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Introduction
Colorectal cancer (CRC) is one of the most common 
cancers worldwide and has the second-highest mortality 
rate [1]. Early detection and removal of polyps are criti-
cal to preventing the progression to cancer. However, the 
effectiveness of colonoscopy is heavily dependent on the 
experience of the endoscopist. Missed polyp detection 
remains a major clinical concern. Conventional colo-
noscopy still has a relatively high rate of missed detec-
tion for colorectal polyps and adenomas, thereby posing 
a risk of interval cancer (colorectal cancer that occurs 
between a colonoscopy with normal results or after all 
polyps have been removed and the next colonoscopy). 
Studies have shown that up to 20–30% of polyps can be 
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Abstract
Polyp segmentation is crucial in computer-aided diagnosis but remains challenging due to the complexity 
of medical images and anatomical variations. Current state-of-the-art methods struggle with accurate polyp 
segmentation due to the variability in size, shape, and texture. These factors make boundary detection challenging, 
often resulting in incomplete or inaccurate segmentation. To address these challenges, we propose DCATNet, a 
novel deep learning architecture specifically designed for polyp segmentation. DCATNet is a U-shaped network 
that combines ResNetV2-50 as an encoder for capturing local features and a Transformer for modeling long-
range dependencies. It integrates three key components: the Geometry Attention Module (GAM), the Contextual 
Attention Gate (CAG), and the Multi-scale Feature Extraction (MSFE) block. We evaluated DCATNet on five public 
datasets. On Kvasir-SEG and CVC-ClinicDB, the model achieved mean dice scores of 0.9351 and 0.9444, respectively, 
outperforming previous state-of-the-art (SOTA) methods. Cross-validation further demonstrated its superior 
generalization capability. Ablation studies confirmed the effectiveness of each component in DCATNet. Integrating 
GAM, CAG, and MSFE effectively improves feature representation and fusion, leading to precise and reliable 
segmentation results. These findings underscore DCATNet’s potential for clinical application and can be used for a 
wide range of medical image segmentation tasks.
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missed, particularly smaller or flat polyps [2, 3]. Previous 
studies have shown that 58% of interval cancers occur 
due to inadequate initial colonoscopy leading to missed 
lesions, and 89% of interval cancers can be prevented 
[4]. The adenoma detection rate is significantly nega-
tively correlated with the risk of interval cancer and its 
associated mortality [5]. Additionally, missed polyps can 
delay the diagnosis of colorectal cancer, leading to a sig-
nificantly lower survival rate. Research indicates that for 
every 1% increase in polyp detection, the incidence of 
bowel cancer decreases by 3% [6]. Computer-aided diag-
nostic (CAD) systems for automatic polyp segmentation 
can accurately locate and segment polyps. These systems 
improve the efficiency and accuracy of detection while 
reducing errors caused by manual intervention [7]. How-
ever, the diverse shapes and sizes of polyps, along with 
their blurred edges, and polyps can be confused with 
folds, making them difficult to distinguish from normal 
tissue. Addressing these challenges remains difficult for 
existing methods.

In recent years, Convolutional Neural Networks 
(CNNs) have shown strong representation capabili-
ties and achieved great success in medical image seg-
mentation. Among these, the classic U-Net [8] with its 
symmetric encoder-decoder structure has performed 
remarkably well in medical image semantic segmenta-
tion. The encoder extracts multi-level features, while 
skip connections transfer complex and rich features from 
the encoder to the decoder. The decoder then generates 
the final segmentation predictions. Building on this suc-
cess, many new models have been developed for medical 
image and polyp segmentation, such as ResUNet++ [9], 
AttUNet [10], U2-Net [11], M2SNet [12], and U-Net++ 
[13]. These models improve several aspects of U-Net. 
However, the structural limitations of the convolutional 
operator make it hard for pure CNN-based models to 
capture long-range dependencies. These dependen-
cies are crucial for accurately locating lesion areas and 
boundaries.

With great success in Natural Language Processing 
(NLP), Vision Transformer (ViT) [14] has achieved state-
of-the-art performance in computer vision tasks, such as 
image classification, detection, and segmentation. In con-
trast to CNNs, Transformer models global relationships 
between pixels, and can effectively capture long-range 
dependency. However, they lack spatial sensing bias, 
which limits their ability to extract local features, which 
is crucial for analyzing complex medical images. CNNs 
are good at capturing local details, while Transformers 
are effective at extracting global information. To lever-
age both advantages, many researchers have combined 
Transformers with CNNs. TransUNet [15] integrates 
Transformer blocks into the U-Net structure to model 
long-range dependencies. However, TransUNet is not 

