has the operating system Windows 
11. We used a GPU NVIDIA GeForce RTX 4090, 24 GB 
of RAM and the computing platform CUDA 11.8.

Fig. 1 Flowchart of this multicenter study. It includes image segmentation, clinical data collection, feature extraction, feature selection, and model 
construction
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Fig. 3 Representative MRI images and relevant pathological images of two HCC patients. (a–d) show an MVI- case and (e-h) an MVI + case. (a, e): the AP 
images show tumor enhancement; (b, f): the PP images show decreased tumor enhancement; (c, g): the HBP images show no enhancement of tumor 
and enhancement of normal liver parenchyma; (d): the pathological image shows no tumor embolus in the vascular channel (H&E, × 100); (h): the patho-
logical image shows a tumor embolus in the vascular channel (H&E, × 100)

 

Fig. 2 Flowchart of the patients enrolled in the study
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Image segmentation
All operations were done on 3D Slicer 4.10.2 software 
(https://www.slicer.org). Two independent radiologists 
with 5 and 10 years of experience, respectively, manually 
delineated the tumor volumes of interest (VOIs) in AP, 
PP, and HBP images. The intratumoral region was defined 
as the area within the tumor boundaries labeled by the 
radiologists. Then, the intratumoral region was expanded 
outward by 10 mm using the “Hollow” function, thus cre-
ating a peritumoral region. In instances where the VOIs 
extended beyond the boundaries of the liver parenchyma, 
the external portion was manually erased. The intra-class 
correlation coefficient (ICC) was employed to evalu-
ate the reproducibility of the delineation of VOIs by two 
radiologists. VOIs described by radiologists with 10 years 
of experience were selected for subsequent radiomics 
analysis.

Extraction of CR features
FeAture Explorer (FAE) 0.5.2 software ( h t t p  s : /  / g i t  h u  
b . c  o m /  s a l a  n 6  6 8 / F A E) is employed for the processing 
and extraction of CR features. Computational methods 
for CR features include the application of wavelet and 
Laplace of Gaussian (LoG) filters (sigma = 1.0) to either 
the original or pre-processed images. Feature extraction 
was carried out on images that were resampled to voxel 
dimensions of 1 × 1 × 1 mm³, with an intensity bin width 
of 5 for discretization. CR features were extracted from 
the intratumoral and peritumoral VOIs, including first-
order statistics, shape, and texture features. Texture fea-
tures included gray level co-occurrence matrix, gray level 
run length matrix, gray level size zone matrix, gray level 
dependence matrix, and neighboring gray tone difference 
matrix.

Extraction of DLR features
Pre-trained (Kinetics dataset-based) 3D ResNet-18 
model from the “torchvision” library of the deep learn-
ing framework PyTorch v2.1.0 ( h t t p  s : /  / g i t  h u  b . c  o m /  p y 
t o  r c  h / p y t o r c h) was used for DLR features extraction. 
During model training, we used several well-established 
techniques to minimise the risk of overfitting, includ-
ing data augmentation and learning rate decay. Data 
enhancement methods included ScaleIntensityRanged, 
RandRotate90d, RandFlipd, and so on. In this study, the 
batch size was set to 32, the initial learning rate to 1e − 4, 
and the learning rate decayed by 0.1 times in every 5 
epochs. CrossEntropyLoss was used as the loss function. 
We chose the Adam optimizer, a widely used optimizer 
that could automatically adjust the learning rate. The 
fully connected layer was first fine-tuned and trained for 
50–100 epochs. Once the model training was finished, 
the trained weights were saved for predictions. Then the 
fully connected layer of the model was removed, and the 

part before the fully connected layer was used as a fea-
ture extractor to extract the high-dimensional feature 
representation from the input image. To ensure that the 
input image conforms to the model, resampling was per-
formed using linear interpolation to resize the image to a 
uniform size of 64 × 64 × 64. Finally, the feature extractor 
of the 3D ResNet-18 model was applied to extract DLR 
features from each intratumoral and peritumoral region 
image. As well, the activation function used was ReLU. 
The architecture of 3D ResNet-18 is given in the Supple-
mentary Methods B. The details of the hyperparameters 
were tabulated in Supplementary Methods C.

Feature screening and model construction
To enhance the generalization of the models, we used 
Z-Score to normalize the features. Subsequently, the 
Pearson correlation coefficient (PCC) values between all 
features were calculated. Features with PCC values > 0.90 
were excluded to prevent the potential for multicollinear-
ity. Recursive feature elimination (RFE) was employed 
to identify the optimal feature set, while support vector 
machine (SVM) was utilized to construct the models.

