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Abstract
Background Breast cancer’s diagnostic challenge is amplified by its heterogeneity. Diffusion-Weighted Imaging 
(DWI) offers promising avenues for precise tumor characterization through Apparent Diffusion Coefficient (ADC) 
metrics.

Purpose To investigate the diagnostic utility of advanced ADC metrics in distinguishing breast lesions using 
Magnetic Resonance Imaging (MRI).

Methods A retrospective cohort analysis of MRI data from 125 pathologically confirmed breast tumors was 
conducted. ADC values were independently measured by two physicians at the lesion sites and reference points 
(contralateral normal breast parenchyma, pectoralis major, and interventricular septum), from which advanced 
ADC metrics were calculated. Statistical analyses were applied to differentiate ADC metrics between malignant and 
benign groups. ROC curves assessed the diagnostic efficacy of individual ADC metrics. A binary logistic regression 
model incorporating ADC metrics and age was developed, with its diagnostic superiority evaluated through 
multidimensional comparisons.

Results Of the 125 lesions, 77 were malignant and 48 benign. Significant differences in ADC metrics were found 
between malignant and benign tumors. Diagnostic analysis showed minimum ADC value (ADC_min) as the most 
effective single indicator, while the combined model, including age and average ADC value (ADC_avg), outperformed 
individual ADC metrics, demonstrating superior diagnostic accuracy (area under the curve (AUC) = 0.964). The 
combined model nomogram also showed improved clinical utility and a significant increase in diagnostic 
performance.

Conclusions Advanced ADC metrics significantly enhance the diagnostic accuracy for differentiating between 
benign and malignant breast lesions. The development of a combined model further refines breast cancer 
diagnostics, supporting the advancement towards precision medicine.
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Background
Breast cancer remains one of the leading causes of cancer 
incidence and mortality among women worldwide, with 
over 2 million new cases reported annually [1]. The early 
and accurate differentiation between benign and malig-
nant breast tumors is critical for optimizing clinical man-
agement, minimizing unnecessary invasive procedures, 
and improving patient prognosis. Moreover, malig-
nant breast tumors exhibit a range of pathological and 
molecular subtypes, each presenting distinct diagnostic 
and therapeutic challenges [2]. The inherent heteroge-
neity of these tumors further necessitates the advance-
ment of diagnostic methods to accurately characterize 
and develop tailored treatment strategies. Conventional 
imaging techniques, including mammography and ultra-
sound, are widely employed for the initial characteriza-
tion of breast lesions. However, these methods often have 
limitations in distinguishing between benign and malig-
nant lesions, particularly in dense breast tissue or com-
plex cystic-fixed masses [3]. In contrast, breast magnetic 
resonance imaging (MRI), particularly when combined 
with functional imaging techniques such as diffusion-
weighted imaging (DWI), has emerged as an important 
tool for assessing tumor biology [4, 5].

DWI assesses the microscopic movement of water 
molecules within tissues, with the apparent diffusion 
coefficient (ADC) serving as a key quantitative metric 
derived from this technique [6]. This metric non-inva-
sively reflects the cellular density and membrane integ-
rity of tumor tissue, thus assisting in the differentiation 
of benign and malignant breast lesions [7]. However, tra-
ditional focus on the mean ADC value (ADC_avg) may 
oversimplify the complex heterogeneity of breast tumors, 
and existing studies and meta-analyses often yield con-
tradictory results. For instance, one meta-analysis sug-
gests that lower ADC values are associated with higher 
Ki-67 expression [8], whereas another meta-analysis 
indicates that ADC cannot serve as a surrogate marker 
for Ki-67 expression in breast cancer [9]. Moreover, ADC 
values may be closely related to tumor cell density as well 
as the extracellular matrix (ECM) content [10], further 
complicating the use of ADC in breast cancer diagno-
sis. Thus, the mean ADC value alone may not adequately 
capture the diversity and biological characteristics of 
breast lesions.

In recent years, additional ADC-derived metrics, such 
as the minimum ADC value (ADC_min), relative mini-
mum ADC ratio (rADC_min), and ADC coefficient of 
variation (ADC_cv), have been proposed. These metrics 
provide a more sensitive reflection of the diffusion char-
acteristics within tumors, particularly in regions exhibit-
ing significant heterogeneity. For example, ADC_min is 
better able to capture areas within tumors that are char-
acterized by high cell density and restricted diffusion 

[11], while rADC, as a relative value, standardizes the 
lesion’s ADC against normal tissue, thereby minimizing 
bias from interindividual tissue variability and improv-
ing diagnostic stability and accuracy [12]. Although 
these advanced ADC metrics demonstrate potential for 
enhancing the sensitivity and specificity of tumor diag-
nosis, most existing studies have evaluated these metrics 
in isolation, lacking comprehensive comparisons and dis-
cussions on their combined application.