proficient in capturing multi-scale features and modeling 
geometric features, which are very important for polyp 
segmentation tasks. Additionally, TransUNet ignores 
the feature semantic differences between various feature 
extraction mechanisms. Unlike TransUNet, the Polyp-
Pvt [16] uses the pyramid Transformers as the encoder, 
it integrates three submodules to collect the semantic 
information from high-level features, capture contextual 
information from low-level features, and fuse the high-
level and low-level features with non-local operations. 
However, it incorporates channel and spatial attention 
which are not good at capturing the geometric features of 
the polyp boundaries. Furthermore, the design of Polyp-
Pvt is not well-suited for multi-scale feature extraction 
and fusion. TransFuse [17] uses a dual-branch architec-
ture with CNN and Transformer in parallel, fusing local 
and global features at the same stage with a BiFusion 
module. DSTransUNet [18] employs a dual-branch Swin 
Transformer encoder to capture multi-scale features and 
model global dependencies. ColonFormer [19] combines 
a lightweight Transformer encoder with a CNN decoder 
to capture global semantic information at multiple scales, 
improving segmentation accuracy. Segformer [20] pro-
cesses features at different scales and depths separately, 
then combines them using a parallel multi-stage feature 
aggregation algorithm. SSFormer [21] uses a Transformer 
as an encoder and CNN as a decoder, enabling progres-
sive prediction. Additionally, several hybrid CNN-Trans-
former models have demonstrated high performance 
[22–24]. However, existing hybrid models often ignore 
the semantic differences in features and polyp geomet-
ric information, which may lead to inaccurate segmenta-
tion results, still leaving much room for improvement in 
polyp and medical segmentation.

One of the major problems is that the semantic fea-
tures extracted from the CNNs often contain noises, 
which prevents the model from improving segmenta-
tion performance. The attention mechanism helps neural 
networks focus on important parts of their inputs. This 
improves the model’s accuracy and efficiency, making 
it a key component in many models. Researchers have 
applied attention mechanisms to enhance polyp segmen-
tation performance. AttUNet [10] introduces attention 
gates to combine high-level and low-level features, focus-
ing on target regions while ignoring irrelevant areas. 
Dual Attention Network (DANet) [25] uses the channel 
attention module and position attention module to pro-
cess features parallelly with channel and spatial attention 
blocks. PraNet [26] uses reverse attention modules to 
refine key polyp regions, improving segmentation accu-
racy. CAFE-Net [27] proposes a cross-attention decoder 
module (CADM) to retain early features and recover fine 
details. These attention mechanisms have been proven 
effective in improving polyp segmentation performance. 
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TANet [28] proposed a triple attention module to 
enhance the segmentation performance, which adap-
tively selects the optimal scale feature from multi-scale 
features.

The ambiguous boundary of some polyps results in 
over- or under-segmentation, so the accuracy of the 
polyp segmentation cannot be guaranteed, and the vari-
ety of the polyps’ sizes and shapes makes it more diffi-
cult to segment from the surroundings. To address these 
challenges, we propose DCATNet, a novel deep-learning 
architecture for polyp segmentation. DCATNet follows a 
U-shaped architecture. It uses ResNetV2-50 [29] as the 
encoder to capture multi-layer local information, while a 
Transformer [14] captures global information and models 
long-range dependencies. Additionally, DCATNet incor-
porates two attention modules, the Geometry Attention 
Module (GAM) and Contextual Attention Gate (CAG) 
module, and a Multi-Scale Feature Extraction and fusion 
model. The GAM module captures spatial and geomet-
ric information, such as shapes and boundaries. The 
CAG module integrates contextual and semantic infor-
mation, reducing the semantic gap between the encoder 
and decoder. The MSFE module extracts and fuses multi-
scale features to better capture polyps of varying sizes. In 
summary, our contributions are as follows:

1.	 We propose a novel deep-learning architecture 
DCATNet for polyp segmentation.

2.	 Geometry Attention Modules (GAM): Building on 
deformable convolution, integrating with residual 
connection, the GAM can be used to dynamically 
learn the spatial and geometric features from 

input. This enables the model to extract more 
discriminative features, which are crucial for 
accurate segmentation.

3.	 To fuse features from the encoder and decoder and 
reduce the semantic gap, we design a Contextual 
Aggregation Gate (CAG) module. It uses contextual 
features to guide low-level features, helping the 
model focus on the important areas of the polyp. 
This enables accurate segmentation of complex 
polyps.

4.	 We employ MSFE as the decoder block to better 
capture and fuse the multi-scale features.

5.	 Extensive experiments on five benchmark 
datasets demonstrate that DCATNet consistently 
outperforms existing state-of-the-art methods across 
multiple metrics. Ablation studies further validate 
the contribution of each component in DCATNet.

