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Abstract
Objective To evaluate the feasibility of radiomics analysis using dual-layer detector spectral CT (DLCT)-derived iodine 
maps for the preoperative prediction of the Ki-67 proliferation index (PI) in pancreatic ductal adenocarcinoma (PDAC).

Materials and methods A total of 168 PDAC patients who underwent DLCT examination were included and 
randomly allocated to the training (n = 118) and validation (n = 50) sets. A clinical model was constructed using 
independent clinicoradiological features identified through multivariate logistic regression analysis in the training set. 
The radiomics signature was generated based on the coefficients of selected features from iodine maps in the arterial 
and portal venous phases of DLCT. Finally, a radiomics-clinical model was developed by integrating the radiomics 
signature and significant clinicoradiological features. The predictive performance of three models was evaluated using 
the Receiver Operating Characteristic (ROC) curve and Decision Curve Analysis. The optimal model was then used to 
develop a nomogram, with goodness-of-fit evaluated through the calibration curve.

Results The radiomics-clinical model integrating radiomics signature, CA19-9, and CT-reported regional lymph 
node status demonstrated excellent performance in predicting Ki-67 PI in PDAC, which showed an area under the 
ROC curve of 0.979 and 0.956 in the training and validation sets, respectively. The radiomics-clinical nomogram 
demonstrated the improved net benefit and exhibited satisfactory consistency.

Conclusions This exploratory study demonstrated the feasibility of using DLCT-derived iodine map-based radiomics 
to predict Ki-67 PI preoperatively in PDAC patients. While preliminary, our findings highlight the potential of functional 
imaging combined with radiomics for personalized treatment planning.

Keywords Dual-layer detector spectral computed tomography, Iodine map, Ki-67, Pancreatic ductal 
adenocarcinoma, Radiomics
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Introduction
Pancreatic ductal adenocarcinoma (PDAC) is a highly 
malignant disease with a 5-year survival rate of <12%. 
It is projected to become the second-leading cause of 
cancer-related deaths by 2030 [1, 2]. Ki-67 is a marker to 
distinguish between proliferating and non-proliferating 
cells [3]. A high Ki-67 proliferation index (PI) has been 
shown to correlate with reduced overall survival and 
recurrence-free survival [4, 5]. Preoperatively identify-
ing PDAC patients with high Ki-67 PI and implementing 
neoadjuvant therapy may result in better clinical benefits 
than performing upfront surgery.

While immunohistochemical (IHC) examination is a 
standard method for assessing Ki-67 PI in PDAC, limita-
tions such as small sample sizes in biopsies, tumor het-
erogeneity, and the operator’s technical proficiency and 
experience can affect the results [6, 7]. In addition, the 
invasive nature of obtaining biopsy and surgical speci-
mens exacerbates these challenges, whereas non-invasive 
imaging techniques such as CT offer a promising alter-
native. If CT imaging modalities demonstrate an asso-
ciation between Ki-67 PI and PDAC characteristics, they 
could serve as indirect prognostic indicators. This could 
help identify PDAC patients who may benefit from more 
aggressive therapeutic interventions.

Radiomics, which enables the extraction of high-
dimensional quantitative features from standard medical 
images, has shown great promise in tumor characteriza-
tion, risk stratification, and prognosis prediction across 
various malignancies [8, 9]. However, most radiomics 
studies in PDAC rely on conventional CT or MRI, with 
limited functional information. The emergence of dual-
layer spectral detector CT (DLCT) allows for material 
decomposition and the generation of iodine maps, pro-
viding functional insights into tumor perfusion and vas-
cularity. DLCT-derived quantitative parameters have 
demonstrated utility in predicting tumor stage, lymph 
node (LN) metastasis, and histological differentiation in 
PDAC [10–12], while DLCT-based radiomics has shown 
potential in evaluating tumor heterogeneity and meta-
static potential [10, 13].