Therefore, the aim of this study is to retrospectively 
analyze MRI data of pathologically confirmed breast 
tumors and systematically assess the diagnostic value 
of various derived ADC metrics in the differentiation 
of benign and malignant breast tumors. Furthermore, 
by constructing a combined predictive model, we seek 
to further improve the diagnostic accuracy for breast 
tumors, thereby offering novel approaches for early 
screening and precision treatment in clinical practice.

Methods
Patients
This retrospective study included pathologically con-
firmed breast tumor cases from a major medical center 
in Southwest China, recorded between January 2019 
and June 2022. Patients were selected based on the fol-
lowing inclusion criteria: (1) breast tumors diagnosed via 
preoperative MRI; (2) all lesions on MRI were character-
ized by mass-like enhancement; (3) definitive pathologi-
cal diagnosis. The exclusion criteria were as follows: (1) 
patients who underwent chemotherapy, biopsy, surgery, 
or other interventions before MRI; (2) incomplete clinical 
or imaging data; (3) patients with coexisting other malig-
nant tumors; (4) lesions that were too small to delineate 
and obtain differential results (Fig.  1). Ethical approval 
was granted by the hospital’s medical ethics commit-
tee, and informed consent was waived (Approval No. 
2021[5]).

MRI protocol
MRI scans were performed using a Philips (Amster-
dam, Netherlands) Ingenia 1.5 T superconducting scan-
ner equipped with a dedicated breast coil. Patients were 
positioned prone to allow natural positioning of the 
breasts within the coil. The scanning protocol included 
T1-weighted imaging (T1WI), T2-weighted imaging with 
spectral attenuated inversion recovery (T2WI-SPAIR), 
DWI, and dynamic contrast-enhanced T1WI (DCE-
T1WI). Specific scanning parameters for each sequence 
are outlined (Table  1). Gadopentetate dimeglumine was 
used as the contrast agent for DCE-T1WI.

Image processing and data measurement
Routine MR scanning, DWI imaging, and multi-phase 
dynamic enhancement scanning were performed on all 
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patients. Images were imported into the Philips post-pro-
cessing workstation for ADC map generation. Utilizing 
lesion locations from the T2WI-SPAIR and DCE-T1WI, 
areas with high DWI signal and low ADC signal were 
marked as the region of interest (ROI), using a b-value of 
1000s/mm² in the DWI sequence.

Measurements were conducted jointly by two radiolo-
gists with over five years of breast diagnostic experience, 
resolving any disagreements through discussion. The 
ROI was manually placed on the largest solid area of the 
lesion, carefully excluding cystic changes, hemorrhage, 
necrosis, fat, blood vessels, and artifacts. A circular ROI 
was used for consistency. The ROI was placed to cover 
the lesion as evenly as possible, ensuring that the entire 
lesion area was represented. To avoid bias, the ROI place-
ment was done in a blinded manner, with radiologists 
unaware of the lesion’s final pathological diagnosis at the 
time of image assessment. No specific selection of higher 

or lower ADC values was made during ROI placement. 
The minimum and average ADC values (ADC_avg) were 
measured, along with ADC values from the contralateral 
pectoralis major muscle, normal glandular tissue, and 
interventricular septum, which were relatively distant 
from the lesion and minimally influenced by it. The ROI 
area ranged from 10–50  mm², and measurements were 
performed on two adjacent slices of the lesion, contra-
lateral pectoralis major muscle, normal glandular tissue, 
and interventricular septum. For the pectoralis major, 
the ROI was placed at the center of the muscle to avoid 
potential signal changes in the peripheral areas. In elderly 
patients with partial muscle atrophy, the ROI size was 
proportionally reduced to focus on the preserved muscle 
fibers. To minimize the impact of cardiac motion artifacts 
on the measurement of the interventricular septum, the 
ROI was carefully positioned in the region with the least 
motion artifact. Additionally, to ensure data accuracy, the 
physician identified and excluded any outliers during the 
measurement process, minimizing their impact on the 
results. An average of three measurements was taken, 
recording five ADC values for each of the four sites.