Method
Overall network architecture
In this paper, we propose a novel approach for polyp seg-
mentation based on the U-Net framework. The model 
architecture includes a ResNetV2-50-based encoder, a 
Transformer module, and an MSFE decoder based on 
four stages of residual U-block (RSU) modules [11]. The 
model incorporates the Geometry Attention Module 
(GAM) and Contextual Attention Gate (CAG) mod-
ule for feature extraction and fusion. The Transformer 
bridges the encoder and decoder, capturing long-range 
dependencies and contextual information. The overall 
structure of the model is shown in Fig. 1.

Fig. 1  Overall structure of the proposed model. GAM is employed to capture additional spatial features from the decoder, maintaining an equal number 
of input and output channels. CAG aggregates features from both the encoder and decoder to reduce the semantic gap. MSFE serves as the decoder for 
multi-scale feature extraction and fusion. 12 Transformer layers are incorporated in this model
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The encoder consists of five convolutional stages pro-
gressively downsampling the input image to extract 
hierarchical features. The final encoder layer feeds into 
a 12-layer Transformer module. The Transformer’s out-
put initializes the decoder, which upsamples features to 
match the spatial dimensions of corresponding encoder 
layers. Encoder and decoder are connected by a skip-
connection with a GAM module. After that, features 
from the output of GAM, and the upsampled decoder are 
fused with the CAG module, which employs contextual 
attention to integrate features while emphasizing relevant 
information and suppressing noise. The fused features 
and the previous decoder features are passed through 
the MSFE module for multi-scale feature extraction and 
fusion, enriching feature representation. This process 
repeats for each decoder layer, refining feature maps and 
preserving spatial information, ultimately producing a 
segmentation map with precise and detailed delineation 
of target structures. By combining ResNetV2-50 for fea-
ture extraction, Transformers for long-range dependency 
capture, and GAM, CAG, and MSFE modules for effec-
tive feature fusion and refinement, DCATNet achieves 
precise and robust segmentation of complex medical 
images.

Geometry attention module
The variety in geometric shapes and sizes poses chal-
lenges for polyp detection and segmentation, which 
prevents the model’s ability to focus on key details and 
contextual features. This issue is compounded by the 
varying degrees of noise present in the multi-layer fea-
tures extracted by the encoder. To address these chal-
lenges in complex environments, we introduce a GAM 
module to enhance feature extraction capabilities for 
colon polyp segmentation. The detailed structure of 
GAM is shown in Fig.  2. Unlike standard skip connec-
tions, which directly transfer low-level features from the 
encoder to the decoder without any modulation, this 
module based on deformable convolutions can dynami-
cally learn spatial and geometric features. This allows 
the module to focus on critical boundary and shape 

information and is specifically designed for integra-
tion into the skip connections between the encoder and 
decoder stages.

The GAM consists of three distinct branches: a con-
volutional branch with a kernel size of 1 × 1, a convolu-
tional branch with a kernel size of 3 × 3, and a deformable 
convolutional branch. The input features x are simulta-
neously passed through these three branches in parallel. 
The deformable convolutional branch is designed to cap-
ture boundary and geometric features, sigmoid activation 
function is applied to generate an activation map, which 
is then used to re-weight the outputs of the other two 
branches. Finally, the re-weighted features are combined 
using element-wise addition to produce the final output 
features xout. This process is mathematically described 
by the following equations: 

	 x1 = Conv1×1(x)� (1)

	 x2 = DCN(x)� (2)

	 x3 = Conv3×3(x)� (3)

	 x′
1 = x1 ⊗ σ(x2)� (4)

	 x′
3 = x3 ⊗ σ(x2)� (5)

	 xout = Conv1×1(x′
1 ⊕ x′

3)� (6)

Where Conv1×1 stands for the convolutional operation 
with a kernel size of 1 × 1, Conv3×3 stands for the con-
volutional operation with a kernel size of 3 × 3, σ stands 
for sigmoid active function, ⊗ represents Hadamard 
product, ⊕ means element-wise addition, DCN stands 
for the deformable convolutions.