Three types of VOI models were constructed: (i) intra-
tumoral models, (ii) peritumoral models, and (iii) bi-
regional models. The bi-region model is a combined 
intratumoral and peritumoral model. In each VOI model, 
based on the CR features and DLR features, we con-
structed CR models and DLR models. The performance 
of the models was quantified using the area under the 
receiver operating characteristic (ROC) curve (AUC). 
The objective was to identify the optimal CR model and 
DLR model. The feature sets of both models were then 
aggregated to construct the CR-DLR models. The AUC 
was further used to select the best CR-DLR model.

The clinical data of the training cohort were subjected 
to univariate and multivariate logistic regression analy-
sis to identify the independent factors predicting MVI 
(P < 0.05). Subsequently, SVM was applied to construct 
the clinical model. Moreover, a clinical-radiomics (Clin-
R) model was constructed by integrating the clinical fea-
tures and the features of the best radiomics model.

Statistical analysis
SPSS 26.0 software was used for statistical analysis. Con-
tinuous variables were presented as the mean ± standard 
deviation or median with interquartile range (IQR). Cate-
gorical variables were reported as frequency and propor-
tions. The independent-sample t test or Mann-Whitney 
U test was performed to compare the quantitative param-
eters and the chi-square test to compare the qualitative 
features. Interobserver reproducibility of feature extrac-
tion was assessed using ICC. ICC ≥ 0.8 indicated high 
consistency, 0.5–0.79 middle, and < 0.5 low.

https://www.slicer.org
https://github.com/salan668/FAE
https://github.com/salan668/FAE
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
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AUC was applied to quantify the performance of mod-
els. Accuracy, AUC, negative predictive value, positive 
predictive value, sensitivity, and specificity were calcu-
lated to assess the performance of the respective models. 
The Delong test was employed to compare the differ-
ences between the different models. All analyses were 

deemed statistically significant at P-values of less than 
0.05 (two-tailed).

Results
General information
With the exception of gender (P = 0.001), no significant 
differences were observed in the clinical characteristics of 
the training and testing cohort (P < 0.05) (Table 1).

In the training cohort, 39 MVI+ (43%) and 19 MVI- 
patients (15%) had higher AFP levels (P < 0.001). The 
median maximum diameter was significantly higher in 
MVI + HCC (5.10, IQR: 3.00–7.63) than in MVI- HCC 
(2.64, IQR: 1.70–4.43) (P < 0.001). In addition, there was 
no statistically significant difference between MVI + and 
MVI- patients in terms of age, gender, ALT, AST, and 
viral hepatitis status (P > 0.05) (Table 2).

Consistency assessment
Based on the three-phase combined MRI images, 5,343 
CR features and 1,536 DLR features were extracted from 
each VOI, respectively. Heatmaps showed low corre-
lation coefficients in the selected radiomics features 
(Fig. 4), making them suitable for establishing the models 
for predicting MVI.

The ICC range of the two radiologists was 0.854–0.923 
for delineating VOIs, indicating excellent reproducibility 
of the feature extraction.

Performance of the clincial model in predicting MVI in HCC
The results of the multivariate logistic regression analysis 
indicated that AFP (odds ratio (OR) 0.32; 95% confidence 
interval (CI): 0.162–0.634) and maximum tumor diam-
eter (OR 1.270; 95% CI: 1.135–1.420) were independent 
predictors of MVI in the training cohort. These predic-
tors could be used to construct a clinical model. The 
AUCs of the clinical model in the training and testing 
cohort were 0.758 (95% CI: 0.694–0.822) and 0.655 (95% 
CI: 0.537–0.772), respectively.

Performance of radiomics models in predicting MVI in HCC
The radiolomics models were classified into CR, DLR, 
and CR-DLR models by algorithm types, and into intra-
tumoral, peritumoral, and bi-regional models by VOIs.

Of the CR models, the bi-regional model performed 
best in the training (AUC = 0.868; 95% CI: 81.9–91.7; sen-
sitivity: 81.1%; specificity: 81.0%) and the testing cohort 
(AUC = 0.648; 95% CI: 53.0–76.7; sensitivity: 46.7%; spec-
ificity: 84.5%). The differences between it and the intra-
tumoral model (P = 0.921) and the peritumoral model 
(P = 0.931), respectively, were not statistically significant 
(all P > 0.05).

