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Abstract
Background Chronic kidney disease induces alterations in the heterogeneity of iron deposition within the basal 
ganglia. Quantitative analysis of the heterogeneity of iron deposition within the basal ganglia may be valuable for 
diagnosing chronic kidney disease-related cognitive impairment.

Methods In this prospective observational cohort study, quantitative susceptibility mapping (QSM) was performed 
in chronic kidney disease patients. Susceptibility values of each nucleus within the basal ganglia were measured. 
Radiomic features were extracted from habitats of the basal ganglia on QSM images. Habitat-based models for 
diagnosing cognitive impairment were constructed using the random forest algorithm. Logistic regression was 
employed to build the clinical model and the combined model. The performance of each model was evaluated by 
the receiver operating characteristic (ROC) analysis.

Results A total of 146 patients (mean age, 51 ± 13 years; 92 male) were included, of which 79 had cognitive 
impairment. The two habitats-based model achieved an area under the curve of 0.926 (95% CI 0.842-1.000) on the 
test set, the highest among all prediction models. The two-habitat maps indicated that chronic kidney disease had 
two distinct patterns of impact on iron deposition in the basal ganglia region. The capability of the two habitats-
based model to identify chronic kidney disease-related cognitive impairment was significantly superior to that of the 
susceptibility values measured in various nuclei (all p < 0.05).

Conclusions This study innovatively applied a habitat-based quantitative analysis technique to QSM, successfully 
constructing a model that accurately diagnoses chronic kidney disease-related cognitive impairment.
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Background
Chronic kidney disease (CKD) is a significant global 
public health problem, exhibiting a high incidence and 
prevalence worldwide, affecting over 10% of the general 
population, encompassing more than 800  million indi-
viduals [1]. Patients with CKD face a multitude of com-
plications, including the anemia, cognitive impairment 
(CI), mineral and bone disorders, as well as significantly 
elevated overall and cardiovascular mortality rates [2]. 
It is worth noting that CI varies in incidence from 16 to 
38%, depending on the stage of CKD [3]. Therefore, regu-
lar screening is necessary for the early identification of CI 
and to implement targeted interventions.

QSM is widely used to quantify the spatial distribution 
of brain susceptibility value, which is helpful for detect-
ing and analyzing brain iron deposition [4, 5]. Our pre-
vious studies have demonstrated that alterations in the 
susceptibility value of specific brain regions, as detected 
by quantitative susceptibility mapping (QSM), are asso-
ciated with the cognitive status of patients with CKD [6, 
7]. This finding suggests that these susceptibility value 
changes could serve as a potential biomarker for diagnos-
ing CKD-related CI. One of the primary reasons our pre-
vious research efforts were unable to develop a precise 
diagnostic tool for CKD-related CI based on QSM is that 
traditional methods for measuring susceptibility values 
fail to capture the heterogeneity of iron deposition.

Habitat analysis can divide the target area into sub-
regions by identifying gray voxel with similar imaging 
characteristics, which has the potential to better distin-
guish the heterogeneity of the target area [8]. Combin-
ing radiomics based on habitat analysis with QSM allows 
for an in-depth investigation of the heterogeneity of 
susceptibility values in the basal ganglia. This approach 
facilitates the investigation of iron deposition heteroge-
neity associated with CI within the basal ganglia of CKD 
patients. In recent years, radiomics has been applied 
to magnetic resonance imaging [9] to analyze the het-
erogeneity of preselected brain regions for the study of 
CI-related diseases [10, 11]. However, no studies have 
employed habitat-based radiomics to analyze the hetero-
geneity of iron deposition related to CI within the basal 
ganglia of CKD patients.

The objective of this study was to combine QSM and 
habitat-based radiomics to construct models that can 
accurately diagnose the cognitive status of CKD patients. 
Furthermore, we utilized habitat-based radiomics to 
explore the deep underlying relationship between the 

heterogeneity of iron deposition in the basal ganglia and 
CKD-related CI.

Methods
Study participants
This study was approved by the Beijing Friendship 
Hospital Ethics Board (ClinicalTrials.gov Identifier: 
NCTO5137470) and conducted in accordance with the 
Declaration of Helsinki ethical standards. Consecutive 
patients attending the Nephrology Department of Beijing 
Friendship Hospital, Capital Medical University, were 
invited to participate. Written informed consent was 
obtained from all participants or their relatives or guard-
ians. The inclusion criteria were: (I) right-handedness; 
(II) age > 18 years; and (III) a CKD diagnosis based on the 
National Kidney Foundation-Kidney Disease Outcomes 
Quality Initiative guidelines [12]. The exclusion criteria 
were: (I) central nervous system diseases, including cere-
brovascular diseases, trauma, and tumors; (II) significant 
carotid artery stenosis and intracranial artery stenosis; 
(III) drug or alcohol abuse; (IV) vertigo or intolerance 
of magnetic resonance imaging (MRI) scanning; and (V) 
psychiatric disorders (Fig. 1).

Clinical data, including blood biochemistry and cog-
nitive assessment, were acquired within 24  h after MRI 
scanning. The Montreal Cognitive Assessment [13] test 
was used to evaluate the cognitive level of CKD patients. 
CKD patients with a threshold score of 26 or above were 
considered to have normal cognition, while those with 
scores below 26 were considered to have CI [14].