The calculation formula was: rADC_min = lesion ADC_
min/ADC of the interventricular septum/pectoralis 
major/glandular tissue (rADC_min_IS, rADC_min_PM, 
rADC_min_G), obtaining rADC_min values for refer-
ence sites and lesion ADC_avg, ADC_min data. Then, the 

Table 1 MRI scanning parameters
Parameter T1WI T2WI-SPAIR DWI* DCE-T1WI
TE (ms) 8 100 85 2
TR (ms) 467 4598 8198 4
Slice thickness (mm) 3.5 3.5 3.5 2
FOV (mm × mm) 250 × 330 250 × 330 250 × 330 250 × 330
Matrix 252 × 261 208 × 261 – –
*The b-value is 1000 s/mm2; TE, echo time; TR, repetition time; FOV, field of view

Fig. 1 Flowchart of the patient enrollment process
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mean (X) and standard deviation (S) of the three ADC 
measurements were calculated, and the ADC_cv was 
determined using the formula CV=S/X. These data were 
subsequently analyzed. The radiological presentations of 
breast fibroadenoma and invasive ductal carcinoma are 
depicted in Fig. 2.

Statistical analysis
Statistical analyses were conducted using R (version 
3.6.3) and Python (version 3.7). Continuous variables 
that followed a normal distribution were described using 
mean ± standard deviation, and comparisons between 
groups were performed using the t-test for equal vari-
ances (Levene’s test P ≥ 0.05) and Welch’s t-test for 
unequal variances (Levene’s test P < 0.05). Non-normally 
distributed variables were described using median values 
with the 25th and 75th percentiles (M [P25, P75]) and 
compared using the Mann-Whitney U test. Subsequently, 
the diagnostic utility of each of the six ADC metrics was 
evaluated independently using receiver operating char-
acteristic (ROC) curves, which synchronously calculated 
sensitivity, specificity, Youden’s index, and the optimal 
diagnostic threshold for each variable. Correlation analy-
ses among six ADC metrics were performed using Spear-
man’s method.

Moreover, a combined model incorporating the six 
ADC metrics and age was developed using a binary 
logistic regression method with forward and backward 
stepwise selection based on the Akaike Information 
Criterion (AIC), and nomogram was generated. The 

goodness-of-fit, clinical net benefit, and clinical impact 
of the combined model were assessed using calibra-
tion curves, clinical decision curves, and clinical impact 
curves, respectively. Finally, the comparative analysis of 
the six ADC metrics and the combined model was per-
formed using the DeLong test, and the improvement 
in predictive performance for differentiating between 
benign and malignant breast tumors by the combined 
model over the optimal single ADC metric was quanti-
fied using the integrated discrimination improvement 
(IDI) index. All statistical tests were two-sided, and 
P < 0.05 was considered statistically significant.

Results
Pathological results
A total of 125 patients diagnosed with breast tumors 
were included in this study. The cohort consisted of 77 
individuals with malignant breast tumors, predominantly 
invasive ductal carcinoma, with ages ranging from 28 
to 77 years (mean age: 55.66 ± 11.21 years). The remain-
ing 48 patients had benign tumors, mostly fibroadeno-
mas, with ages spanning from 10 to 64 years (mean age: 
42.96 ± 14.57  years). In the malignant cohort, 65 cases 
were identified as non-specific invasive carcinoma, 6 as 
ductal carcinoma in situ, and 1 case each of intraductal 
papillary carcinoma, lobular carcinoma, neuroendo-
crine carcinoma, and adenomyoepithelioma. Addition-
ally, 2 cases of other unspecified malignant tumors were 
included. The benign cohort comprised 35 cases of fibro-
adenomas, 6 cases of adenosis, 3 cases of inflammatory 

Fig. 2 Comparative MR images of breast lesions in two patients. a–d: patient with fibroadenoma. a: T1WI shows lesion with slightly low signal (arrow); b: 
T2WI-SPAIR shows high signal (arrow); c: DWI shows high signal (arrow); d: ADC map shows slightly low signal, ADC value at 1.64 × 10−3 mm2/s (ROI). e–h: 
patient with invasive ductal carcinoma. e: T1WI shows lesion with low signal (arrow); f: T2WI-SPAIR shows slightly high signal (arrow); g: DWI shows high 
signal (arrow); h: ADC map shows low signal, ADC value at 0.90 × 10−3 mm2/s (ROI)
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changes, 2 intraductal papillomas, 1 case of fibrous 
hyperplasia, and 1 case of benign phyllodes tumor.