Despite these advancements, few studies have inves-
tigated the potential of DLCT-based radiomics for pre-
dicting Ki-67 PI in PDAC. Our group has previously 
demonstrated the feasibility of using both conventional 
CT radiomics and DLCT-derived parameters for this 
purpose [14–16]. Building on these efforts, we hypoth-
esize that variations in Ki-67 PI reflect microscopic 
changes in tumor perfusion heterogeneity, which can be 
quantitatively captured by radiomics features extracted 
from DLCT-derived iodine maps. The arterial phase (AP) 
and portal venous phase (PVP) provide complemen-
tary information on tumor vascularity, and their com-
bined analysis may enhance the assessment of perfusion 

patterns and tumor aggressiveness. Previous studies have 
confirmed that dual-phase radiomics improves prognos-
tic prediction in PDAC [17–19]. Therefore, this study 
aims to investigate whether radiomics features derived 
from dual-phase DLCT iodine maps can serve as non-
invasive biomarkers for preoperatively predicting Ki-67 
PI in PDAC patients.

Materials and methods
Patients
The study was approved by the institutional review 
board of Chongqing General Hospital, with a waiver of 
written informed consent due to the retrospective study 
design. Between July 2021 and December 2023, patients 
diagnosed with pathologically confirmed PDAC were 
enrolled. As depicted in Fig. 1, patients were eligible for 
the study if they (a) had a histopathologically confirmed 
diagnosis of PDAC; (b) obtained Ki-67 PI through IHC; 
and (c) underwent DLCT scans within 2  weeks at our 
institution before the IHC. Patients were ineligible if they 
(a) had received any relevant treatment (radiotherapy, 
chemotherapy, or chemoradiotherapy) before IHC; (b) 
had nondiagnostic CT image quality; (c) had coexisting 
other primary malignancies; or (d) had partially missing 
DLCT images or clinicopathological data.

Immunohistochemical analysis of Ki-67 PI
Standard IHC examination was performed on specimens 
obtained from fine needle aspiration or surgery to detect 
Ki-67 PI in all 168 patients. Positive cells were identified 
as those with a brown nucleus. Ki-67 PI was assessed by 
calculating the percentage of positive cells among 1,000 
malignant cells at 200 × magnification. In the absence of 
a predetermined optimal threshold, we adopted a thresh-
old of 50%, as suggested by previous research [20]. In our 
study, PDAC was categorized into either the low Ki-67 PI 
group (<50%) or the high Ki-67 PI group (≥50%).

DLCT image acquisition
All patients underwent DLCT examinations at our insti-
tution, with detailed scan protocols provided in the Sup-
plementary Materials.

Evaluation of clinical features and CT imaging signs
Clinical features, including gender, age, body mass index, 
carbohydrate antigen (CA) 19–9, CA125, and carcinoem-
bryonic antigen (CEA), were retrieved for each patient 
from the hospital information system.

All CT imaging signs were independently analyzed 
by two abdominal radiologists (hereinafter referred to 
as Radiologists A and B), with 7 and 11 years of experi-
ence, respectively. They remained blinded to clinical and 
pathological details throughout the evaluation process. 
The final results were determined by consensus between 
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the two radiologists. The candidate CT imaging signs 
of PDAC included CT-reported T stage, CT-reported 
regional LN status, vascular invasion, and extrapan-
creatic perineural invasion. The evaluation criteria for 
each imaging sign are described in the Supplementary 
Materials.

Volumes of interest (VOI) segmentation
The workflow for establishing the key steps of the 
radiomics signature is illustrated in Fig.  2. Radiologist 
A used 3D Slicer (open-source software, version 5.6.2, 
https://www.slicer.org/) to manually delineate tumor 
contours slice by slice on PVP images, then transferred 
the contours from PVP images to AP images. If there 
were contour mismatches due to respiratory motion, 
manual adjustments were made to align the replicas 

with the contours observed in the PVP. Two weeks later, 
30 cases were randomly selected, and segmentation was 
repeated by two radiologists (A and B) to assess intra- 
and interobserver reproducibility. Neither radiologist 
was aware of the histopathological results. Features with 
inter- and intraobserver correlation coefficients (ICCs) 
greater than 0.75 were considered sufficiently consistent 
for further analysis.