Contextual attention gate
One of the major concerns in polyp segmentation is 
the similarity in texture between polyps and surround-
ing mucosal tissue, making segmentation challeng-
ing. High-level features often contain richer semantic 

Fig. 2  Geometry Attention Module structure. The GAM module consists of three parallel branches: a 1 × 1 convolution, a 3 × 3 convolution, and a de-
formable convolution. The input features are passed through all branches simultaneously. The deformable convolution captures boundary features, and 
a sigmoid activation generates an activation map to re-weight the outputs of the other branches
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information, while low-level features have higher reso-
lution and contains more detailed information, which 
is especially important for segmenting small polyps and 
edges. However, these details often introduce noise, and 
directly fusing low-level with high-level features can lead 
to redundancy, inconsistency, and an increased semantic 
gap between the encoder and decoder. To overcome this 
issue, we introduce the CAG module to fuse the features 
extracted from both the encoder and decoder pathways 
through a context-aware attention mechanism, ensur-
ing the model focuses on the important features of the 
polyp. This module dynamically modulates low-level fea-
tures based on contextual information, improving feature 
alignment and coherence. The CAG module helps the 
model capture and emphasize critical anatomical details. 
It also suppresses irrelevant information and focuses 
on relevant regions, improving the model’s capability to 
delineate complex and varied anatomical structures.

The CAG module processes high-level features xh and 
low-level features xl. It first applies a convolutional layer 
with a kernel size of 1 × 1 to reduce the number of chan-
nels. This results in the outputs x′

h and x′
l. These two 

features are then concatenated, and a sigmoid function 
is applied to generate the weight map σ. The weight map 
α is used to re-weight x′

h and x′
l. Finally, the re-weighted 

features are combined using element-wise addition to 
produce the final output features. The detailed structure 
of CAG is shown in Fig. 3 The module can be defined as 
follows. 

	 x′
h = Conv1×1(xh)� (7)

	 x′
l = Conv1×1(xl)� (8)

	 x′ = Conv1×1([x′
h, x′

l])� (9)

	 α = σ(Conv1×1(x′))� (10)

	 xout = Conv1×1(Conv1×1(α ⊗ x′
h) ⊕ Conv1×1(α ⊗ x′

l))�(11)

where, Conv1×1 means convolution operation with 
kernel size of 1 × 1, [·] is the concatenation operation. 
0 < α < 1 denotes the attention score, σ is the sigmoid 
activation function, ⊗ represents Hadamard product, ⊕ 
means element-wise addition.

Multi-scale features extraction and fusion
Polyps vary in shape and size and often have a texture 
similar to their surroundings, making detection and seg-
mentation challenging. Therefore, it is essential for the 
model to generalize across these variations. To address 
scale variation, capturing multi-scale contextual features 
is crucial. This improves the model’s robustness and 
enhances its contextual understanding. Inspired by the 
U2-Net [11] architecture, we use a modified four-stage 
U-Net block as the decoder to capture multi-scale fea-
tures effectively. Each stage of the U-Block consists of 
standard convolutional layers, batch normalization, and 
ReLU activation functions. Unlike the original U2-Net, 
we omit dilated convolutions, keeping them only in the 
last encoder stage to simplify the structure and focus on 
key feature extraction. The U-Block captures features 
from input maps with varying spatial resolutions. These 
features are obtained from progressively downsampled 
maps, allowing the network to aggregate more abstract 
information. The features are then upsampled, concat-
enated, and convolved to reconstruct high-resolution 
maps, which helps preserve fine details that may be lost 
with large-scale upsampling. Finally, a residual connec-
tion combines local and multi-scale features to enhance 
the final output. This module’s design ensures that the 
network can effectively handle varying feature scales 
and spatial hierarchies, enhancing the decoder’s ability 
to capture multi-scale features. The detailed structure of 
MSFE is shown in Fig. 4.

Loss function
The hybrid loss of Binary cross-entropy Lbce and dice 
loss Ldice is used in the proposed method. As defined in 

Fig. 3  Contextual Attention Gate Module structure. The CAG module fuses high-level and low-level features through a context-aware attention mecha-
nism. High-level and low-level features are first processed with 1 × 1 convolutions, then concatenated. The sigmoid function generates a weight map to 
re-weight the features. The final output is generated by element-wise addition
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Eq. 14, where y denotes the ground truth and ŷ denotes 
the prediction. 

	 Lbce = (y − 1)log(1 − ŷ) − ylogŷ� (12)

	
Ldice = 1 − 2yŷ + 1

y + ŷ + 1 � (13)

	 Ldecoder = Lbce + Ldice� (14)

Experiment
Datasets
We employ five publicly available datasets, commonly 
utilized in biomedical image segmentation, to evalu-
ate our method. The primary reason for selecting these 
diverse imaging modality datasets is to assess the per-
formance and robustness of the proposed method 
comprehensively.

Kvasir-SEG [30] comprising 1,000 images and their 
corresponding ground truth masks. The dataset fea-
tures a wide range of resolutions, from 332 × 487 to 
1920 × 1072 pixels.