Comparison of six ADC metrics
Statistical analysis revealed significant differences in 
ADC_avg, ADC_min, ADC_cv and rADC_min values 
between malignant and benign tumor groups (P < 0.001). 
Specifically, ADC_min, ADC_avg, and rADC_min val-
ues were lower in the malignant group compared to the 
benign group. Conversely, the ADC_cv value was lower 
in the benign tumor group (Table  2 and Fig.  3). Spear-
man correlation analysis revealed significant correlations 
between ADC_min and ADC_avg, as well as between 
rADC_min_PM and rADC_min_G, respectively. Con-
versely, ADC_cv displayed a weak negative correlation 
with all other metrics (Fig. 4).

Diagnostic efficacy of single indicators
In the analysis of diagnostic efficacy of the six ADC met-
rics for differentiating between benign and malignant 

breast tumors (Table  3 and Fig.  5), ADC_min exhibited 
the highest area under the curve (AUC) value, along with 
superior sensitivity and specificity, whereas ADC_cv 
demonstrated the poorest diagnostic performance. The 
AUC values of ADC_avg and ADC_min were closely 
matched, with no statistically significant difference 
between them as indicated by the DeLong test (Table 4). 
Therefore, both metrics may be viable options in clinical 
diagnosis. Furthermore, among the three relative ADC 
metrics, rADC_min_IS showed the best diagnostic per-
formance, which could be attributed to the greater stabil-
ity of the interventricular septum density compared to 
the other two measures.

Diagnostic efficacy of combined model
In the combined model, only age and ADC_avg were 
included as feature variables for constructing the nomo-
gram (Fig. 6). The model formula is as follows: 

Table 2 Comparison of six ADC metrics between benign and malignant breast tumors
Variable (mm²/s) Total (n = 125) Benign group (n = 48) Malignant group (n = 77) Statistics P
ADC_avg 0.970 [0.850,1.280] 1.420 [1.200,1.590] 0.880 [0.800,0.960] 8.226 <0.001
ADC_min 0.890 [0.780,1.210] 1.320 [1.110,1.530] 0.800 [0.740,0.900] 8.343 <0.001
ADC_cv 0.080 [0.050,0.130] 0.060 [0.040,0.090] 0.100 [0.070,0.140] −3.624 <0.001
rADC_min_PM 1.420 [1.000,2.130] 1.970 [1.340,2.540] 1.190 [0.920,1.830] 4.170 <0.001
rADC_min_G 1.108 ± 0.137 1.172 ± 0.108 1.068 ± 0.138 4.677 <0.001
rADC_min_IS 0.640 [0.530,0.870] 0.940 [0.750,1.060] 0.560 [0.490,0.660] 6.906 <0.001

Fig. 3 Box plots of six ADC metrics for benign and malignant breast tumors
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log

(
p

1 − p

)
= 6.061 + 0.126 × age − 10.832 × ADC_avg

where p represents the probability of occurrence of 
malignant breast tumors. The diagnostic performance of 
the combined model (AUC = 0.964) was superior to that 
of the individual ADC metrics alone, and the DeLong test 

revealed statistically significant differences between the 
diagnostic efficacy of the combined model and all indi-
vidual ADC metrics. The calibration curve of the com-
bined model showed good agreement with the actual 
outcomes (Fig. 7), and analyses of clinical decision curves 
and clinical impact curves also indicated that the nomo-
gram of the combined model achieved a better clinical 
net benefit (Fig. 8). Finally, the IDI analysis demonstrated 
that the combined model improved diagnostic perfor-
mance by 8.3% compared to the optimal single metric 
(ADC_min), with this result being statistically significant 
(P = 0.003).

Discussion
Breast cancer remains one of the foremost global health 
challenges. Early and accurate differentiation between 
benign and malignant lesions is crucial for improving 
clinical outcomes in breast cancer. DWI and its derived 
ADC values play a pivotal role in enhancing the diag-
nostic accuracy of breast MRI. This study contributes 
to the field by exploring and validating the potential of 

Table 3 Results of ROC curve analysis of six ADC metrics and 
combined model
Variable AUC Sensitivity Specificity Youden 

Index
Optimal 
Thresh-
old

ADC_avg 0.938 0.875 0.857 0.732 1.04
ADC_min 0.945 0.813 0.961 0.774 1.05
ADC_cv 0.693 0.597 0.729 0.327 0.09
rADC_
min_PM

0.722 0.833 0.584 0.418 1.28

rADC_
min_G

0.721 0.833 0.584 0.418 1.08

rADC_
min_IS

0.868 0.75 0.896 0.646 0.75

Combined 0.964 0.987 0.875 0.862 0.376

Fig. 4 Correlation analysis heat map of six ADC metrics
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advanced ADC-derived metrics, including ADC_avg, 
ADC_min, rADC_min, and ADC_cv, to differentiate 
benign and malignant breast tumors.