Of the DLR models, the bi-regional model had the best 
predictive performance. The AUC, sensitivity, and speci-
ficity were 0.800 (95% CI: 74.2–85.9), 66.7%, and 79.4%, 

Table 1 Clinical characteristics of patients in the training and 
testing cohort
Characteristic Training cohort

(n = 226)
Testing cohort
(n = 88)

P-value

MVI 0.220
 Positive 90 30
 Negative 126 58
Age (years, mean ± SD) 58.79 ± 10.23 58.33 ± 9.29 0.714
Gender 0.001
 Male 170 53
 Female 46 35
Maximum tumor diameter
[cm, median (IQR)]

3.35(2.20, 5.72) 3.05(1.93, 4.20) 0.055

AFP 0.167
 <400ng/mL 158 71
 ≥ 400ng/mL 58 17
ALT 0.820
 <40ng/mL 138 55
 ≥ 40ng/mL 78 33
AST 0.508
 <40ng/mL 134 51
 ≥ 40ng/mL 82 37
Viral hepatitis 0.508
 YES 28 9
 NO 188 79

Table 2 Comparison of clinical characteristics between 
MVI + and MVI- group in the training cohort
Characteristic MVI+

(n = 90)
MVI-
(n = 126)

P-value

Age (years, mean ± SD) 57.76 ± 10.67 59.53 ± 9.87 0.209
Gender 0.082
 Male 76 94
 Female 14 32
Maximum tumor diameter
[cm, median (IQR) ]

5.10(3.00, 7.63) 2.64(1.70, 4.43) <0.001

AFP <0.001
 <400ng/mL 51 107
 ≥ 400ng/mL 39 19
ALT 0.666
 <40ng/mL 56 82
 ≥ 40ng/mL 34 44
AST 0.813
 <40ng/mL 55 79
 ≥ 40ng/mL 35 47
Viral hepatitis 0.891
 YES 78 110
 NO 12 16
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respectively, in the training cohort while 0.670 (95% CI: 
54.5–79.4), 66.7%, and 65.5%, respectively, in the test-
ing cohort. The differences between the bi-regional 
and the intratumoral model were not statistically sig-
nificant (P = 0.811 > 0.05), and the same was the com-
parison between the bi-regional and the peritumoral 
model (P = 0.907 > 0.05). In addition to this, the intra-
tumoral model is slightly more effective than the peri-
tumoral model. Their AUC, sensitivity, and specificity, 
respectively, in the training cohort were 0.791 (95% CI: 
73.1–85.0), 64.4%, and 80.1%; 0.664 (95% CI: 53.4–79.4), 
73.3%, and 57.0%. Meanwhile, in the testing cohort were 
0.685 (95% CI: 61.0–75.9), 54.4%, and 81.8%; 0.663 (95% 
CI: 53.9–78.6), 50.0%, and 84.5%. Their differences were 
not statistically different (P = 0.985 > 0.05). To enhance 
interpretability, we utilized Class Activation Mapping to 
visualize the model outputs, aiding in our understand-
ing of the critical regions the models emphasized when 
predicting MVI. As shown in Fig.  5. The red part that 

gathers inward to the blue part is active, indicating that 
the model pays particular attention to this area.

Of the CR-DLR models, the bi-regional model had the 
best predictive efficacy in the training (AUC = 0.844; 95% 
CI: 79.2–89.7; sensitivity: 87.8%; specificity: 61.1%) and 
the testing cohort (AUC = 0.740; 95% CI: 62.9–85.1; sensi-
tivity: 80.0%; specificity: 57.0%). The differences between 
it and the intratumoral model (P = 0.279) and the peritu-
moral model (P = 0.062), respectively, were not statisti-
cally significant (all P > 0.05). In addition, the P-values for 
the difference between the bi-regional CR-DLR model 
and the intratumoral, peritumoral, and bi-regional DLR 
model were 0.135, 0.151, and 0.118, respectively, and 
none of them were statistically significant (all P > 0.05).

