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Abstract
Background  Although gamma Knife radiosurgery (GKRS) is commonly used to treat benign brain tumors, such 
as meningioma, irradiating the surrounding brain tissue can lead to perifocal edema within a few months after 
the procedure. Volumetric assessment of perifocal edema is crucial for therapy planning and monitoring. Post-
radiosurgery changes in perifocal edema, appearing as hyper-dense areas in magnetic resonance T2-weighted (T2w) 
images, are clearly identifiable; however, physicians lack tools to segment and quantify the volume of these T2w 
hyper-dense areas. This has hindered not only the quantification of severity but also research on edema growth and 
case differentiation.

Methods  In this study, we trained a Mask Region-based Convolutional Neural Network (Mask R-CNN) to replace 
manual pre-processing in designating regions of interest. We also applied transfer learning to the DeepMedic deep 
learning model to facilitate the automatic segmentation and quantification of brain edema regions in images. 
The resulting quantitative findings were used to explore the effects of GKRS treatment on brain edema caused by 
meningioma.

Results  We studied 21 patients with meningiomas who had undergone GKRS treatment based on 154 regularly 
tracked T2w scans. From this group, we selected 130 scans for random assignment to a training set (80 scans), 
validation set (30 scans), and test set (20 scans). The actual range of the edema in the T2w images was labeled 
manually by a clinical radiologist to serve as the gold standard in supervised learning. The trained model was tasked 
with segmenting the test set for comparison with the manual segmentation results. The average Dice similarity 
coefficient in these comparisons was 84.7%.

Conclusions  The proposed scheme for the automated segmentation and quantification of brain edema post-
radiosurgery demonstrated excellent results, suggesting its applicability to the development of predictive models.

Trial registration  Not applicable.
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Introduction
Meningioma is the second most common primary tumor 
of the central nervous system after glioma. Its clinical 
presentation varies widely from quiescence to profound 
disability [1, 2]. Surgical resection is the standard of care 
for those with attributable symptoms or tumor growth 
[3]. Tumors proximal to eloquent areas or situated in 
surgically difficult areas are prone to distressing mor-
bidity or even mortality. Thus, a balance must be struck 
between the advantages of surgical intervention and the 
corresponding risk.

Over the last 30 years, stereotactic radiosurgery (SRS) 
has emerged as an effective alternative treatment for 
lesions of the central nervous system [4]. Numerous 
studies have reported favorable results in using SRS to 
deal with meningioma [5–7]. In light of the radiological 
response and minimal adverse radiologic effect (ARE), 
the current consensus is to use SRS for tumors that are 
small, deep-seated, and/or asymptomatic [6].

ARE is a common phenomenon after SRS. The pheno-
type is best assessed using T2-weighted (T2w) magnetic 
resonance imaging (MRI) or fluid-attenuated inversion 
recovery (FLAIR) MRI, based on prominent features of 
peritumoral hyper-density indicative of edema. The clini-
cal manifestation of brain edema ranges from asymptom-
atic to pronounced disability. Locoregional symptoms of 
brain edema depend on the involvement of functional 
areas comprising motor weakness, sensory disturbance, 
or language impairment. Generalized symptoms of 
edema include headache, conscious disturbance, sei-
zure, or nausea. Treatments for ARE-related symptoms 
include a temporary course of steroids or bevacizumab, 
or surgical debulking in severe cases [8].

Peritumoral edema is clearly identifiable by hyper-
dense areas in T2w MRI brain scans; however, physi-
cians lack an objective tool by which to determine the 
volume of these areas. Volumetric analysis of these 
regions of interest has conventionally been performed 
by neuroradiologists; however, this process is lengthy, 
and the results are often non-reproducible. From a clini-
cal perspective, a suspected correlation between edema 
volume and symptomatic manifestation (based on anec-
dotal findings) could potentially be used to predict long-
term neurological outcomes [9]. Nonetheless, physicians 
require an early indication of ARE if they are to treat 
these difficult cases effectively.

The aim of this study was to automate the segmenta-
tion and quantification of post-radiosurgery brain edema 
using a deep learning-based model. Our findings repre-
sent a promising step toward enhanced edema segmen-
tation accuracy and assessing the long-term effects of 
radiation therapy on surrounding brain tissue.