The relationship between ADC values and tumor biol-
ogy is complex. Numerous studies have highlighted 
that ADC values are influenced by cellularity, cell mem-
brane integrity, and ECM content [8, 13]. Malignant 
tumors, with higher cellularity and restricted water dif-
fusion, typically exhibit lower ADC values compared to 
benign lesions. However, the variability in ADC values 
across different tumor types and patients underscores 
the importance of understanding tumor heterogeneity. 
Despite several meta-analyses on the role of ADC values 
in assessing breast tumor heterogeneity, contradictions 

exist between studies. Meyer et al., in their meta-analysis 
of 28 studies, concluded that ADC values cannot be used 
to distinguish breast cancer molecular subtypes [14]. In 
contrast, a meta-analysis by Iima et al., which reviewed 
52 studies, indicated that ADC values can serve as 
molecular biomarkers for estrogen receptor (ER), proges-
terone receptor (PgR), HER2, and Ki-67 [8]. One reason 
for this phenomenon may be that previous studies have 
primarily focused on the diagnostic value of ADC_avg, 
which may not fully capture tumor heterogeneity [15]. 
For instance, some breast cancer types, such as mucinous 
carcinoma, may exhibit higher ADC_avg values despite 
being malignant, due to their ECM rich in mucin, while 
certain benign lesions (e.g., abscesses) may show lower 

Table 4 Z and P values for Delong’s test
Variable rADC_min_PM rADC_min_G rADC_min_IS ADC_cv ADC_avg ADC_min
rADC_min_G Z = 0.582 P = 0.561
rADC_min_IS Z = 3.118 P = 0.002 Z = 3.149 P = 0.002
ADC_cv Z = 6.015 P < 0.001 Z = 5.996 P < 0.001 Z = 8.365 P < 0.001
ADC_avg Z = 4.906 P < 0.001 Z = 4.914 P < 0.001 Z = 2.524 P = 0.012 Z = 11.396 P < 0.001
ADC_min Z = 5.006 P < 0.001 Z = 5.02 P < 0.001 Z = 3.125 P = 0.002 Z = 10.749 P < 0.001 Z = 0.503 P = 0.615
Combined Z = 13.918 P < 0.001 Z = 13.877 P < 0.001 Z = 18.573 P < 0.001 Z = 5.68 P < 0.001 Z = 26.496 P < 0.001 Z = 27.451 P < 0.001

Fig. 5 Roc curves for six ADC metrics and combined model
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ADC_avg values owing to the presence of necrotic tis-
sue, inflammatory cells, and high-protein exudates that 
restrict water molecule diffusion [7]. In our study, mul-
tiple ADC-derived metrics successfully differentiated 
benign and malignant breast lesions, not only align-
ing with existing literature, thus reinforcing the validity 
of ADC as a characteristic biomarker for breast cancer 
[16–18], but also providing a more nuanced approach to 
interpreting ADC.

A meta-analysis by Surov et al., based on 13,847 
lesions, proposed an ADC threshold of 1.0 × 10⁻³ mm²/s 
as an effective standard for distinguishing benign and 
malignant breast lesions. This finding is consistent with 
our study’s ADC_avg threshold (1.04 × 10⁻³ mm²/s) and 
ADC_min threshold (1.05 × 10⁻³ mm²/s) [7]. Addition-
ally, in our study, ADC_min, as a single metric, demon-
strated optimal performance in distinguishing benign 
from malignant breast tumors, likely due to its sensitive 
reflection of the densest, most cell-rich, and diffusion-
restricted areas of the tumor, providing critical biological 
information for diagnosis [19, 20]. Moreover, rADC_min, 

by normalizing ADC values against reference tis-
sue, improved diagnostic consistency across different 
patients and scanner types, offering a more standardized 
approach to tumor characterization [13]. Similarly, quan-
tifying the ADC variability within the tumor using ADC_
cv may offer insights into tumor heterogeneity, which is 
essential for assessing tumor invasiveness and predicting 
treatment response.