CVC-ColonDB [31] includes 380 images, each accom-
panied by polyp masks derived from 13 polyp video 
sequences from 13 patients. The images are uniformly 
sized at a resolution of 574 × 500 pixels. All the data in 
this dataset are used for cross-validation.

CVC-ClinicDB [32] contains 612 frames selected from 
29 various colonoscopy videos. The images have a resolu-
tion of 384 × 288 pixels.

ETIS [33] This dataset contains 192 polyp images, 
along with their annotation. Each image in this dataset 
maintains a consistent resolution of 1225 × 966 pixels.

CVC-300 [34] This dataset is the test set from Endo-
Scene [34] and contains 60 polyp images, each with a size 
of 500 × 574.

Evaluation metrics
In this study, we use four standard evaluation metrics 
to better evaluate the segmentation performance of our 
model. They are commonly used in the medical image 
segmentation field: mean Dice Coefficient (mDice), 
mean Intersection over Union (mIoU), Recall, and Pre-
cision. Dice quantifies the similarity between the ground 
truth and the prediction, and IoU calculates the overlap 
between the ground truth and the prediction image. 

	
Dice = 2×T P

2×T P +F P +F N IoU = T P
T P +F P +F N

Recall = T P
T P +F N Precision = T P

T P +F P
�(15)

Where TP, TN, FN, and FP represent truth positive, truth 
negative, false negative, and false positive respectively.

Implementation details
Pytorch framework [35] is used to implement the model. 
The model is trained with an SGD optimizer with 
momentum of 0.9 and weight decay of base learning rate 
of 1e−4. Learning rate schedule is defined as the formula 
lr = lr0(1 − iter

max_iter )0.9, where iter and max_iter 
denote current iteration step and total iteration steps 
respectively. The experiments are conducted on an 
NVIDIA A100 Tensor Core GPU with 32GB memory. 
We resized all the images to 224 × 224 to reduce com-
putational complexity and improve training efficiency. 
Furthermore, to prevent overfitting and mitigate the 
potential impact of biases in these data, we utilize various 
data augmentation strategies such as random horizontal 
and vertical flipping and random rotation.

Results
In this section, we present the results of the proposed 
method and compare them with other methods, includ-
ing U-Net [8], U-Net++ [13], ResUNet++ [9], HarD-
Net-MSEG [36], TransUNet [15], UTNet [37], U2-Net 
[11], M2SNet [12], PGCF [7], and CoinNet [38]. Among 

Fig. 4  The multi-scale feature extraction module consists of an encoder and decoder, each built with standard convolutional blocks, batch normalization, 
and ReLU activation. The final stage of the encoder uses dilation = 2 to capture global information
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datasets, Kvasir-SEG and CVC-ClinicDB are used to train 
and test the learning ability, while CVC-ColonDB, ETIS, 
and CVC-300 are used to test the generalization ability. 
For a fair comparison, we use the same training-testing 
dataset and reproduce the experimental results with a 
unified training method. The best results in all the tables 
are highlighted in bold.

Learning ability
To evaluate the model’s learning ability, we used 900 
images from Kvasir-SEG and 550 images from CVC-Clin-
icDB for separate training. The remaining images from 
these two datasets were reserved for testing. The perfor-
mance of different segmentation methods on Kvasir-SEG 
and CVC-ClinicDB is summarized in Table  1. On the 
Kvasir-SEG dataset, DCATNet performed better than 
other methods in terms of mDice, mIoU, and Precision. 
Compared to traditional U-Net and its variants, DCAT-
Net showed significant improvement. Specifically, com-
pared with TransUNet [15], DCATNet increased mDice, 
mIoU, and Precision by 1.34%, 2.51%, and 3.73%, respec-
tively, though it had slightly lower Recall. The model’s 
effectiveness was also tested on the CVC-ClinicDB data-
set. DCATNet achieved excellent results across mDice 
and mIoU. Where, its Precision was slightly lower than 
M2SNet [12], and its Recall was lower than PGCF [7]. 
Compared with TransUNet [15], DCATNet improved 
all four metrics. Specifically, mDice, mIoU, Recall, and 
Precision increased by 2.02%, 3.84%, 3.65%, and 0.28%, 
respectively. This analysis shows that DCATNet signifi-
cantly improves segmentation performance. Additionally, 
Figs. 7 and 6 present the prediction distributions on the 
test datasets, further demonstrating the stability of our 
method. Qualitative results are shown in Fig.  5. From 
these, we can see that for the first three flat, small polyps, 
our method outperforms the others. Specifically, in the 
first case, only our method produces the correct results. 