Materials and methods
Subjects
MRI data were collected from 21 patients at Taipei Vet-
erans General Hospital. This included a total of 154 
scans obtained at regular intervals (1 to 16 scans per 
patient). The average volume of cerebral edema after 
radiosurgery for meningioma was 15.61 ± 16.98  cm3, 
ranging from 0 to 139.66  cm3. Note that 24 scans pre-
sented edema with a volume of less than 2  cm3, which 
were excluded due to difficulties in delineation or other 
training-related reasons. After excluding those data from 
the training and validation datasets, the average volume 
was 18.24 ± 17.11 cm3, ranging from 2.01 to 139.66 cm3. 
The average patient age was 63.5 ± 9.1, ranging from 43 
to 85 years. All scans were randomly divided into train-
ing, validation, and test sets. To ensure the independence 
of the three datasets, each patient was included in only 
one dataset. This prevented the occurrence of the same 
tracking scans appearing in different sets, thereby ensur-
ing that the model was not tested using edema patterns 
on which it had previously been trained. Finally, we 
divided the dataset into five mutually exclusive subsets. 
In each iteration, four subsets were combined for training 
and validation, while the remaining subset was retained 
as a test set. This process was repeated five times, with 
each subset serving as the test set once. The final perfor-
mance was averaged across the five test sets. The study 
was approved by the Institutional Review Board of Taipei 
Veterans General Hospital (2018-07-019 C).

MRI protocol
Post-radiosurgery changes in perifocal edema, appear-
ing as hyper-dense areas in magnetic resonance T2w 
images, are clearly differentiable from normal scans. 
We sought to increase the variety of data in order to 
enhance the robustness of the model to overfitting by 
importing images from several types of MRI scanners 
operating under various scanning parameters: repetition 
time = 2050-8854.7 ms, echo time = 82.3-140.8 ms, field 
of view = 70–100  mm, flip angle = 90-180o, number of 
averages = 1–4, and acquisition number = 0–4. The T2w 
images also varied in terms of dimensions and voxel size.

Proposed algorithm
To enhance the performance of the deep learning model, 
we employed transfer learning, which is more conve-
nient, cost-effective, and efficient than developing a new 
model. As shown in Fig. 1, the generation of brain edema 
segmentations from T2w images was a 3-step process: 
(1) MRI pre-processing, (2) brain parenchyma extrac-
tion, and (3) segmentation of edema for quantification. 
Each step is detailed in the following sub-sections. The 
model was run on a personal computer equipped with 
an Intel CoreTM i7-10700 K CPU at 3.80 GHz and 16GB 
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of RAM. The segmentation network was trained over a 
period of 18  h using an Nvidia RTX 3070Ti GPU with 
8GB of RAM.

MRI pre-processing
MRI pre-processing of T2w images was performed to 
improve computational efficiency and enhance the image 
analysis capabilities of the neural network to facilitate 
the extraction of as much lesion-related information as 
possible. Pre-processing involved z-score normalization, 
voxel size resampling, and image resizing.

T2w intensity normalization was meant to enhance the 
robustness and reliability of the results and accelerate 
convergence by reducing inter-rater bias [10]. All scans 
underwent voxel size resampling to 0.47 × 0.47 × 1.5 mm3 
to facilitate segmentation at the voxel level. To build a 
deeper network of greater complexity, we increased the 
number of slices in the z-axis direction. In other words, 
we expanded the input volume size along the z-axis dur-
ing pre-processing, by including additional adjacent slices 
in each sample to provide more contextual information 
for the 3D segmentation model.

This approach was meant to facilitate the capture of the 
spatial characteristics of brain edema across neighboring 
slices, which has been shown to improve segmentation 
performance in volumetric medical imaging tasks [11, 
12]. We also performed image resizing to remove excess 
background information, potentially containing noise 
artifacts from the scanner.

Data augmentation
In this study, data augmentation refers to the process of 
generating additional training samples by applying trans-
formations to existing images, rather than obtaining new 
images from different slice locations.

We applied the following augmentation techniques to 
each T2-weighted image:

 	• Brightness Adjustment (Contrast Enhancement): 
Image intensity was randomly adjusted to simulate 
variations in scanning conditions [13].