Despite these advantages, individual ADC metrics 
may still face limitations in clinical applications. There-
fore, we explored the potential for constructing a com-
bined predictive model. In constructing this model, we 
chose ADC_avg over ADC_min, likely because ADC_avg 
provides a more comprehensive assessment of tumor 
tissue characteristics, reflecting the average cellular den-
sity and tissue integrity across the entire tumor area. 
This approach accounts for tumor heterogeneity and 
may provide more consistent diagnostic information 
across different patients and tumor types. Additionally, 
the selection of ADC_avg over ADC_min in the com-
bined model also considered its overall performance in 

Fig. 6 Nomogram of the combined model
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Fig. 8 a: Clinical decision curves for the diagnostic efficacy of the combined model (model1) versus ADC_min (model2) for benign and malignant breast 
tumors; b: Clinical impact curve of the combined model

 

Fig. 7 Calibration curve for combined model
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statistical models [21]. When incorporating age, a critical 
clinical parameter, ADC_avg likely demonstrated better 
predictive performance due to its representativeness of 
the overall tumor characteristics. Through the establish-
ment of the combined model, our study further empha-
sizes the importance of personalized diagnosis, offering a 
more accurate tool for breast cancer diagnosis.

While our study explored the potential applications 
of multiple ADC-derived metrics, standardizing their 
acquisition, processing, and analysis remains a challenge 
in clinical practice. The placement of ROI during breast 
DWI analysis is a complex and bias-prone task. Given the 
inherent heterogeneity of breast tumors, ROI selection 
may be influenced by various factors such as tumor loca-
tion, size, and morphological characteristics [22, 23]. In 
this study, we used circular ROIs to ensure measurement 
uniformity and avoid areas affected by necrosis, hem-
orrhage, or cystic lesions. We also utilized multi-point 
selection to further improve ADC measurement accu-
racy. Although this method provided consistent results, 
the ROI placement strategy must be adjusted based on 
the specific characteristics of each lesion, due to differ-
ences in tumor types and histological features. Thus, 
standardized scanning protocols and ROI placement 
methods are crucial to ensuring accuracy and reproduc-
ibility of results. Future research should explore ways 
to standardize ROI placement techniques or introduce 
automated software to reduce human factors, thereby 
improving DWI reproducibility and clinical applicability 
[6].

Furthermore, emerging techniques such as DCE 
imaging, intravoxel incoherent motion (IVIM), and dif-
fusion kurtosis imaging (DKI) may offer additional pos-
sibilities for precise imaging diagnosis of breast cancer. 
A meta-analysis by Zhang et al. suggested that combin-
ing DCE with DWI can further enhance the differentia-
tion of benign and malignant breast lesions [24]. IVIM, 
by separating water diffusion and microvascular perfu-
sion information, provides a more comprehensive char-
acterization of tumor microstructure [25, 26]. DKI can 
evaluate the non-Gaussian behavior of water molecule 
diffusion, further enhancing sensitivity to tumor hetero-
geneity [27]. Although our study did not include DCE, 
IVIM, or DKI methods, the combination of routine ADC 
and its derived metrics with age has already shown high 
predictive performance. We also acknowledge that DWI 
combined with these emerging techniques may further 
improve the diagnostic accuracy and early detection 
capabilities for breast cancer.

Our study highlights the advantages of integrating 
DWI into routine breast MRI protocols. Firstly, by offer-
ing more precise diagnostic methods, it aids physicians 
in early-stage differentiation of breast tumor nature, 
facilitating personalized treatment plans for patients. 

Secondly, the use of these advanced ADC metrics can 
reduce unnecessary biopsy procedures, minimizing 
patient discomfort and treatment costs. Lastly, this study 
underscores the importance of adopting a multipara-
metric assessment strategy in breast cancer manage-
ment, which not only enhances diagnostic accuracy but 
also provides valuable biomarkers for future therapeutic 
decisions.

Despite providing valuable insights, this study has two 
limitations. Its retrospective design and single-center 
sample may introduce inherent selection biases, limiting 
the generalizability of the results. Future research should 
employ prospective, multicenter designs to validate our 
findings. Additionally, the complexity and heterogene-
ity of breast cancer were only partially addressed, with a 
lack of in-depth analysis of tumor grading and molecular 
subtypes. Future studies in these areas may further guide 
treatment decisions and improve patient outcomes.

Conclusions
This study highlights the value of advanced ADC met-
rics in differentiating malignant from benign breast 
lesions. The combination of ADC metrics and patient 
age improves diagnostic accuracy and offers potential 
for enhancing clinical decision-making in breast cancer 
diagnosis.
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