In general, the bi-regional CR-DLR model demon-
strated superior performance, with higher AUC and spec-
ificity, compared to all CR models (AUC = 0.641–0.648; 
sensitivity: 46.7–80.0%; specificity: 53.5–84.5%) and DLR 
models (AUC = 0.663–0.670; sensitivity: 50.0–73.3%; 

Fig. 4 Heatmap depicting correlation coefficients matrix of 11 selected features in the bi-regional CR model. The larger the value or the darker the color 
is, the stronger the correlation is
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specificity: 57.0–84.5%) in the testing cohort. How-
ever, its sensitivity was inferior to that of the majority of 
models, with the exception of the bi-regional CR model 
(AUC = 0.648; 95% CI: 53.0–76.7; sensitivity: 46.7%; 
specificity: 84.5%) and the intratumoral CR-DLR model 
(AUC = 0.696; 95% CI: 58.2–81.0; sensitivity: 36.7%; spec-
ificity: 91.4%). The feature set of the bi-regional CR-DLR 
model contained 8 (4 intratumoral, 4 peritumoral) CR 
features and 6 (3 intratumoral, 3 peritumoral) DLR fea-
tures. Meanwhile, the features of the DLR model we plot-
ted in a table, as detailed in Supplementary Methods D.

Performance of the Clin-R model in predicting MVI in HCC
The Clin-R model incorporated the 14 features of the 
bi-regional CR-DLR model with the 2 clinical features 
of maximum tumor diameter and AFP. The AUC, sen-
sitivity, and specificity were 0.853 (95% CI: 80.1–90.6), 
75.6%, and 84.9%, respectively, in the training cohort and 
0.672 (95% CI: 55.4–79.0), 66.7%, and 62.1% in the testing 
cohort.

The AUC (95% CI), accuracy, sensitivity, and specificity 
of the training and testing cohort of the above 11 HCC 
models were shown in Table  3. The ROC curves were 

Fig. 5 The class activation maps for DLR models, which highlights important areas of the model predictions
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shown in Fig. 6. All differences between AUCs were not 
statistically significant (all P > 0.05).

Discussion
This study was a multicenter collaborative study. Based 
on the intratumoral and peritumoral regions of HCC in 
Gd-EOB-DTPA-enhanced MRI, we developed and vali-
dated a series of clinical, Clin-R, and radiomic (CR, DLR, 
and CR-DLR) models for preoperative prediction of MVI 
in HCC.

Our results indicated that the bi-regional models dem-
onstrated superior predictive efficacy compared to the 
intratumoral or peritumoral models. The CR-DLR mod-
els had incremental predictive value over the CR or DL 
models. In contrast, the Clin-R model did not yield any 
additional predictive value compared to the radiomics 
models.

Radiomics models
Many studies [16, 17] have found that multi-phase MRI 
images could reflect a more comprehensive representa-
tion of tumor heterogeneity and vascularisation patterns 
than single-phase images. Consequently, multi-phase 
MRI images are capable of providing a more comprehen-
sive insight into the aggressiveness of the tumor. There-
fore, we chose to combine the multi-phase images of AP, 
PP, and HBP, to extract features for the study. The best 
model was the bi-regional CR-DLR model. It contained 9 

AP features, 3 PP features, and 2 HBP features. This find-
ing supported the above research point.

Feng [18] demonstrated that peritumoral features (per-
itumoral enhancement in AP and peritumoral low signal 
in HBP) could predict MVI in HCC. The peritumoral 
region could provide considerable information regard-
ing tumor heterogeneity [19]. A peritumoral region of 
10 mm is the optimal range recognized by more studies 
[15, 20], so this region was chosen for this study. Previous 
peritumoral studies have predominantly utilized CR [21], 
which was investigated in this study with the innovative 
use of DLR. The findings revealed that the peritumoral 
DLR models exhibited comparable predictive efficacy 
compared to the peritumoral CR models (P > 0.005). This 
indicated that DLR could be a valuable research tool for 
the extraction of MVI information in the peritumoral 
region in this study.

The results of this study demonstrated that the bi-
regional models exhibited superior predictive efficacy 
compared to the single-regional models. This was con-
sistent with the findings of Chong [15]. Tumor cells infil-
trate outward along the microvasculature from within 
the tumor to form MVI. The peritumoral region is in 
close proximity to the tumor, forming a microenviron-
ment critical for the growth and infiltration of tumor 
cells [22]. The bi-regional features, as a combination of 
single-regional features, can reflect tumor heterogene-
ity information from a holistic view. It can be reasonably 

Table 3 Model performances in the training and testing cohort
Model Training cohort Testing cohort

AUC
(95% CI)

ACC
(%)

SEN
(%)

SPE
(%)

AUC
(95% CI)

ACC
(%)

SEN
(%)

SPE
(%)

CR intratumoral 0.816
(75.9–87.3)

76.4 72.2 79.4 0.644
(52.4–76.5)

64.8 80.0 53.5

peritumoral 0.813
(75.5–87.2)

77.3 67.8 84.1 0.641
(51.4–76.8)

71.6 63.3 65.5

bi-regional 0.868
(81.9–91.7)