 	• Elastic Deformation: Non-linear elastic 
transformations were applied to mimic subtle 

anatomical variations and scanner-induced 
distortions.

These augmentation techniques were applied indepen-
dently to each image slice, resulting in additional ver-
sions of the same image with slight variations. Note that 
these operations did not afect the voxel information in 
any way that would alter anatomical structures. Instead, 
we introduced small variations to improve the robustness 
and generalizability of the segmentation model to unseen 
data.

The effectiveness of elastic transformation as a data 
augmentation method can be attributed to its simula-
tion of natural variations that occur when medical images 
are originally generated. Variations in position, angle, 
and scanner parameters often result in slight stretching 
or other forms of distortion, such that the appearance of 
any medical image may vary under different screenings. 
Nonetheless, distortions of this sort should not influence 
the detection and identification of lesions. Numerous 
researchers have reported on the efficacy of elastic trans-
formation in the modeling of variations for data augmen-
tation [14].

As outlined [15], deformations were created by gener-
ating uniformly distributed random displacement fields 
Δx(x, y) = rand(-1,1) and Δy(x, y) = rand(-1,1). The expres-
sion rand(-1, 1) refers to a random number uniformly 
sampled from the range [-1, 1]. It is a dimensionless value 
and does not directly correspond to a physical displace-
ment in millimeters. Rather, this random value is used in 
generating a displacement field for elastic deformation 
data augmentation.

The displacement field undergoes convolution with a 
Gaussian filter (regulated by elasticity coefficient σ), after 
which the final displacement is scaled by factor α. These 
parameters determine the physical extent of the defor-
mation in voxel units. For instance, a displacement value 
of Δy = 1 represents a shift of 1 voxel in the y-direction, 
rather than a 1 mm displacement in physical space. The 
actual displacement in millimeters depends on the voxel 
size in the images, which was 0.47  mm × 0.47  mm × 
1.5 mm after resampling.

Fig. 1  Flowchart of the proposed model for the segmentation of brain edema after radiosurgery for meningioma

 



Page 4 of 8Yang et al. BMC Medical Imaging          (2025) 25:130 

Brain parenchyma extraction
To enhance the efficiency and accuracy of the brain 
edema segmentation model, we employed the Mask 
R-CNN model to generate brain masks with parenchymal 
brain tissue as regions of interest for network modeling 
[16] (Matterport, Inc. (2018). Sunnyvale, CA. [Online]. 
Available: ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​m​a​t​t​​e​r​​p​o​r​t).

Mask R-CNN is a pixel-level object detection and 
instance segmentation model, which won the Common 
Objects in Context (COCO) 2016 challenge. The model 
architecture is based on Fast/Fast R-CNN [17, 18] and 
a fully convolutional network [19]. This model is able to 
classify objects in pixels and simultaneously detect mul-
tiple types of objects for segmentation, with the results 
presented in the form of a semantic segmentation mask 
of very high accuracy. It is also highly efficient in terms 
of model training and inference during the brain mask 
extraction step. Mask R-CNN framework is publicly 
available at GitHub (​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​m​a​t​t​​e​r​​p​o​r​t).

This study used a total of 4,049 T2w images for brain 
parenchyma extraction. This included 2,994 images in 
the training set, 710 in the validation set, and 345 in the 
test set. Statistical Parametric Mapping 12 (SPM12, Well-
come Trust Centre for Neuroimaging, University College 
London, ​h​t​t​p​​s​:​/​​/​w​w​w​​.​f​​i​l​.​​i​o​n​​.​u​c​l​​.​a​​c​.​u​​k​/​s​​p​m​/​s​​o​f​​t​w​a​r​e​/​s​p​
m​1​2​/) [20] was used to generate brain mask labels, with 
missing parts filled in manually. The results that passed 
assessment by clinical physicians were adopted as the 
gold standard for subsequent analysis.