Radiomics extraction and selection
All radiomics analyses were implemented with FeAture 
Explorer Pro (FAE, V 0.5.14) on Python (3.7.6) [21]. Both 
AP and PVP DLCT-derived iodine maps were used for 
radiomics feature extraction. Before feature extraction, 
the CT images were resampled to a standardized pixel 
dimension of 1.0 × 1.0 × 1.0  mm³ and normalized to a 

Fig. 1 Flowchart of the study population. PDAC, pancreatic ductal adenocarcinoma; IHC, immunohistochemistry; DLCT, dual-layer detector spectral 
computed tomography; PI, proliferation index
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scale of 1000. Gray-level discretization was applied to the 
original intensities by resampling them into 25 fixed bins. 
The processed images were subjected to various trans-
formations using wavelet, square root, square, logarithm, 
gradient, exponential, Laplacian of Gaussian, and local 
binary pattern (3D) filters. The extracted features in this 
study included shape-based features, first-order statisti-
cal features (e.g., maximum, skewness, mean, median), 
and multiple texture matrices, including the gray-level 
co-occurrence matrix (GLCM), gray-level dependence 
matrix (GLDM), gray-level run length matrix (GLRLM), 
gray-level size zone matrix (GLSZM), and neighboring 
gray tone difference matrix (NGTDM).

First, Z-score normalization was applied to features 
with ICCs greater than 0.75. Second, the Pearson cor-
relation coefficient (PCC) was used to measure the cor-
relation between each pair of features and to reduce 
dimensionality. If the PCC exceeded 0.99, one of the 
redundant features was randomly removed. Finally, fea-
ture selection was conducted using techniques includ-
ing Kruskal-Wallis, Relief, recursive feature elimination 
(RFE), and analysis of variance (ANOVA). All these meth-
ods (KW, Relief, RFE, ANOVA) were applied for feature 
selection. We constructed multiple model pipelines, 
where each pipeline consisted of: (1) a feature selec-
tion method (KW, Relief, RFE, ANOVA), (2) a machine 
learning model (support vector machines (SVM), linear 
discriminant analysis (LDA), logistic regression (LR), 

and lasso logistic regression (LRLasso)) (Table S1), and 
(3) varying numbers of features (from 1 to 15). The per-
formance of each pipeline was evaluated using 10-fold 
cross-validation. The discrimination performance was 
evaluated using the receiver operating characteristic 
(ROC) curve, and the radiomics signature that demon-
strated the best predictive performance in the validation 
set was chosen as the optimal signature (The detailed 
parameter configuration of ML algorithms can be found 
in the Supplementary Materials).

Development of the clinical model and radiomics-clinical 
nomogram
First, the clinicoradiological features (i.e., the clinical fea-
tures and CT imaging signs) between the high and low 
Ki-67 PI groups were compared using the Chi-square 
test, Mann-Whitney U test, and two-sample t test. Then, 
significant factors with p < 0.05 from univariate analy-
sis were included in multivariate logistic regression (LR) 
analysis to determine the independent factors for con-
structing the clinical model in the training set.

The radiomics-clinical nomogram was developed by 
integrating the radiomics signature from dual-phase 
iodine maps and significant clinicoradiological features 
using multivariate LR. The odds ratio (OR) and 95% con-
fidence interval (CI) were calculated for each indepen-
dent predictive factor.

Fig. 2 Workflow of the key steps in conducting radiomics analysis of iodine maps. DCA, decision curve analysis; KW, Kruskal-Wallis; RFE, recursive feature 
elimination; ANOVA, analysis of variance; SVM, support vector machines; LDA, linear discriminant analysis; LR, logistic regression; LRLasso, lasso logistic re-
gression; ROC, receiver operating characteristic; VOI, volumes of interest; LN, lymph node; CA19-9, carbohydrate antigen 19–9; AUC, area under the curve
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Assessment of the performance of the different models
The area under the curve (AUC) with 95% CI, sensitivity, 
and specificity was used to assess the performance of the 
three models (clinical model, radiomics signature, and 
radiomics-clinical nomogram) in both the training and 
validation sets. The DeLong test was applied to compare 
the AUCs of the three models. Subsequently, a nomo-
gram was constructed using the optimal model. Decision 
curve analysis (DCA) was conducted to evaluate the clin-
ical usefulness of the three models by quantifying their 
net benefits across different threshold probabilities in the 
validation set. Finally, the calibration curve and Hosmer-
Lemeshow test were used to evaluate the calibration 
performance of the nomogram in both the training and 
validation sets.

Statistical analysis
All statistical analyses and calculations were performed 
using R software (http://www.R-project.org), SPSS  ( v e r 
s i o n 26.0, IBM), and MedCalc (version 18.2.1, MedCalc 
Software). The Shapiro-Wilk test was used to assess data 

normality. Normally distributed data were presented as 
mean ± standard deviation (SD), while non-normally dis-
tributed data were expressed as median (25th, 75th per-
centiles). Categorical variables were analyzed using the 
Chi-square test, and continuous variables were assessed 
using either the Mann-Whitney U test or the two-sample 
t test. Statistical significance was defined as a two-sided 
p-value < 0.05.