MRI acquisition and QSM reconstruction
The imaging was performed using a 3D multiple spoiled 
gradient echo sequence with flow compensation and mul-
tiple echo acquisitions. The parameters were set as fol-
lows: TR = 42.3 ms; TE = 3.3, 5.6, 8.0, 10.3, 12.7, 15.0, 17.4, 
19.7 ms; flip angle = 15°; slice thickness = 1 mm; inter-slice 
gap = 0 mm; matrix = 256 × 256; FOV = 240 mm×240 mm. 
A total of 2240 axial slices were acquired. A monopolar 
readout gradient was used in the acquisition to minimize 
echo spacing and avoid phase-related artifacts inherent 
to bipolar readout.

The QSM images were reconstructed using the STI 
Suite (version 3.0;  h t t p  s : /  / p e o  p l  e . e  e c s  . b e r  k e  l e y . e d u / ~ c 
h u n l e i . l i u / s o f t w a r e . h t m l). Initially, phase images were 
unwrapped using the Laplacian method, which resulted 
in phase images containing a significant amount of back-
ground phase noise. Subsequently, background phase 

Trial registration This study was approved by the Beijing Friendship Hospital Ethics Board (ClinicalTrials.gov 
Identifier: NCTO5137470) and conducted in accordance with the Declaration of Helsinki ethical standards.

Keywords Basal ganglia, Chronic kidney disease, Cognitive impairment, Quantitative susceptibility mapping, 
Radiomics

https://people.eecs.berkeley.edu/~chunlei.liu/software.html
https://people.eecs.berkeley.edu/~chunlei.liu/software.html


Page 3 of 12Wang et al. BMC Medical Imaging          (2025) 25:113 

noise was eliminated using a variable spherical kernel 
size approach for complex harmonic artifact reduction, 
where the radius of the spherical kernel increased from 
1 mm at the brain’s edge to 25 mm towards the center of 
the brain. Finally, an improved least squares orthogonal 
decomposition method was utilized to extract the QSM 
images from the phase images with background noise 
removed [15, 16]. The average magnetic susceptibility of 
cerebrospinal fluid within the lateral ventricle was used 
as the zero reference region, thereby ensuring a standard-
ized baseline for magnetic susceptibility quantification.

Basal ganglia segmentation and susceptibility 
measurement
The segmentation of QSM images in this study was 
accomplished using ITK-SNAP (version 4.0.0;  h t t p :   /  / w 
w  w . i  t k s  n a  p  . o  r  g /  p m w i  k i / p m w  i k i . p h p) [17]. The region of 
interest (ROI) for basal ganglia encompassed the globus 
pallidus, putamen, and caudate nucleus. Manual segmen-
tation along the edges of the basal ganglia was performed 
on QSM images. All ROIs were delineated by a radiolo-
gist (Y Qi) with over 10 years of experience in neuroim-
aging diagnosis. Subsequently, the ROIs were reviewed 

Fig. 1 Summary of patients with CI and non-CI recruitment and exclusions. CI, cognitive impairment; CKD, chronic kidney disease; MoCA, Montreal 
Cognitive Assessment; QSM, quantitative susceptibility mapping
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and refined by another radiologist (YF Guo) with more 
than 10 years of experience in neuroimaging diagnosis. 
According to our previous research, the mean suscepti-
bility values of each nucleus (in units of parts per million 
[PPM]) were calculated by averaging the values across all 
consecutive slices [18].

Habitat area generation
In this study, ROIs were segmented into multiple sub-
regions (i.e., habitats) based on voxel susceptibility val-
ues and radiomic features. Radiomic features included 
three first-order statistical features and eight Gray-level 
Co-occurrence Matrix (GLCM) features (Table  1) [19]. 
The voxel-level radiomic feature values were obtained 
by extracting and analyzing features from the image 
region surrounding each voxel. The K-means clustering 
algorithm was employed to classify voxels into different 
habitats based on their susceptibility values and feature 
values. To identify the optimal number of habitats, we 
assessed the clustering results using the average Calinski-
Harabasz score and the Silhouette coefficient for each k 
value, based on 100 replicates. The study explored habitat 
numbers ranging from 2 to 5. Furthermore, habitat-based 
models were developed for each number of habitats to 
compare their effectiveness in predicting CKD-related 
CI.

Radiomic features extraction
Based on QSM, a total of 1197 features were extracted 
each segmented habitat area and the entire ROI. Thus, 
1197 features were extracted for each of these 12 catego-
ries. The feature set of 1197 includes the following types: 
234 first-order statistical features, 286 GLCM features, 

182  Gy Level Dependence Matrix (GLDM) features, 
208  Gy Level Run Length Matrix (GLRLM) features, 
208  Gy Level Size Zone Matrix (GLSZM) features, 65 
Neighboring Gray Tone Difference Matrix (NGTDM) 
features, and 14 shape features.