Brain edema segmentation
DeepMedic is a multi-scale 3D deep convolutional neu-
ral network with 3D fully connected conditional ran-
dom fields designed for the segmentation of 3D medical 
images (DeepMedic. (2019). Oxford UK. [Online]. Avail-
able: https://github.com/deepmedic). When applied to 
MRI scans, this model has proven highly effective in seg-
menting lesions associated with traumatic brain injury, 
ischemic stroke, and meningioma [21]. This model was 
also the winner of the Brain Tumor Image Segmentation 
(BRATS) 2015 and Ischemic Stroke Lesion Segmenta-
tion (ISLES) 2015 benchmarks. The DeepMedic architec-
ture is based on a multi-scale deep convolutional neural 
network and fully connected conditional random fields, 
which are highly effective in removing false positives dur-
ing the segmentation stage [22, 23]. The input employs 
two parallel convolution channels to extract lesion-
related image features, capturing both local details and 
large-scale contour information across multiple scales. 
Class imbalances can be mitigated by dense training in 
the fully convolutional network. The DeepMedic frame-
work is publicly available at GitHub ​(​​​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​
/​d​e​e​p​m​e​d​i​c​​​​​)​.​​

In the current study, the DeepMedic model was used as 
the primary edema segmentation tool. Transfer learning 
was used to adjust the weights, and training hyperparam-
eters were used in the segmentation and quantification of 
edema in T2w images. The ability of DeepMedic to pro-
cess 3D MRI data allowed the incorporation of image fea-
tures along the z-axis for use in assessing the long-term 
effects of radiation therapy on brain tissue surrounding 
meningiomas.

Performance evaluation
This study used three common evaluation indices to 
assess the accuracy of the segmentation model based on 
its ability to differentiate between automated segmenta-
tion results and the ground truth (manual delineation by 
radiologists). These indices included the Dice similarity 
coefficient (DSC), precision, and recall. This analysis was 
based on the four elements of a confusion matrix: true 
positive (TP), false positive (FP), true negative (TN), and 
false negative (FN).

The definitions used in this study were as follows:

True Positive (TP): A voxel labeled as edema by both 
the model and the radiologist.

False Positive (FP): A voxel labeled as edema by the 
model but not by the radiologist.

True Negative (TN): A voxel labeled as non-edema by 
both the model and the radiologist.

False Negative (FN): A voxel labeled as non-edema by 
the model but identified as edema by the radiologist.

A voxel was considered correctly segmented if its label 
(edema or non-edema) matched the ground truth deter-
mined by a radiologist. DSC measures the degree of simi-
larity between two samples in terms of shape, area, and 
position. Precision assesses the probability that a positive 
prediction is actually true, emphasizing the accuracy of 
predicted positive outcomes. Recall assesses the prob-
ability that an actual positive case is correctly identified 
by the model, focusing on the accuracy of true positive 
predictions.

Taken together, these indices can detect whether the 
predictions of a segmentation model correspond to 
reality.

Results
Demographics
A total of 21 patients were recruited in the study. This 
sample included a preponderance of females (n = 17, 
81%). The average age at the time of clinical presenta-
tion was 63 years old, ranging from 43 to 81 years. A 
notable portion of the patients in this series were inci-
dentally diagnosed with meningioma without any symp-
toms (n = 8, 38%). Other attributable ailments included 

https://github.com/matterport
https://github.com/matterport
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://github.com/deepmedic
https://github.com/deepmedic
https://github.com/deepmedic
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headache (n = 6, 29%), ocular phenomena (n = 3, 14%), 
hearing problems (n = 3, 14%), and seizure (n = 1, 5%). All 
cases involved isolated tumors, such that this population 
yielded a total of 21 meningiomas, 67% of which were 
deep-seated in the brain parenchyma (skull base, n = 10; 
cerebellopontine angle, n = 2; tentorium, n = 1; intra-ven-
tricle, n = 1). The mean tumor size was 7.03 cm3 at base-
line, ranging from 1.60 to 15.92 cm3. Table 1 summarizes 
the clinical presentations and imaging phenotypes.

MRI scans were used to perform volumetric analysis 
of the meningioma. Note that meningioma can gener-
ally be enhanced by contrast media. The target volume 
of SRS can be delineated clearly using post-contrast 
T1-weighted MRI scans. This can then be used to guide 

dose delivery planning. In the series, a marginal dose 
fell within a relatively narrow spectrum of 11.5 to 13 Gy. 
The average time that elapsed between the last SRS ses-
sion and maximal brain edema was 13 months, spanning 
3.3 to 64 months. The maximal calculated edema vol-
ume ranged from 1.40 to 139.66 cm3. The SRS treatment 
parameters and outcomes are listed in Supplementary 
Table 1.