These results indicate that other methods lose details 
and sometimes produce incorrect outputs. In contrast, 
DCATNet predictions are closer to the ground truth, 
reduce false segmentations, and have clear boundaries.

Generalization ability
To study the model’s effectiveness further, we performed 
a cross-validation study using four public datasets. The 
models were trained on Kvasir-SEG and CVC-ClinicDB 
with 1450 images and tested on all five datasets. The 
results are shown in Table 2. Our proposed method out-
performed the other methods and achieved the highest 
scores across all datasets. On the Kvasir-SEG dataset, 
DCATNet reached a mDice score of 0.9266, which was 
higher than TransUNet’s 0.9187. Compared to Tran-
sUNet [15], our method improved the mDice score by 
0.86%, 2.22%, 6.64%, 3.21%, and 4.2% on the five datasets. 
DCATNet also showed strong generalization on unseen 
datasets like ColonDB, ETIS, and CVC-300 datasets. It 
achieved a mDice score of 0.7872 on ColonDB, 0.8511 
on ETIS, and 0.9064 on CVC-300, these results are sig-
nificantly better than TransUNet [15]. While HarDNet-
MSEG [36], M2SNet [12] and PGCF [7] performed well 
on known datasets (Kvasir and ClinicDB), their perfor-
mance on unseen datasets (ColonDB, ETIS and CVC-
300) was relatively weak. These results demonstrate the 
robustness and generalizability of DCATNet across dif-
ferent datasets.

Ablation study
To evaluate the effectiveness of each component in our 
proposed DCATNet, we conducted an ablation study 
on two public datasets, Kvasir-SEG and CVC-ClinicDB. 
The results are shown in Table  3. We used TransUNet 
[15] as the baseline model and added each component 
progressively to assess their contributions. Compared to 
the baseline, our method improved the mDice and mIoU 

Table 1  Quantitative evaluation of segmentation performance was conducted on the Kvasir-SEG and CVC-ClinicDB datasets. The 
model was trained and tested independently on each dataset. Performance was assessed using four metrics: mDice, mIoU, Recall, and 
Precision. Higher values, indicated in bold, represent the best results
Methods Kvasir-SEG CVC-ClinicDB

mDice mIoU Recall Precision mDice mIoU Recall Precision
U-Net [8] 0.7696 0.6254 0.7390 0.8027 0.8221 0.6980 0.7729 0.8779
U-Net++ [13] 0.7806 0.6401 0.7759 0.7853 0.8520 0.7421 0.7964 0.9159
ResUNet++ [9] 0.7575 0.6097 0.7264 0.7914 0.8414 0.7263 0.7833 0.9088
HarDNet [36] 0.8860 0.7954 0.8652 0.9078 0.9081 0.8318 0.8536 0.9701
U2-Net [11] 0.8778 0.7823 0.8612 0.8951 0.9111 0.8368 0.8696 0.9568
M2SNet [12] 0.8872 0.7973 0.8276 0.9561 0.7862 0.6478 0.6514 0.9914
TransUNet [15] 0.9227 0.8566 0.9189 0.9266 0.9257 0.8617 0.8813 0.9748
UTNet [37] 0.8278 0.7063 0.7781 0.8844 0.8466 0.7340 0.7792 0.9266
PGCF [7] 0.9261 0.8623 0.9157 0.9366 0.9378 0.8830 0.9436 0.9321
CoinNet [38] 0.8696 0.8004 0.8751 0.9010 0.8739 0.8022 0.8857 0.8712
DCATNet 0.9351 0.8781 0.9103 0.9612 0.9444 0.8948 0.9135 0.9775
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scores by 1.34%, 2.51%, 2.02%, and 3.84% on the two data-
sets. Adding the GAM module significantly improved 
performance, increasing the scores by 0.99%, 1.84%, 
1.31%, and 2.46%. This shows that the GAM module helps 
the network learn and combine features better at dif-
ferent stages. Furthermore, we conducted an additional 
ablation study by replacing deformable convolutions with 
standard convolutional operations. The results are pre-
sented in the second-to-last row of Table  3. As shown, 
the performance of standard convolutions decreased by 
0.89% in mDice and 1.6% in mIoU for CVC-ClinicDB, 
and by 1.1% in mDice and 2% in mIoU for Kvasir-SEG, 
indicating a clear performance drop. Next, we added 
the CAG module to improve feature fusion between the 
encoder and decoder. This further increased the scores by 
0.63%, 1.17%, 1.21%, and 2.27%, proving its effectiveness 
in refining feature integration. Finally, replacing the stan-
dard convolutional block in the decoder with the MSFE 
structure improved the scores by 0.42%, 0.78%, 1.47%, 
and 2.76%. The MSFE module captures multi-scale fea-
tures and improves spatial dependencies, which greatly 
enhances the overall performance. This study shows that 

every component plays an important role in improving 
DCATNet’s performance.