Features selection and habitat-based models construction
When constructing the habitat-based model, in addition 
to features extracted from individual habitats, features 
extracted from the entire basal ganglia were also used 
for feature selection and modeling. This study also built 
a predictive model based on the entire basal ganglia. Data 
preprocessing included unifying units, imputing miss-
ing values, and processing outliers. Pearson correlation 
coefficients were calculated to eliminate features with 
high correlations (> 0.90). The minimum redundancy 
maximum relevance method was employed to screen the 
top 20 features with the strongest correlation to the cat-
egorical variables, aiding in identifying the most critical 
features. The random forest algorithm was used to con-
struct prediction models. By comparing the area under 
the curve (AUC) values of all models on the test set, the 
best-performing model was selected for constructing the 
combined model. Figure 2 depicts a flowchart illustrating 
the process of constructing habitat-based models in this 
study.

Clinical and combined models construction
The predicted values output by the habitat-based model 
with the best predictive performance were used as a 
variable, along with clinical features, to construct the 
combined model. In this study, we employed multivari-
able logistic regression to develop clinical models and 

Table 1 Habitat features and descriptions
Habitat feature Description
First-order statistical feature
 Original_firstorder_Entropy Entropy, reflecting the randomness and complexity of the image grayscale distribution.
 Original_firstorder_MeanAbsoluteDeviation Mean absolute deviation, indicating the average deviation of image grayscale values from the 

mean grayscale value.
 Original_firstorder_Median Median, representing the median grayscale value of the image.
GLCM feature
 Original_glcm_DifferenceAverage Difference average of grayscale, describing the average difference in grayscale between pixel 

pairs.
 Original_glcm_DifferenceEntropy Difference entropy of grayscale, measuring the entropy of grayscale differences between pixel 

pairs.
 Original_glcm_DifferenceVariance Difference variance of grayscale, reflecting the variability of grayscale differences between 

pixel pairs.
 Original_glcm_Imc1 Information measure of correlation 1, quantifying the irregularity of texture in the image.
 Original_glcm_Imc2 Information measure of correlation 2, an alternative method for measuring texture irregularity.
 Original_glcm_InverseVariance Inverse variance, used to measure the uniformity of image texture.
 Original_glcm_JointEnergy Joint energy, reflecting the uniformity and repetitiveness of texture.
 Original_glcm_JointEntropy Joint entropy, measuring the irregularity and complexity of image texture.
 Original_glcm_SumEntropy Sum entropy, the total entropy sum of all elements in the joint matrix.
GLCM: Gray Level Co-occurrence Matrix
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combined models. We utilized a stepwise regression 
method based on the Akaike information criterion, inte-
grating both forward selection and backward elimination 
strategies. These models were evaluated using decision 
curve analysis (DCA) in practical clinical applications.

Statistical analyses
All statistical analyses were performed using R software 
(version 3.6.0; R Foundation). The Shapiro-Wilk test 
was employed to evaluate the normality of the distribu-
tion of patient demographic data. For continuous vari-
ables, normally distributed data were analyzed using the 
independent t-test, while non-normally distributed data 
were assessed using the Mann-Whitney U test. Categori-
cal variables were examined using either the chi-square 
test or Fisher’s exact test, depending on the suitability for 
the data. When comparing susceptibility values between 
CI and the non-CI groups, age, gender, and CKD stage 
were used as covariates. The predictive performance of 
all models was evaluated using receiver operating charac-
teristic (ROC) analysis. The Hosmer-Lemeshow test was 
utilized to assess the fitting of the random forest model to 
determine potential overfitting. SHapley Additive exPla-
nations (SHAP) analysis was conducted to interpret the 

importance and contribution of individual radiomic fea-
tures in predicting CKD-related CI. A two-tailed P value 
of less than 0.05 was considered statistically significant.

Results
Patient characteristics
This study included a total of 146 patients (mean age, 
51 ± 13 years; 92 male) with CKD, with a MoCA score 
of 24.6 ± 3.6. Among these patients, 79 scored below the 
CI threshold of 26. Significant statistical differences were 
observed between the CI and non-CI groups in terms 
of age, serum urea, CKD stage, parathyroid hormone 
(PTH), and serum creatinine (all p < 0.05). However, there 
were no significant differences between the CI and non-
CI groups regarding hemoglobin, serum phosphorus, 
serum iron, serum calcium, serum albumin, gender, total 
iron-binding capacity (TIBC), ferritin, and uric acid (all 
p > 0.05). In the training set, which included 102 patients, 
49 were identified as having CI, while in the test set, 
which included 44 patients, 25 were identified as hav-
ing CI. The distribution of clinical characteristics in the 
training and test sets, along with the P values between 
the CI and non-CI groups, are detailed in Table 2.

Fig. 2 This workflow provides a comprehensive approach to utilizing QSM and habitat-based radiomics for identifying CKD-related CI. First, obtain QSM 
images of CKD patients. Next, manually segment the basal ganglia on the QSM images and generate multiple habitats. Then, extract radiomic features 
from these segments. Subsequently, perform feature selection to construct models and evaluate their diagnostic performance. The ultimate goal is to 
develop a model that can accurately identify CKD-related CI for clinical application. CI, cognitive impairment; CKD, chronic kidney disease; QSM, quantita-
tive susceptibility mapping
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Prediction performance of susceptibility value
After adjusting for age, gender, and CKD stage, no statis-
tically significant differences were found in the suscepti-
bility value of all basal ganglia nuclei between the CI and 
non-CI groups, as determined by the Mann-Whitney U 
test (all p > 0.05). The predictive ability of susceptibility 
value in various basal ganglia nuclei for CKD-related CI 
is limited. In the training and testing sets, the AUCs for 
the susceptibility value of the basal ganglia nuclei ranged 
from 0.445 to 0.594 and 0.429 to 0.573, respectively 
(Table 3).