81.0 81.1 81.0 0.648
(53.0-76.7)

62.5 46.7 84.5

DLR intratumoral 0.791
(73.1–85.0)

73.6 64.4 80.1 0.664
(53.4–79.4)

72.7 73.3 57.0

peritumoral 0.685
(61.0-75.9)

70.4 54.4 81.8 0.663
(53.9–78.6)

65.9 50.0 84.5

bi-regional 0.800
(74.2–85.9)

74.1 66.7 79.4 0.670
(54.5–79.4)

72.7 66.7 65.5

CR-DLR intratumoral 0.839
(78.5–89.1)

76.4 77.8 75.4 0.696
(58.2–81.0)

64.8 36.7 91.4

peritumoral 0.805
(74.7–86.3)

71.8 86.7 61.1 0.657
(53.0-78.4)

72.7 80.0 57.0

bi-regional 0.844
(79.2–89.7)

76.9 87.8 69.1 0.740
(62.9–85.1)

73.9 50.0 84.5

clinical 0.758
(69.4–82.2)

70.4 64.4 74.6 0.655
(53.7–77.2)

62.5 70.0 75.9

Clin-R 0.853
(80.1–90.6)

81.0 75.6 84.9 0.672
(55.4–79.0)

63.6 66.7 62.1
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deduced that exploring them as a whole would result in 
superior performance.

ResNet is a commonly used deep learning network 
in numerous studies within the field of medicine. For 
example, Wang [23] developed the ResNet-based mod-
els with multimodal images for the prediction of MVI. It 
is reasonable to assume that ResNet is a commonly used 
and effective model. Gao Y [24] proposed a novel vision 
transformer (ViT)-based deep learning network, referred 
to as Dual-Style ViT. The model excelled in improving 
the prediction performance and interpretability of early 
recurrence of HCC. ViT segments the image into fixed-
size patches and uses the Transformer encoder to pro-
cess these patches. This allows ViT to perform well in 

terms of accuracy and feature extraction. However, due 
to the complexity of the Transformer structure and its 
heavy reliance on positional information, ViT consumes 
more computational resources and takes longer to train 
and reason. In contrast, ResNet has the advantage of 
using a residual structure. The residual structure is built 
by connecting the stacked layers. Integration of subse-
quent input and output variables in each layer provides 
additional nonlinearity and reduces additional generated 
weights. This design makes the network deeper while 
avoiding the problem of vanishing gradients. Further-
more, the network structure is straightforward, facilitat-
ing training and implementation. After a comprehensive 

Fig. 6 Performance of prediction models based on the MVI status. (a) ROC curves of CR models; (b) ROC curves of DLR models; (c) ROC curves of CR-DLR 
models; (d) ROC curves of the clinical and Clin-R model
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review of the available options, we selected ResNet for 
this study.

CR performs high-throughput quantification of medi-
cal images to extract qualitative information about 
tumors and assess tumor heterogeneity [25]. DLR 
acquires deep image features through the utilization of 
computer neural network algorithms. This algorithm has 
the advantage of stability and reproducibility [26]. How-
ever, some important information may be missed due 
to the radiomics approach relying on hand-crafted fea-
tures. The diagnosis of MVI is of paramount importance 
in the development of personalized treatment strate-
gies for HCC. Nevertheless, the high level of diagnostic 
expertise in MVI is currently limited to a small number 
of reference centers. This may result in the vast major-
ity of HCC patients being treated in a way that has the 
negative impact of lagging and mismatch. A promising 
solution is to employ multiple machine learning fusion 
models to improve the accuracy of preoperative predic-
tion of MVI. In our study, the bi-regional CR-DLR model 
demonstrated superior performance compared to the CR 
and DLR models. The two algorithms collaborated by uti-
lizing different feature mining methods to enhance the 
validity and accuracy of the prediction results. This will 
facilitate more effective clinical diagnosis and treatment 
[27]. It is anticipated that in the future, radiomics models 
will utilise larger datasets, employ a multimodal frame-
work, and be applied to a broader range of projects.