Automated brain parenchyma extraction
The performance of the Mask R-CNN model in brain 
parenchyma extraction was evaluated using five-fold 
cross-validation. The model achieved consistently high 
performance, with an average Dice similarity coeffi-
cient (DSC) of 94.98%, recall of 92.51%, and precision of 
97.89% across all folds. Detailed results for each fold are 
presented in Supplementary Table 2.

Correct extraction of brain parenchyma was defined 
voxel-wise. A voxel was considered correctly extracted if 
it was classified as brain parenchyma by the model and 
matched the corresponding voxel in the ground truth 
mask, which was manually labeled by a radiologist. 
Supplementary Fig. 1 presents a demonstration of brain 
parenchyma extraction using the Mask R-CNN.

Automated edema segmentation
The performance of the DeepMedic model in edema 
segmentation was also evaluated using five-fold cross-
validation. The average Dice similarity coefficient (DSC) 
across all folds was 80.51%, with a recall of 75.20% and 
precision of 88.46%. Detailed performance metrics for 
each fold are provided in Table 2.

Following cross-validation, the final model used in 
this study was selected based on the fold that achieved 
the highest DSC on the test set. This model served as 
the basis for future applications and inference. Figure 2 
presents a demonstration of edema segmentation by 
DeepMedic.

Table 1  Characteristics of the 21 meningioma patients in this 
study
Factor Value
Male 4
Median age in years (range) 63 (43–81)
Initial presentation
  Headache 6
  Seizure 1
  Blurred vision 2
  Diplopia 1
  Hearing impairment 2
  Tinnitus 1
  Incidental finding 8
Location
  Falx 3
  Para-sagittal 2
  Convexity 2
  Tentorium 1
  Skull base 10
  Cerebellopontine angle 2
  Intra-ventricle 1
Tumor
volume in
cm3 (range)

7.03 (1.60-15.92)

Table 2  Five-fold cross-validation results of the proposed model in the segmentation of brain edema
Fold Set Scans EV (ml) DSC (%) Recall (%) Precision (%)
1 Validation 25 16.9 ± 20.8 83.59- 76.31 92.88

Test 18 18.1 ± 9.4 81.19 74.01 90.24
2 Validation 25 17.7 ± 12.1 78.81 74.45 89.15

Test 17 14.4 ± 8.1 79.21 73.45 87.77
3 Validation 26 17.7 ± 26.4 75.37 68.19 89.65

Test 17 18.2 ± 13.7 73.82 66.31 88.48
4 Validation 22 17.4 ± 21.4 86.88 84,92 86.94

Test 14 18.4 ± 11.6 84.74 83.96 85.49
5 Validation 24 16.8 ± 20.4 83.84 80.44 91.05

Test 12 16.0 ± 7.9 83.58 78.26 90.31
Mean ± STD Validation 81.23 ± 5.13 74.85 ± 5.10 89.93 ± 2.21

Test 80.51 ± 4.31 75.20 ± 6.51 88.46 ± 1.99
STD: Standard deviation
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Edema progression
All scanning data were tracked at intervals of six 
months over a period of three years. After normalizing 
the volume of brain edema and meningiomas, a pro-
gression chart (Fig. 3) was created to reveal changes in 
brain edema following GKRS. The trend in edema vol-
umes quantified via automated segmentation closely 
matched the manual markings. The observation that 
edema volume peaked after GKRS and plateaued 
after 18 or 24 months is an interesting discovery and 
in good agreement with our predictions. This could 
be valuable in formulating a model for the prediction 
of long-term changes in perifocal brain edema after 
radiosurgery. It should also enable comparisons of 
edema severity among patients.

Discussion
Volumetric analysis of peritumoral edema based on serial 
imaging provides a wealth of objective data for tracking 
intracranial conditions. Yen et al. proposed a semi-quan-
titative grading system for the stratification of post-
SRS ARE: Grade I (mild imaging changes without mass 
effect), Grade II (effacement of the sulci or compression 
of the ventricles), and Grade III (shift in the midline of 
the brain) [8].