Prediction performance of habitat-based models
The optimal number of habitats was determined to be 
two based on the Calinski-Harabasz score and Silhouette 
coefficient (Fig.  3A). When the number of habitats was 
set to two, the habitat distribution in the basal ganglia 
was generally symmetrical on both sides and did not cor-
respond to the anatomical structure of the basal ganglia 
regions (Fig. 3B).

SHAP analysis revealed that radiomic features 
extracted from the entire basal ganglia (∑mean∣SHAP 
value∣ = 0.247) and habitat 2 (∑mean∣SHAP value∣ 
= 0.183) significantly contributed to the model for 

predicting CKD-related CI. Among the 19 features used 
to construct the two habitats-based model, only two 
radiomic features were extracted from habitat 1, and 
their overall contribution (∑mean∣SHAP value∣ = 0.066) 
was lower compared to the other two feature sets. How-
ever, the individual features from habitat 1 had relatively 
high contributions to the prediction of the model (Fig. 4). 
Based on differences in feature composition, habitat 2 
was characterized by higher susceptibility values and a 
greater proportion of first-order intensity features and 
high-frequency wavelet-based texture descriptors, indi-
cating more pronounced radiomic variability. In con-
trast, habitat 1 consisted of lower susceptibility values 
and a higher proportion of lower-frequency texture and 
statistical homogeneity features, suggesting more sta-
ble radiomic patterns. Therefore, habitat 2 in the basal 
ganglia of CKD patients was highly associated with CI, 
whereas habitat 1 exhibited the opposite trend.

The two habitats-based model also demonstrated supe-
rior predictive ability for CKD-related CI compared to 
other habitat-based models (Table  3). The AUCs of the 
two habitats-based model in the training and test sets 
were 0.957 (95% CI: 0.918–0.997) and 0.926 (95% CI: 
0.843-1.000), respectively (Fig. 5A and B).

Prediction performance of clinical and combined models
Through multivariate logistic regression analysis, age, 
gender, CKD stage, serum urea, serum creatinine, uric 
acid, serum albumin, serum calcium, serum phospho-
rus, PTH, ferritin, serum iron, TIBC, and hemoglobin 
were included in the clinical model. The clinical model 
achieved AUCs of 0.831 (95% CI: 0.747–0.915) in the 
training set and 0.792 (95% CI: 0.648–0.935) in the test 
set (Table 3). Subsequently, these clinical characteristics 
were combined with the predicted values from the two 
habitats-based model to develop the combined model. 
This combined model achieved AUCs of 0.971 (95% 
CI: 0.946–0.996) in the training set and 0.910 (95% CI: 
0.829–0.992) in the test set (Table 3; Fig. 5A and B).

Comparison of prediction models
In the test set, the two habitats-based model achieved an 
AUC of 0.926, which was higher than the susceptibility 
value of the basal ganglia and its nuclei (AUC: 0.429–
0.573), other habitat-based models (AUC: 0.622–0.802), 
the clinical model (AUC: 0.792), and the combined model 
(AUC: 0.910). The DCA results indicated that the clinical 
utility of the two habitats-based model was higher than 
that of the clinical model and combined model (Fig. 5C).

Discussion
Our previous studies have proposed that susceptibil-
ity value serves as a biomarker for diagnosing cogni-
tive status in patients with CKD [7]. This study used a 

Table 2 Clinical characteristics of training and test sets
Characteristic Training set

(n = 102)
Test set
(n = 44)

P value

Age, yr a 50.9 ± 12.5 52.2 ± 14.4 < 0.001 b

Gender 0.659 c

 Male 62 (58.8%) 30 (68.2%)
 Female 40 (39.2%) 14 (31.8%)
CKD stage 0.013 c

 Stage 1 22 (21.6%) 3 (6.8%)
 Stage 2 15 (14.7%) 7 (15.9%)
 Stage 3 15 (14.7%) 7 (15.9%)
 Stage 4 3 (2.9%) 0 (0%)
 Stage 5 47 (46.1%) 27 (61.4%)
Ferritin a 92.2 ± 81.8 155.7 ± 208.1 0.902 b

Hemoglobin a 114.1 ± 24.6 108.8 ± 26.3 0.064 d

PTH a 146.1 ± 187.7 196.4 ± 242.7 0.034 b

Serum albumin a 34.3 ± 6.2 33.6 ± 7.2 0.350 b

Serum calcium a 2.2 ± 0.2 2.1 ± 0.3 0.168 b

Serum creatinine a 414.9 ± 376.8 500.5 ± 363.8 0.018 b

Serum phosphorus a 1.6 ± 0.6 6.2 ± 29.1 0.106 b

Serum urea a 17.7 ± 13.1 20.6 ± 12.3 0.008 b

Serum iron a 12.7 ± 6.5 13.2 ± 8.0 0.164 b

TIBC a 45.7 ± 9.6 44.9 ± 11.8 0.686 d

Uric acid a 419.1 ± 116.4 435.9 ± 110.2 0.948 b

Unless otherwise noted, data present the numbers of patients, with percentages 
in parentheses. CKD, chronic kidney disease; PTH, parathyroid hormone; TIBC: 
total iron-binding capacity
a Data are presented as means ± SDs
b Mann-Whitney U test
c Chi-square test
d Independent t-test
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habitat-based quantitative method to analyze basal gan-
glia susceptibility value and successfully constructed a 
random forest model for the precise diagnosis of CKD-
related CI.