Results
Patient characteristics
A total of 168 patients were analyzed, with 118 in the 
training set and 50 in the validation set. The rates of low 
and high Ki-67 were 70.3% (83/118) and 29.7% (35/118) 
in the training set and 70.0% (35/50) and 30.0% (15/50) in 
the validation set, respectively. There were no significant 
differences between the training and validation sets in 
any clinicoradiological features (Table 1; all p > 0.05).

Clinical model development
Table 2 presents the results of the univariate and multi-
variate LR analyses between the high and low Ki-67 PI 
groups in the training set. The univariate analysis showed 
significant associations of CA19-9, CT-reported regional 
LN status, and extrapancreatic perineural invasion with 
Ki-67 PI (p < 0.05). Furthermore, stepwise multivariate 
LR analysis identified CA19-9 and CT-reported regional 
LN status as independent predictors of Ki-67 PI (Table 3). 
Consequently, a clinical model was developed based on 
these two predictors.

Feature selection and radiomics signature building
Among the 2,622 dual-phase radiomics features, 1,982 
stable features (974 from AP and 1,008 from PVP) with 
an ICC greater than 0.75 were retained for further anal-
ysis (Fig. S1). In constructing the radiomics signature, a 
pipeline utilizing Z-score normalization, PCC dimension 
reduction, RFE feature selection, and LR classifier iden-
tified six features: two first-order statistical features and 
four textural features. These features were included in the 
radiomics signature, which demonstrated optimal pre-
dictive performance. The composition and contribution 
of these features are illustrated in Fig. 3.

Following the multivariate LR analysis, we found that 
the radiomics signature (OR = 2.975; 95% CI: 1.724–
5.134; p < 0.001), CA19-9 (OR = 7.734; 95% CI: 1.053–
56.793; p = 0.044), and CT-reported regional LN status 
(OR = 11.461; 95% CI: 1.992–65.948; p = 0.006) were inde-
pendent predictors for Ki-67 PI (p < 0.05) in the training 
set (Table 3). All these predictors were incorporated into 
the radiomics-clinical model and visualized as a nomo-
gram, as shown in Fig. 4.

Table 1 Clinicoradiological features of PDAC patients
Features Training set 

(n = 118)
Validation set 
(n = 50)

p

Age, y 61.5(55,70) 63.5(53,68.25) 0.647
BMI 22.15(20.28,24.31) 21.87(20.80,24.72) 0.690
Gender, n (%) 0.926
 Male 67(56.8) 28(56.0)
 Female 51(43.2) 22(44.0)
CA19-9, n (%) 0.088
 Normal 47(39.8) 13(26.0)
 Elevated 71(60.2) 37(74.0)
CEA, n (%) 0.104
 Normal 90(76.3) 32(64.0)
 Elevated 28(23.7) 18(36.0)
CA125, n (%) 0.539
 Normal 79(66.9) 31(62.0)
 Elevated 39(33.1) 19(38.0)
CT-reported T stage 0.613
 T1-2 45(38.1) 17(34.0)
 T3-4 73(61.9) 33(66.0)
CT-reported regional 
LN status

0.729

 Negative 65(55.1) 29(58.0)
 Positive 53(44.9) 21(42.0)
vascular invasion 0.286
 Negative 53(44.9) 18(36.0)
 Positive 65(55.1) 32(64.0)
extrapancreatic peri-
neural invasion

0172

 Negative 41(34.7) 12(24.0)
 Positive 77(65.3) 38(76.0)
CT, computed tomography; PDAC, pancreatic ductal adenocarcinoma; BMI, 
body mass index; CA125, carbohydrate antigen 125; CA19-9, carbohydrate 
antigen 19–9; CEA, carcinoembryonic antigen; LN lymph node

http://www.R-project.org
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Comparison of the predictive performance among models
The predictive performance of the three models is sum-
marized in Table  4, including AUC, sensitivity, specific-
ity, and DeLong test results. ROC analyses conducted 