Dynamic changes in peritumoral edema volume could 
serve as an indicator of clinical trajectory, guiding clini-
cal decision-making regarding the choice of interven-
tion (e.g., steroid or surgical decompression). There is 
a clear need for methods to identify patients at risk of 
post-SRS ARE. T2w MRI scans provide the clearest indi-
cations of ARE, as evidenced by high-intensity signals 

Fig. 3  Post-GKRS progression of edema (manual versus automated assessment) and the number of scans used for statistical analysis. 

EV stand. = [(EV +T V )]
T V

× 100%, where EV refers to edema volume, and TV refers to tumor volume

 

Fig. 2  Brain edema segmentation results: (a) T2w image, (b) Ground truth segmentation (shown in red), and (c) Automated edema segmentation (shown 
in green)
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denoting edematous change. For decades, edema volume 
has been calculated manually by radiologic specialists; 
however, this process is tedious, time-consuming, and 
subject to variability, particularly in cases of poor lesion 
visualization.

In the current study, we developed a deep learning 
algorithm to automate the segmentation and quantifica-
tion of brain edema following Gamma Knife radiosurgery 
(GKRS) for meningioma.

In experiments, the proposed deep learning model 
achieved high segmentation accuracy, comparable to 
manual delineation by radiologists. Nonetheless, it was 
observed that segmentation failures were more com-
mon in cases involving small edema volumes (< 2  cm³) 
or edema regions with irregular and indistinct margins. 
These patterns suggest that the model may struggle with 
subtle or ill-defined edema boundaries, a known chal-
lenge in medical image segmentation.

Successful predictions were more likely in cases with 
larger, well-demarcated edema, which provided clearer 
intensity contrast in T2-weighted images. Consistent 
image quality across longitudinal scans also appeared to 
enhance model performance, reducing variability in the 
segmentation process. Longitudinal analysis revealed 
that edema volume typically peaks at roughly 13 months 
after GKRS and stabilizes after 24 months.

Accurate volumetric assessment is critical, as cases 
with disproportionately large edema relative to tumor 
volume may require closer monitoring and early inter-
vention. In some cases, the post-radiosurgery edema 
volume reached 600% of the tumor volume (see Fig.  3). 
These cases were associated with significant clinical 
symptoms, such as motor weakness, headache, or cog-
nitive disturbances, necessitating medical interventions 
such as corticosteroid therapy. This aligns with prior 
observations and suggests that automated volumet-
ric assessment could enhance clinical monitoring and 
decision-making.

Physicians commonly encounter patients who are 
susceptible to progressive post-SRS ARE, which often 
requires aggressive intervention [24]. In a retrospective 
review of patients who underwent SRS for meningioma, 
Sheehan et al. reported that the interval to peak tumor 
volume could be used to differentiate between cases of 
transient brain edema (peaking at 18 months) and cases 
of progressive edema (peaking at 36 months) [25]. Those 
findings highlight the importance of longitudinal clinical 
and radiographic follow-up after SRS treatment.

The proposed dep-learning model provides reli-
able segmentation results in a timely manner for 
informed clinical decision-making. Although this study 
focused exclusively on brain edema segmentation, the 
underlying automated segmentation technique could 
potentially be extended to other applications, such 

as meningiomas—the most common primary brain 
tumor—or other tumor-associated edema cases, thereby 
increasing its clinical utility.

Despite promising results, this study was subject to 
various limitations. First, the small sample size and 
the predominance of skull base tumors may limit gen-
eralizability. Second, the model was trained using a 
dataset from a single medical center, which may affect 
performance when applied to data from other institu-
tions. Future work will focus on expanding the dataset, 
validating the model on multi-center data, and integrat-
ing additional imaging modalities to improve robustness.

Conclusions
This study trained two different deep convolution neural 
networks with the aim of separating the segmentation 
process into distinct functions. Our experiment results 
demonstrate the feasibility, reliability, and effectiveness of 
this approach. Automating the process of skull and scalp 
stripping is a crucial step in interpreting medical images. 
Segmenting different lesions in MRI scans can facilitate 
the model-building process, and accurate segmentation 
of brain edema is critical to quantifying the long-term 
effects of radiation therapy on the tissue surrounding 
meningiomas. The fully automated segmentation process 
proposed in this study provides accuracy on par with that 
of experienced professionals.
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