Cognitive changes can occur in the early stages of CKD 
when GFR drops to < 60 ml/min/1.73 m² or even earlier 
[20, 21]. However, in end-stage renal disease, there is 
no significant correlation between subjective cognitive 
symptoms and objective CI [3, 20, 22]. Therefore, regular 
screening is crucial for the early identification of CI and 
timely intervention. In clinical practice, the Mini-Men-
tal State Examination (MMSE) and the MoCA are pri-
mary screening tools for CI [13]. However, repeated use 
of these assessments can lead to practice effects, where 
patients improve scores due to familiarity with the test, 
thus reducing their sensitivity in detecting true cogni-
tive decline. Furthermore, a previous study reported that 
although healthcare providers and haemodialysis techni-
cians spend an average of 47 min with each patient dur-
ing each treatment session two to three times a week, 
mental disorders in these patients are often under-rec-
ognized [23]. There is an urgent need for an objective 
method that can independently identify CKD-related CI. 
The two habitats-based model developed in this study 

is a potential screening tool for identifying CKD-related 
CI. This model demonstrated a higher clinical net benefit 
compared to both the clinical model and the combined 
model. The two habitats-based model does not rely on 
clinical characteristics and can accurately identify CI at 
various stages of CKD, making it suitable for widespread 
and repeated use in CKD populations. Given the limi-
tations in sensitivity of current screening tools (such as 
MMSE and MoCA), the two habitats-based model pro-
posed in this study offers a potential new approach for 
the early and accurate identification of CKD-related CI in 
the future.

This study combines QSM and habitat analysis tech-
niques to explore the heterogeneity of iron deposition in 
patients with CKD. Disruption of iron balance, caused by 
factors such as inflammation [24], aging [25], and oxida-
tive stress [26], plays a critical role in iron metabolism 
and can result in cellular damage and neurological dis-
eases. CKD is marked by oxidative stress and inflamma-
tion, both of which contribute to CKD progression and 
can lead to cardiovascular disease and other complica-
tions [27, 28]. Iron deposition heterogeneity is influ-
enced by multiple mechanisms. Using the habitat analysis 
method, the heterogeneity of iron deposition in the basal 

Table 3 Predictive performance of various models on train and test sets
Models Sets AUC 95 CI% ACC SEN SPE NPV PPV
CNL-L Training 0.51 0.40–0.63 0.49 0.47 0.51 0.45 0.53

Test 0.46 0.29–0.64 0.52 0.46 0.60 0.48 0.58
CNL-R Training 0.58 0.47–0.69 0.58 0.55 0.62 0.54 0.63

Test 0.43 0.25–0.61 0.41 0.38 0.45 0.38 0.45
PUT-L Training 0.55 0.43–0.66 0.47 0.42 0.53 0.44 0.51

Test 0.57 0.40–0.75 0.55 0.54 0.55 0.50 0.59
PUT-R Training 0.59 0.48–0.71 0.57 0.53 0.62 0.53 0.62

Test 0.57 0.40–0.75 0.57 0.58 0.55 0.52 0.61
GPL-L Training 0.44 0.33–0.56 0.47 0.47 0.47 0.43 0.51

Test 0.49 0.31–0.67 0.52 0.42 0.65 0.48 0.59
GPL-R Train 0.54 0.42–0.65 0.50 0.51 0.49 0.46 0.54

Test 0.51 0.33–0.69 0.52 0.46 0.60 0.48 0.58
Basal ganglia Training 0.93 0.87–0.98 0.89 0.87 0.92 0.86 0.92

Test 0.77 0.63–0.91 0.71 0.67 0.75 0.65 0.76
Two habitats Training 0.96 0.92-1.00 0.93 0.98 0.87 0.98 0.90

Test 0.93 0.84-1.00 0.86 0.96 0.75 0.94 0.82
Three habitats Training 0.94 0.90–0.99 0.88 0.91 0.85 0.89 0.88

Test 0.69 0.53–0.85 0.66 0.58 0.75 0.60 0.74
Four habitats Training 0.91 0.85–0.97 0.87 0.87 0.87 0.85 0.89

Test 0.62 0.45–0.79 0.57 0.34 0.80 0.52 0.69
Five habitats Training 0.98 0.86-1.00 0.92 0.93 0.92 0.92 0.93

Test 0.80 0.65–0.95 0.77 0.75 0.80 0.73 0.82
Clinical Training 0.83 0.75–0.91 0.80 0.83 0.78 0.81 0.80

Test 0.79 0.65–0.93 0.75 0.70 0.79 0.76 0.74
Combined Training 0.97 0.95-1.00 0.87 0.87 0.88 0.86 0.88