to distinguish high and low Ki-67 PI in both the train-
ing and validation sets for the three models are shown in 
Fig. 5. The clinical model exhibited good diagnostic effec-
tiveness in predicting Ki-67 PI among PDAC patients, 
achieving an AUC of 0.805 (95% CI: 0.724–0.886) in the 
training set, while demonstrating moderate effective-
ness with an AUC of 0.720 (95% CI: 0.574–0.866) in 
the validation set. Both the radiomics signature and the 
radiomics-clinical model demonstrated excellent diag-
nostic effectiveness in predicting Ki-67 PI in PDAC, with 
AUCs of 0.957 (95% CI: 0.926–0.988) and 0.979 (95% 
CI: 0.961–0.998) in the training set, respectively. In the 
validation set, the radiomics signature and the radiomics-
clinical model achieved AUCs of 0.901 (95% CI: 0.817–
0.985) and 0.956 (95% CI: 0.904–1.000), respectively. The 
DeLong test indicated a significant improvement in the 
AUC of the radiomics-clinical model compared to the 
clinical model in both the training set (p < 0.001) and the 
validation set (p = 0.002). Additionally, a significant dif-
ference was observed between the radiomics signature 
and the clinical model in the training set (p < 0.001), but 
this difference was not statistically significant in the vali-
dation set (p = 0.057). In terms of clinical benefit, DCA 
demonstrated that the radiomics-clinical model provided 
a greater net benefit across a threshold probability range 
of 0.05–0.95, compared to both the clinical model and 
radiomics signature, indicating superior clinical utility 
(Fig. 6). The calibration curves for the radiomics-clinical 
model demonstrated strong alignment between pre-
dicted and observed outcomes in both sets (Fig. 7). The 
Hosmer-Lemeshow test showed no significant differ-
ence (p = 0.952 for the training set and p = 0.728 for the 
validation set), indicating that the nomogram was well-
calibrated without significant deviation from the ideal fit.

Discussion
In this retrospective study, we built upon our team’s prior 
investigations to develop a radiomics signature based on 
dual-phase DLCT-derived iodine maps for predicting 
Ki-67 PI in PDAC patients. Furthermore, the radiomics-
clinical model, integrating radiomics signature and 
independent clinicoradiological features, demonstrated 
superior predictive performance compared to either the 
radiomics signature or clinical model alone. This com-
bined approach offers an effective and non-invasive 
method for the preoperative prediction of Ki-67 PI in 
PDAC patients.

The present study builds upon our previous work inves-
tigating imaging-based prediction of Ki-67 PI in PDAC. 
Li et al. demonstrated the feasibility of conventional CT 
radiomics, while subsequent studies explored the pre-
dictive value of DLCT-derived quantitative parameters 
[14–16]. Extending these efforts, the current research 
integrates dual-phase (arterial and portal venous) iodine 

Table 2 Univariate analysis to differentiate between high and 
low Ki-67 PI groups in the training set
Variables High Ki-67 PI 

group (Ki-67 
PI ≥ 50%, n = 35)

Low Ki-67 PI 
group (Ki-67 
PI < 50%, n = 83)

F/Z/c² p

Age, y 65(58,70) 22.49(21.33,24.31) −1.182 0.237
BMI 22.49(21.33,24.31) 21.87(20.80,24.72) −0.884 0.377
Gender, n 
(%)

3.619 0.391

 Male 67(56.8) 28(56.0)
 Female 51(43.2) 22(44.0)
CA19-9, n 
(%)

84.828 <0.001

 Normal 47(39.8) 13(26.0)
 Elevated 71(60.2) 37(74.0)
CEA, n (%) 5.503 0.205
 Normal 90(76.3) 32(64.0)
 Elevated 28(23.7) 18(36.0)
CA125, n (%) 1.268 0.543
 Normal 79(66.9) 31(62.0)
 Elevated 39(33.1) 19(38.0)
CT-reported 
T stage

2.795 0.275

 T1-2 45(38.1) 17(34.0)
 T3-4 73(61.9) 33(66.0)
CT-reported 
regional LN 
status
 Negative 65(55.1) 29(58.0) 3.990 <0.001
 Positive 53(44.9) 21(42.0)
vascular 
invasion

12.993 0.056

 Negative 53(44.9) 18(36.0)
 Positive 65(55.1) 32(64.0)
extrapan-
creatic 
perineural 
invasion