Clinical and Clin-R models
Seven clinical characteristics were selected because they 
are most commonly employed in clinical settings and are 
closely associated with the diagnosis of HCC. Some stud-
ies have found that elevated AFP and maximum tumor 
diameter as independent risk factors for MVI in HCC 
[28, 29]. Both AST and ALT are biochemical surrogates 
that indicate hepatocellular necrosis and inflammation. 
The probability of HCC in patients with chronic hepatitis 
B virus infection is significantly higher than that of other 
triggers. Approximately 78% of HCC can be attributed 
to hepatitis B virus (53%) [30]. In comparison with other 
studies in the field [10, 12], the clinical characteristics 
presented in this study appear to be insufficient. Given 
the extensive duration of the study, the involvement of 
three hospitals, and the presence of incomplete or absent 
laboratory test data, we have selected these for analy-
sis, ensuring both data completeness and accuracy. It is 
anticipated that in the future, the study will be expanded 
to include more data from more centers. This will facili-
tate a more comprehensive and in-depth combined study 
of clinical data and radiomics. The screening of clinical 
data of diagnostic value allows for a more targeted and 
effective clinical examination to be conducted.

There was significant gender variability in the train-
ing and the testing cohort. Given that the patients were 
sourced from multiple hospitals, we deemed it appropri-
ate to attribute the observed gender variability to chance.

In this study, AFP and maximum tumor diameter were 
independent predictors in the clinical model. The pre-
dictive efficacy of both the clinical model and the Clin-
R model was inferior to that of the bi-regional CR-DLR 
model. Many previous studies [31, 32] have reached 
conflicting conclusions regarding the superiority of the 
Clin-R model over radiomics models. Our findings con-
tradicted this consensus. Song [33] concluded that AFP 
lacks sensitivity and specificity in the detection of HCC 
and the assessment of MVI. It was hypothesized that AFP 
exhibits increased instability and diminished predictive 
performance in comparison to the highly reproducible 
radiomics features. Hong [34] concluded that the preva-
lence of MVI was elevated in tumors with a maximum 
diameter of > 5  cm. In contrast, the proportion of indi-
viduals with a measurement of > 5 cm was relatively low 
(29%) in our study. We considered the generalisability 
and reliability of the MVI information contributed by this 
feature to be inadequate in this study.

It is also noteworthy that the sensitivity of the bi-
regional CR-DLR model in the testing cohort was found 
to be lower than that of the Clin-R model. The follow-
ing factors were taken into consideration: (i) Most of the 
patients in the testing cohort were from the Third Affili-
ated Hospital of Nantong University, a hospital special-
izing in liver disease. It had a higher detection rate for 
early liver cancer and small liver cancer than the hospi-
tal in the training cohort. Moreover, the training cohort 
had fewer MVI + than MVI-, which has the imbalance of 
proportion that exists in the real medical situation. So the 
model built based on the training cohort showed poor 
generalization in the testing cohort. (ii) The sensitivity of 
the clinical model was observed to be higher (70%). It can 
be surmised that the incorporation of clinical data into 
the Clin-R model has led to an enhancement in sensitiv-
ity. (iii) In this study, the AUC was employed as the prin-
cipal indicator of the model’s predictive capacity, with 
specificity and sensitivity serving as secondary metrics. 
In the bi-regional CR-DLR model, although the sensitiv-
ity was lower, the specificity was higher (73.9%). In order 
to reduce the probability of misdiagnosing MVI + as 
MVI- in clinical practice, greater emphasis was placed 
on specificity than sensitivity. This approach helps to cir-
cumvent the potential adverse outcomes associated with 
underdiagnosis in clinical settings. However, we have 
great expectations for the double improvement of sen-
sitivity and specificity. Therefore, how to achieve overall 
superior performance becomes a proposition waiting to 
be studied and realized.
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Limitations
This retrospective study still has some limitations: (1) 
the number of cases was limited, and the breadth of case 
data and multicenter external validation will be further 
expanded in the future; (2) patient prognostic informa-
tion was not included in this study; (3) unlike the manual 
segmentation used in this study, the automatic segmenta-
tion technique used in [35, 36] is becoming increasingly 
popular. This technique has the advantages of improving 
the accuracy of image segmentation and making full use 
of massive data training. In the future, we can explore 
this technique more; (4) as future work, the loss func-
tions in [37] and the augmentation methods in [38] can 
be integrated into the proposed model to further improve 
its performance.

Conclusion
In conclusion, we presented a bi-regional CR-DLR model 
based on Gd-EOB-DTPA-enhanced MRI. It had a good 
performance in preoperative non-invasive prediction of 
MVI in HCC. Our model can help surgeons in clinical 
settings to diagnose and screen for MVI, thereby guid-
ing treatment planning. In the future, multicenter, multi-
omics, and large-scale studies are needed. This will allow 
us to eliminate the above-mentioned limitations and vali-
date our findings to construct more comprehensive diag-
nostic models.
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