Test 0.91 0.83–0.99 0.80 0.90 0.71 0.89 0.72
AUC: Area Under the Curve; ACC: Accuracy; CNL-L: Left Caudate Nucleus; CNL-R: Right Caudate Nucleus; CI: Confidence Interval; GPL-L: Left Globus Pallidus; GPL-R: 
Right Globus Pallidus; NPV: Negative Predictive Value; PPV: Positive Predictive Value; PUT-L: Left Putamen; PUT-R: Right Putamen; SEN: Sensitivity; SPE: Specificity
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ganglia can be interpreted from multiple dimensions, 
making the features of iron deposition heterogeneity 
under a single mechanism more apparent. The two-habi-
tat maps revealed that iron deposition in the basal ganglia 
under the influence of CKD primarily follows two distri-
bution patterns, which are associated with the cognitive 
status of CKD patients. Notably, the habitat distribution 
in the basal ganglia did not closely match the anatomical 
locations of the globus pallidus, lentiform nucleus, and 

putamen. Previous clinical imaging studies on CKD typi-
cally analyze individual nuclear masses as independent 
entities [29, 30]. However, these findings provide a novel 
perspective for research on CKD-related CI.

The basal ganglia, as a complex brain region, may 
exhibit different distributions and concentrations of iron 
deposition in its various subregions. This heterogene-
ity likely reflects its diverse roles in cognitive function 
[31, 32]. Simple measurements of average susceptibility 

Fig. 3 (A) Calinski-Harabasz score and Silhouette coefficient plots used to determine the optimal number of habitats. (B) Two-habitat maps of CKD pa-
tients with and without CI, respectively. CI, cognitive impairment; CKD, chronic kidney disease; QSM, quantitative susceptibility mapping
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values in the basal ganglia region cannot capture this het-
erogeneity, and the loss of this crucial information is the 
primary reason why the susceptibility values of the basal 
ganglia region perform poorly in diagnosing CKD-related 
CI. This study found that features extracted from the 
entire basal ganglia had a significant impact on predicting 
CKD-related CI in the two habitats-based model, which 
supports our viewpoint. Radiomic features from habitat 2 
also substantially contributed to the model’s prediction of 
CKD-related CI. We hypothesize that habitat 2 might be 
a susceptible area to CKD’s effects on iron deposition in 
the basal ganglia, containing a wealth of CI-related quan-
titative information. Although the overall contribution of 
habitat 1 is lower, individual features within this region 
have high contribution values. Habitat 1 might be a resis-
tant area to CKD’s effects on iron deposition in the basal 
ganglia, containing less CI-related quantitative informa-
tion. However, once this area is affected, the radiomic 
features reflecting the heterogeneity of iron deposition 
highly specifically indicate CI. The heterogeneity of iron 
deposition might be the key to solving the diagnosis 
and treatment of CKD-related CI, but more research is 
needed to explore and validate this hypothesis.

This study has certain limitations. The sample size 
is relatively small. Therefore, we selected the random 

forest algorithm to construct habitat-based models due 
to its robustness with small datasets, its effectiveness 
in avoiding overfitting through ensemble learning, and 
its capability to handle high-dimensional data. Larger 
prospective datasets are needed to further validate and 
improve the predictive performance of our model. Addi-
tionally, this study proposes that CKD may influence 
the distribution of iron deposition in the basal ganglia 
through two distinct patterns based on the results of 
habitat analysis. This finding and the associated hypoth-
eses require further validation through histopathological 
studies.

Conclusions
This study applied a habitat-based quantitative analysis 
technique to the basal ganglia in QSM and successfully 
develop a two habitats-based model capable of accu-
rately identifying CKD-related CI. This study presents 
an objective method independent of clinical information, 
with the potential to become a tool for routine screening 
of CI in CKD. Additionally, this study suggests that the 
effects of CKD on the basal ganglia are characterized by 
a dual-mode distribution of iron deposition, providing a 
potential research direction for the study of CKD-related 
CI in the basal ganglia.

Fig. 4 Beeswarm plot of the SHAP analysis of the two habitats-based model. SHAP, SHapley Additive exPlanations

 



Page 10 of 12Wang et al. BMC Medical Imaging          (2025) 25:113 

Abbreviations
CI  Cognitive Impairment
CKD  Chronic Kidney Disease
MRI  Magnetic Resonance Imaging
NGTDM  Neighboring Gray Tone Difference Matrix
GLCM  Gray-level Co-occurrence Matrix
GLDM  Gray Level Dependence Matrix
GLRLM  Gray Level Run Length Matrix
GLSZM  Gray Level Size Zone Matrix

QSM  Quantitative Susceptibility Mapping
SHAP  SHapley Additive exPlanations

Acknowledgements
Not applicable.

Author contributions
Z.C.W. conceptualized the study. M.L., L.S., W.B.Y., X.L., and X.Y.B. curated the 
data. Y.Q., H.N.Z., Y.Z.L., S.Q.C., and Y.W. conducted formal analysis. Y.F.G. and 

Fig. 5 ROC curves of various CKD-related CI prediction models in the training set (A) and test set (B). The DCA of the Two habitats-based model, clinical 
model, and combined model in the test set (C). CI, cognitive impairment; CKD, chronic kidney disease; DCA, decision curve analysis

 



Page 11 of 12Wang et al. BMC Medical Imaging          (2025) 25:113 

H.W. drafted the original manuscript. M.S.X., Z.C.W., and Z.H.Y. reviewed and 
edited the manuscript.