28.635 0.029

 Negative 41(34.7) 12(24.0)
 Positive 77(65.3) 38(76.0)
Radiomics 
signature

3.75 ± 2.79 −3.67 ± 4.66 3.656 <0.001

BMI, body mass index; PI, proliferation index; CA125, carbohydrate antigen 125; 
CA19-9, carbohydrate antigen 19–9; CEA, carcinoembryonic antigen; LN lymph 
node

Table 3 Multivariate logistic regression analysis in the training 
set
Variables Odds ratio 95%CI p
Radiomics signature 2.975 1.724–5.134 <0.001
CT-reported regional LN status 11.461 1.992–65.948 0.006
CA19-9 7.734 1.053–56.793 0.044
CI, confidence interval; CA19-9, carbohydrate antigen 19–9; LN lymph node
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maps derived from DLCT with advanced radiomics anal-
ysis to more comprehensively characterize tumor hetero-
geneity. Compared with conventional CT, DLCT iodine 
maps provide functional insights by separating iodine 
content from tissue attenuation, enabling a more accurate 

evaluation of tumor vascularity and perfusion [14, 22]. 
Dual-phase imaging captures complementary perfusion 
features—arterial phase reflects early vascularization, 
while portal venous phase offers additional information 
on tissue perfusion—thereby enhancing the assessment 

Table 4 Predictive performance of the clinical model, radiomics signature, and radiomics-clinical models
Models Training set Validation set

AUC (95%CI) SEN SPE DeLong AUC (95%CI) SEN SPE DeLong
Clinical model 0.805 (0.724–0.886) 0.657 0.855 <0.001# 0.720 (0.574–0.866) 0.600 0.829 0.057#
Radiomics signature 0.957 (0.926–0.988) 0.971 0.771 0.032## 0.901 (0.817–0.985) 0.800 0.800 0.038##
Radiomics-clinical model 0.979 (0.961–0.998) 0.971 0.880 < 0.001### 0.956 (0.904–1.000) 0.933 0.857 0.002###
AUC, area under the receiver operating characteristic curve; CI, confidence interval; SEN, sensitivity; SPE specificity

#Clinical model versus Radiomics signature

##Radiomics signature versus Radiomics-clinical model

###Radiomics-clinical model versus Clinical model

Fig. 4 Radiomics-clinical nomogram developed in the training set, incorporating the radiomics signature, CA19-9, and CT-reported regional LN status. 
CA19-9, carbohydrate antigen 19–9; LN, lymph node

 

Fig. 3 Radiomics feature selection results. AP, arterial phase; PVP, portal venous phase; GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run 
length matrix; GLSZM, gray-level size zone matrix
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Fig. 6 DCA results for the clinical model, radiomics signature, and radiomics-clinical models (a, b). DCA, decision curve analysis

 

Fig. 5 ROC curves depicting the predictive performance of the clinical model, radiomics signature, and radiomics-clinical models for Ki-67 PI in PDAC (a, 
b). AUC, area under the curve; PI, proliferation index; PDAC, pancreatic ductal adenocarcinoma; ROC, receiver operating characteristic

 

Fig. 7 Calibration curves of the radiomics-clinical nomogram (a, b)
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of tumor aggressiveness. Furthermore, unlike previous 
DLCT-based studies that did not incorporate clinical 
variables, our model integrates key clinicoradiological 
features such as CA19-9 and CT-reported regional LN 
status [15, 16], thereby improving the predictive perfor-
mance and clinical applicability of the model.

Building on our prior findings, we further validated 
CA19-9 and CT-reported regional LN status as indepen-
dent predictors of Ki-67 PI through multivariate analy-
sis [14]. CA19-9 is a recognized prognostic marker in 
PDAC, with elevated levels linked to poor differentiation 
and outcomes [23, 24]. Ki-67 PI reflects tumor prolifera-
tive activity, with higher values indicating greater aggres-
siveness and worse prognosis [5, 25]. In this study, the 
high Ki-67 PI group showed significantly higher CA19-9 
levels and CT-reported regional LN positivity (72.0% vs. 
32.2%), consistent with reports associating high Ki-67 
expression with increased regional LN metastasis [26, 
27]. The strong correlation between CT-reported and 
pathological LN status further supports the reliability 
of imaging for LN assessment [4, 13, 28]. This associa-
tion likely reflects the role of Ki-67 in tumor prolifera-
tion and lymphatic invasion, indicating that CT-reported 
regional LN status may serve as a non-invasive surrogate 
for Ki-67 PI. The clinical model incorporating CA19-9 
and LN status achieved good performance in the train-
ing set (AUC = 0.805), but only moderate performance 
in the validation set (AUC = 0.720), suggesting that com-
bining tumor markers and morphological features alone 
may be insufficient, and that integrating perfusion or 
intratumoral characteristics could improve predictive 
performance.