Model complexity and inference time comparison
Table 4 compares model complexity and efficiency across 
different methods, with parameters (M), floating point 
operations (FLOPs(G)), and the inference time is mea-
sured by frames per second (FPS). Our model has the 
highest parameter count, primarily due to the 12-layer 
Transformer and deformable convolutions in the GAM 
module. In future work, we will focus on optimizing the 
network architecture by reducing computational com-
plexity and improving segmentation performance.

Discussion
Automatic polyp segmentation is critical in the clini-
cal diagnosis. Hybrid models of CNN and Transformer 
have achieved great success in medical image segmen-
tation, as well as in polyp segmentation tasks [15, 22]. 
However, polyp varies with different shapes, sizes, and 
morphology, thus it is always a challenging topic to 
achieve accurate polyp segmentation due to the char-
acteristics of polyp images. In this work, we propose a 

Fig. 5  Visualization of segmentation results comparing our model with ten state-of-the-art methods, including U-Net [8], U-Net++ [13], ResUNet++ [9], 
HarDNet-MSEG [36], TransUNet [15], UTNet [37], U2-Net [11], M2SNet [12], PGCF [7], and CoinNet [38]. The first three cases are from the ETIS dataset, show-
casing our model’s ability to accurately segment flat and small polyps. Notably, in the first case, most models fail or generate incorrect segmentations, 
while our method successfully predicts the correct result. The remaining cases are from the Kvasir-SEG dataset, demonstrating our model’s effectiveness 
in segmenting large polyps and those with irregular boundaries
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novel network architecture, called DCATNet. The pro-
posed model incorporates Geometry Attention Modules 
to better capture shapes and boundary information. The 
Contextual Attention Gate (CAG) modules fuse features 
from the encoder and decoder with attention mecha-
nism to further reduce the semantic gap. The MSEF is 
used to extract and fuse multi-scale features, which is 
based on the U-Block [11]. We validate the effective-
ness of the proposed model on five public datasets with 
different scenarios, achieving better performance than 

most state-of-the-art medical image segmentation net-
works. The segmentation results across all the methods 
are visualized in Fig. 5. Additionally, we conduct ablation 
experiments to verify and explain the effectiveness of the 
proposed modules and network.

The combination of CNN and Transformer can both 
extract local and global information, resulting in better 
segmentation performance, such as TransUNet [15] and 
Polyp-Pvt [16]. However, TransUNet is not proficient in 
capturing multi-scale features and modeling geometric 
features, which are very important for polyp segmenta-
tion tasks. Unlike TransUNet, the Polyp-Pvt uses the 
Pyramid Transformers as encoder, it integrates three 
submodules CFM, CIM, and SAM. The design of Polyp-
Pvt is not well-suited for multi-scale feature extraction 
and fusion. To address these limitations, we introduce 
three key modules, including GAM, CAG, and MSFE. 
Our ablation results showed that the proposed module 
achieved better accuracy.

We conduct two individual experiments on Kvasir-SEG 
and CVC-ClinicDB, as well as cross-validation to verify 
the performance of the proposed model. The results show 
that DCATNet achieves significant improvements over 
previous SOTA methods across different datasets. The 
results of cross validation also show the strong robust-
ness and generalization of our proposed model. Figures 6 
and 7 show the dice score distribution of the test dataset 
by different methods. From that, we can also observe that 
the predictions of our method have a very small interval, 
which indicates the stability of our model.

To further validate the effectiveness of each module, we 
conduct an ablation study. We also perform the two-sam-
ple t-test on each component compared with the baseline 
model, all the results are listed in Table 3. From that, we 
can clearly observe the contribution of each component. 
The inclusion of GAM, CAG, and MSFE modules sig-
nificantly improved the model’s performance compared 

Table 2  Cross-evaluation of mDice scores for various 
segmentation methods across five polyp segmentation datasets: 
Kvasir, CVC-ClinicDB, CVC-ColonDB, ETIS, and CVC-300. The 
model was trained on Kvasir-SEG and CVC-ClinicDB datasets 
with 1450 images, and tested on the others. The bolded values 
represent the highest mDice scores for each dataset
Method Kvasir CVC-ClinicDB CVC-

ColonDB
ETIS CVC-

300
U-Net [8] 0.7615 0.8061 0.4734 0.5468 0.5969
U-Net++ 
[13]

0.8106 0.8769 0.4950 0.4762 0.6485

ResU-
Net++ [9]

0.7581 0.8603 0.4007 0.3701 0.5027

HarDNet 
[36]