Funding
This study has received funding by the National Natural Science Foundation of 
China (82202099 and 52227814), Beijing Municipal Administration of Hospitals 
Clinical Medicine Development of Special Funding Support (contract grant 
numbers: ZYLX201824 and ZYLX202101), Beijing Municipal Administration 
of Hospital’s Mission Plan (contract grant number: SML20150101), Beijing 
Scholar 2015 (Zhenchang Wang), Beijing Friendship Hospital, Capital Medical 
University (contract grant number: seed project YYZZ202129, yyqcjh2023-7), 
and Training Fund for Open Projects at Clinical Institutes and Departments of 
Capital Medical University (CCMU2022ZKYXY011).

Data availability
The data that support the findings of this study are available from the Beijing 
Friendship Hospital but restrictions apply to the availability of these data, 
which were used under license for the current study, and so are not publicly 
available. Data are however available from the authors upon reasonable 
request and with permission of the Beijing Friendship Hospital.

Declarations

Ethics approval and consent to participate
This study was approved by the Beijing Friendship Hospital Ethics Board 
(ClinicalTrials.gov Identifier: NCTO5137470) and was conducted in accordance 
with the ethical standards of the Declaration of Helsinki. Written informed 
consent was obtained from all subjects (patients) prior to participation in the 
study.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1Department of Radiology, Beijing Friendship Hospital, Capital Medical 
University, No. 95 Yong An Road, Xicheng District, Beijing 100050, China
2Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing 
University Medical School, Nanjing, Jiangsu, China
3Department of Nephrology, Beijing Friendship Hospital, Capital Medical 
University, Beijing, China
4Department of Radiology, The First Affiliated Hospital of Zhejiang 
Chinese Medical University (Zhejiang Provincial Hospital of Traditional 
Chinese Medicine), Hangzhou, Zhejiang, China
5The First School of Clinical Medicine, Zhejiang Chinese Medical 
University, Hangzhou, Zhejiang, China
6Center of Radiology, The Second Affiliated Hospital of Fujian Medical 
University, Quanzhou, Fujian, China
7School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian, 
China

Received: 21 November 2024 / Accepted: 1 April 2025

References
1. Kovesdy CP. Epidemiology of chronic kidney disease: an update 2022. Kidney 

Int Supplements. 2022;12(1):7–11.
2. Kalantar-Zadeh K, Jafar TH, Nitsch D, Neuen BL, Perkovic V. Chronic kidney 

disease. Lancet. 2021;398(10302):786–802.
3. Kurella Tamura M, Yaffe K. Dementia and cognitive impairment in ESRD: 

diagnostic and therapeutic strategies. Kidney Int. 2011;79(1):14–22.
4. Haacke EM, Liu S, Buch S, Zheng W, Wu D, Ye Y. Quantitative susceptibil-

ity mapping: current status and future directions. Magn Reson Imaging. 
2015;33(1):1–25.

5. Vinayagamani S, Sheelakumari R, Sabarish S, Senthilvelan S, Ros R, Thomas 
B, et al. Quantitative susceptibility mapping: Technical considerations 

and clinical applications in neuroimaging. J Magn Reson Imaging: JMRI. 
2021;53(1):23–37.

6. Wang H, Liu X, Song L, Yang W, Li M, Chen Q, et al. Dysfunctional coupling of 
cerebral blood flow and susceptibility value in the bilateral hippocampus is 
associated with cognitive decline in nondialysis patients with CKD. J Am Soc 
Nephrology: JASN. 2023;34(9):1574–88.

7. Wang H, Song L, Li M, Yang Z, Wang ZC. Association between susceptibility 
value and cerebral blood flow in the bilateral putamen in patients undergo-
ing hemodialysis. J Cereb Blood Flow Metabolism: Official J Int Soc Cereb 
Blood Flow Metabolism. 2023;43(3):433–45.

8. Shi Z, Huang X, Cheng Z, Xu Z, Lin H, Liu C, et al. MRI-based quantification of 
intratumoral heterogeneity for predicting treatment response to neoadju-
vant chemotherapy in breast cancer. Radiology. 2023;308(1):e222830.

9. Hametner S, Endmayr V, Deistung A, Palmrich P, Prihoda M, Haimburger E, 
et al. The influence of brain iron and myelin on magnetic susceptibility and 
effective transverse relaxation - A biochemical and histological validation 
study. NeuroImage. 2018;179:117–33.

10. Park CJ, Eom J, Park KS, Park YW, Chung SJ, Kim YJ, et al. An interpretable 
multiparametric radiomics model of basal ganglia to predict dementia 
conversion in Parkinson’s disease. NPJ Parkinson’s Disease. 2023;9(1):127.

11. Tang L, Wu X, Liu H, Wu F, Song R, Zhang W, et al. Individualized prediction of 
early Alzheimer’s disease based on magnetic resonance imaging radiomics, 
clinical, and laboratory examinations: A 60-month follow-up study. J Magn 
Reson Imaging: JMRI. 2021;54(5):1647–57.

12. Shlipak MG, Tummalapalli SL, Boulware LE, Grams ME, Ix JH, Jha V, et al. The 
case for early identification and intervention of chronic kidney disease: 
conclusions from a kidney disease: improving global outcomes (KDIGO) 
controversies conference. Kidney Int. 2021;99(1):34–47.