DLCT enhances CT diagnostics by enabling func-
tional imaging through iodine maps, which accurately 
depict lesion vascularity and improve contrast between 
hypoattenuating tumors and normal parenchyma [29]. 
Radiomics extracts high-throughput quantitative fea-
tures that reflect intratumoral perfusion heterogeneity, 
leveraging DLCT’s functional information [30, 31]. Prior 
studies have applied DLCT-based radiomics to predict 
LN metastasis, tumor stage, and differentiation in PDAC 
[10–13], highlighting its clinical potential. Unlike these 
studies, our work focuses on Ki-67 PI, a key marker of 
tumor proliferation. We developed a radiomics signature 
based on dual-phase iodine maps, achieving excellent 
performance in both training (AUC = 0.957) and valida-
tion sets (AUC = 0.901). Among six selected features, five 
were from the PVP and one from the AP, aligning with 
findings that PVP images better capture PDAC biology 
and enhance tumor delineation [32–34]. Texture features 
predominated, consistent with prior studies [14], likely 
due to their ability to quantify spatial heterogeneity. Spe-
cifically, GLCM captures local texture variation, GLRLM 
reflects fine texture continuity, and GLSZM characterizes 

larger structural patterns [35–37]. These features provide 
a comprehensive view of tumor heterogeneity relevant to 
proliferation and prognosis. Notably, first-order features, 
while fewer, showed higher importance, offering direct 
intensity-based information with strong reproducibility 
across imaging conditions [38–40]. The integration of 
texture and first-order features balances biological insight 
and robustness, supporting clinical applicability.

To enhance predictive performance, the radiomics 
signature was combined with CA19-9 and CT-reported 
regional LN status to construct a radiomics-clinical 
model, which achieved the highest AUCs in both train-
ing (0.979) and validation (0.956) sets, outperforming 
the radiomics and clinical models alone. The improve-
ment over the clinical model was statistically significant 
(p < 0.001 and p = 0.002, respectively). This enhancement 
likely stems from the model’s ability to capture tumor 
aggressiveness and heterogeneity via iodine map-derived 
features. DCA demonstrated superior net benefit of the 
radiomics-clinical model, supporting its clinical util-
ity. Calibration curves showed good agreement between 
predicted and observed probabilities, with a nonsignifi-
cant Hosmer-Lemeshow test (p = 0.384), indicating sat-
isfactory model fit. These results suggest that integrating 
radiomics and clinical features offers complementary 
value and significantly improves the prediction of Ki-67 
PI in PDAC.

Despite promising results, this single-center study 
should be considered preliminary. As one of the few 
studies focusing on preoperative Ki-67 prediction in 
PDAC, it provides a foundation for future multicenter 
validation. Expanding to multiple institutions and assess-
ing radiomics feature stability across different scanners, 
acquisition protocols, and reconstruction settings will be 
key to confirming model reproducibility and generaliz-
ability. Additionally, we are actively working to expand 
collaborations with other hospitals to promote Ki-67 
IHC testing and DLCT scanning, which are essential for 
validating our approach. These efforts will facilitate the 
broader application of our model and support its pro-
spective validation in independent cohorts, ensuring its 
clinical reliability and practical utility. Thirdly, future 
work may explore automated segmentation using deep 
learning combined with expert refinement to enhance 
reproducibility while maintaining clinical interpretability.

Conclusion
In conclusion, the radiomics-clinical model which inte-
grates the radiomics signature from DLCT-derived 
iodine maps with clinicoradiological features exhibited 
excellent performance in preoperatively predicting Ki-67 
PI in PDAC patients. This may help clinicians identify 
PDAC patients with high Ki-67 PI and facilitate per-
sonalized treatment strategies. However, it is important 
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to note that these findings are preliminary and require 
external validation through multi-center studies to con-
firm their applicability and robustness in clinical practice.
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