0.8892 0.9054 0.6139 0.8228 0.8793

U2-Net 
[11]

0.8819 0.9204 0.6776 0.5543 0.7551

M2SNet 
[12]

0.9045 0.9059 0.6042 0.8111 0.8479

TransUNet 
[15]

0.9187 0.9259 0.7382 0.8246 0.8692

UTNet [37] 0.8844 0.9263 0.6341 0.5458 0.8076
PGCF [7] 0.9216 0.9362 0.7687 0.8249 0.8742
CoinNet 
[38]

0.8861 0.8852 0.6207 0.5782 0.7561

DCATNet 0.9266 0.9465 0.7872 0.8511 0.9064

Table 3  Ablation study results for DCATNet on two benchmark 
polyp segmentation datasets: Kvasir-SEG and CVC-ClinicDB. 
The table evaluates the contribution of each proposed module 
by incrementally adding them to the baseline model. The 
baseline represents a simplified version of DCATNet without 
the specialized modules. The performance is measured using 
mDice and mIoU metrics, where higher values indicate better 
segmentation accuracy. The full DCATNet model, which 
integrates all modules, achieves the best performance on both 
datasets. “-DCN" means GAM with standard convolutional 
operations
Methods Kvasir-SEG CVC-ClinicDB

mDice mIoU mDice mIoU
Baseline 0.9227 0.8566 0.9257 0.8617
Baseline + MSFE 0.9266 0.8633 0.9393 0.8855
Baseline + CAG 0.9285 0.8666 0.9369 0.8813
Baseline + GAM 0.9318 0.8724 0.9378 0.8829
Baseline + GAM-DCN 0.9217 0.8548 0.9294 0.8681
DCATNet 0.9351 0.8781 0.9444 0.8948

Table 4  Comparison of model size and inference time. Param 
is measured in million (M), floating point operations (FLOPs) are 
measured in Giga (G), and the inference time is measured by 
frames per second (FPS)
Method Speed(FPS) Param(M) FLOPs(G)
U-Net [8] 502.94 11.32 14.06
U-Net++ [13] 190.18 13.27 30.29
ResUNet++ [9] 107.56 4.06 12.11
HarDNet [36] 63.05 33.34 4.62
U2-Net [11] 53.13 44.02 28.87
M2SNet [12] 31.95 29.74 6.91
TransUNet [15] 42.68 105.28 24.68
UTNet [37] 42.08 10.01 13.22
PGCF [7] 39.10 27.84 4.34
CoinNet [38] 23.12 44.66 36.1
DCATNet 42.13 108.39 28.91
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Fig. 7  Predicted Dice score distribution for different models on CVC-ClinicDB dataset. The black dots represent the actual predicted dice score for each 
test image

 

Fig. 6  Predicted Dice score distribution for different models on Kvasir-SEG dataset. The black dots represent the actual predicted dice score for each test 
image
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to the baseline. Furthermore, a small ablation study is 
conducted to verify the effectiveness of the deformable 
convolutions. This highlights the importance of adaptive 
feature extraction, context-aware attention mechanisms, 
and multi-scale feature extraction and integration in 
polyp image segmentation tasks.

There are a few limitations to our approach. Firstly, 
due to the 12-layer Transformer and deformable con-
volution operation, the complexity of the DCATNet 
model increases computational overhead and memory 
usage. This can be a hindrance in real-time applications 
or environments with limited computational resources. 
Secondly lacking multi-center medical data may affect 
the effectiveness and generalization of the model. In 
future work, we plan to gather and label images and vid-
eos from several institutions to meet the actual needs 
of the clinical environment. This would provide a more 
robust assessment of its generalizability and applicability. 
Additionally, we plan to investigate the impact of hyper-
parameter optimization on DCATNet’s performance and 
explore strategies for further improving its accuracy and 
efficiency. With continued refinement and validation, 
it has the potential to make substantial contributions to 
clinical practice, improving early detection and treatment 
of colorectal polyps.

Conclusion
In this paper, we propose a novel approach, DCATNet, 
for polyp segmentation. The architecture integrates the 
Geometry Attention Module (GAM), Contextual Atten-
tion Gate (CAG) modules, and Multi-scale Feature 
Extraction (MSFE) module achieving a significant perfor-
mance improvement and outperforming state-of-the-art 
models on the Kvasir-SEG and CVC-ClinicDB datasets. 
The combination of GAM, CAG, and MSFE decoders 
enhances feature representation and fusion, resulting in 
precise and reliable segmentation outcomes. These find-
ings highlight the effectiveness of the proposed three 
modules in advancing medical image analysis.
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