13. Pépin M, Ferreira AC, Arici M, Bachman M, Barbieri M, Bumblyte IA, et al. Cog-
nitive disorders in patients with chronic kidney disease: specificities of clinical 
assessment. Nephrology, dialysis, transplantation: official publication of the 
European Dialysis and transplant association - European Renal Association. 
2021;37(Suppl 2):ii23–32.

14. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin 
I, et al. The Montreal cognitive assessment, MoCA: a brief screening tool for 
mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.

15. Li W, Wang N, Yu F, Han H, Cao W, Romero R, et al. A method for estimating 
and removing streaking artifacts in quantitative susceptibility mapping. 
NeuroImage. 2015;108:111–22.

16. Li W, Wu B, Liu C. Quantitative susceptibility mapping of human brain reflects 
spatial variation in tissue composition. NeuroImage. 2011;55(4):1645–56.

17. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 
3D active contour segmentation of anatomical structures: significantly 
improved efficiency and reliability. NeuroImage. 2006;31(3):1116–28.

18. Wang H, Han X, Jin M, Wang LY, Diao ZL, Guo W, et al. Different iron 
deposition patterns in hemodialysis patients with and without restless 
legs syndrome: a quantitative susceptibility mapping study. Sleep Med. 
2020;69:34–40.

19. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et 
al. Computational radiomics system to decode the radiographic phenotype. 
Cancer Res. 2017;77(21):e104–7.

20. Berger I, Wu S, Masson P, Kelly PJ, Duthie FA, Whiteley W, et al. Cognition in 
chronic kidney disease: a systematic review and meta-analysis. BMC Med. 
2016;14(1):206.

21. Murray AM. Cognitive impairment in the aging dialysis and chronic 
kidney disease populations: an occult burden. Adv Chronic Kidney Dis. 
2008;15(2):123–32.

22. Leinau L, Murphy TE, Bradley E, Fried T. Relationship between conditions 
addressed by hemodialysis guidelines and non-ESRD-specific conditions 
affecting quality of life. Clin J Am Soc Nephrology: CJASN. 2009;4(3):572–8.

23. Sehgal AR, Grey SF, DeOreo PB, Whitehouse PJ. Prevalence, recognition, and 
implications of mental impairment among hemodialysis patients. Am J 
Kidney Diseases: Official J Natl Kidney Foundation. 1997;30(1):41–9.

24. Urrutia P, Aguirre P, Esparza A, Tapia V, Mena NP, Arredondo M, et al. 
Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it 
causes iron accumulation in central nervous system cells. J Neurochem. 
2013;126(4):541–9.

25. Loeffler DA, Connor JR, Juneau PL, Snyder BS, Kanaley L, DeMaggio AJ, et al. 
Transferrin and iron in normal, Alzheimer’s disease, and Parkinson’s disease 
brain regions. J Neurochem. 1995;65(2):710–24.



Page 12 of 12Wang et al. BMC Medical Imaging          (2025) 25:113 

26. Masaldan S, Belaidi AA, Ayton S, Bush AI. Cellular Senescence and Iron 
Dyshomeostasis in Alzheimer’s Disease. Pharmaceuticals (Basel Switzerland). 
2019;12(2).

27. Viggiano D, Wagner CA, Martino G, Nedergaard M, Zoccali C, Unwin R, 
et al. Mechanisms of cognitive dysfunction in CKD. Nat Rev Nephrol. 
2020;16(8):452–69.

28. Kishi S, Nagasu H, Kidokoro K, Kashihara N. Oxidative stress and the 
role of redox signalling in chronic kidney disease. Nat Rev Nephrol. 
2024;20(2):101–19.

29. Hamed SA. Neurologic conditions and disorders of uremic syndrome of 
chronic kidney disease: presentations, causes, and treatment strategies. 
Expert Rev Clin Pharmacol. 2019;12(1):61–90.

30. Kang JJ, Chen Y, Xu GD, Bao SL, Wang J, Ge M, et al. Combining quantitative 
susceptibility mapping to radiomics in diagnosing Parkinson’s disease and 
assessing cognitive impairment. Eur Radiol. 2022;32(10):6992–7003.

31. Rouault TA. Iron metabolism in the CNS: implications for neurodegenerative 
diseases. Nat Rev Neurosci. 2013;14(8):551–64.

32. Kruer MC, Boddaert N, Schneider SA, Houlden H, Bhatia KP, Gregory A, et al. 
Neuroimaging features of neurodegeneration with brain iron accumulation. 
AJNR Am J Neuroradiol. 2012;33(3):407–14.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	Habitat analysis of iron deposition in the basal ganglia for diagnosing cognitive impairment in chronic kidney disease: evidence from a case-control study
	Abstract
	Background
	Methods
	Study participants
	MRI acquisition and QSM reconstruction
	Basal ganglia segmentation and susceptibility measurement
	Habitat area generation
	Radiomic features extraction
	Features selection and habitat-based models construction
	Clinical and combined models construction
	Statistical analyses

	Results
	Patient characteristics
	Prediction performance of susceptibility value
	Prediction performance of habitat-based models
	Prediction performance of clinical and combined models
	Comparison of prediction models

	Discussion
	Conclusions
	References


