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Abstract
Objective To preoperatively predict microvascular invasion (MVI) and relapse-free survival (RFS) in hepatocellular 
carcinoma (HCC) ≥3 cm by constructing and externally validating a combined radiomics model using preoperative 
enhanced CT images.

Methods This retrospective study recruited adults who underwent surgical resection between September 2016 
and August 2020 in our hospital with pathologic confirmation of HCC ≥3 cm and MVI status. For external validation, 
adults who underwent surgical resection between September 2020 and August 2021 in our hospital were included. 
Histopathology was the reference standard. The HCC area was segmented on the arterial and portal venous phase 
CT images to develop a CT radiomics model. A combined model was developed using selected radiomics features, 
demographic information, laboratory index and radiological features. Analysis of variance and support vector 
machine were used as features selector and classifier. Receiver operating characteristic (ROC) curves, calibration 
curves and decision curve analysis (DCA) were used to evaluate models’ performance. The Kaplan-Meier method and 
log-rank test were used to evaluate the predictive value for RFS.

Results A total of 202 patients were finally enrolled (median age, 59 years, 173 male). Thirteen and 24 features were 
selected for the CT radiomics model and the combined model, and the area under the ROC curves (AUC) were 0.752 
(95 %CI 0.615, 0.889) and 0.890 (95 %CI 0.794, 0.985) in the external validation set, respectively. Calibration curves and 
DCA showed a higher net clinical benefit of the combined model. The high-risk group (P < 0.001) was an independent 
predictor for RFS.
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Introduction
Hepatocellular carcinoma (HCC) is one of the leading 
cancers with rising prevalence, high mortality and poor 
clinical outcome all over the world [1, 2]. Microvascular 
invasion (MVI), which refers to the presence of clusters of 
cancer cells in blood vessels with endothelial cell linings, 
commonly most pronounced in the branches of the peri-
neoplastic portal vein (including the intra-capsular blood 
vessels) under microscope [3], is an independent risk fac-
tor for poor prognosis in patients with HCC [4]. Differ-
ent treatment strategies are recommended for different 
MVI status [5]. Moreover, tumor size ≥3 cm is indepen-
dently associated with increased HCC recurrence risk 
[6]. Therefore, accurate preoperative prediction of MVI 
in HCC ≥3 cm is of great importance for treatment and 
prognosis. Although there are a large number of studies 
paying close attention to the early recurrence of HCC, 
how much difference of relapse-free survival (RFS) 
between MVI (+) and MVI (−) in HCC ≥3 cm is not clear.

Dynamic contrast-enhanced CT is one of the first-
choice imaging methods for clinical diagnosing and 
staging of HCC [3]. Several studies have identified sev-
eral imaging features associated with MVI, such as 
irregular shape, infiltrative border, incomplete capsule, 
peritumoral enhancement, internal arteries, absence of 
hypodense halo and tumor-liver difference [7–11]. Also, 
radiomics, which refers to the high-throughput extrac-
tion of quantitative features from images that results in 
the conversion of images into mineable data and the sub-
sequent analysis of these data for decision support [12], 
has been attempted to predict MVI based on preopera-
tive images [13].

Machine learning (ML) is a branch of data science that 
enables computers to learn from existing “training” data 
without explicit programming, which can be used at any 
step of radiomics [14]. Support vector machines (SVM) 
is a classifier which maps nonlinear data into a higher 
dimensional space and generates a hyperplane that sepa-
rates the classes. Its high generalization ability makes it to 
be used in many fields of classification successfully [15].

We aimed to preoperatively predict MVI, intrahepatic 
recurrence-free survival and extrahepatic metastasis-free 
survival in HCC ≥3  cm by constructing and externally 
validating combined radiomics model using preoperative 
enhanced CT images.

Materials and methods
Patients
Ethical approval was obtained for this retrospective study 
from Institutional Review Board of Zhongshan Hospital 

of Xiamen University [2022(212)] and the need to obtain 
informed consent was waived. The study has been per-
formed in accordance with the Declaration of Helsinki. 
For model development, 240 consecutive patients who 
underwent surgical resection between September 2016 
and August 2020 in our hospital with pathologic con-
firmation of hepatocellular carcinoma and MVI sta-
tus were included in this study. The exclusion criteria 
were as follows: (1) Underwent other treatments before 
enhanced CT (n = 31); (2) lack of enhanced CT within 
one month before surgery (n = 18); and (3) with tumor 
diameter <3 cm (n = 38). Patients were randomly divided 
into two separate cohorts at a ratio of 7:3. Thus the train-
ing set included 108 patients and the test set included 45 
patients. For temporal external validation, 93 consecutive 
patients who underwent surgical resection between Sep-
tember 2020 and August 2021 in our hospital with patho-
logic confirmation of hepatocellular carcinoma and MVI 
status were included. The exclusion criteria were as fol-
lows: (1) Underwent other treatments before enhanced 
CT (n = 22); (2) lack of enhanced CT within one month 
before surgery (n = 7); and (3) with tumor diameter <3 cm 
(n = 15). Thus, a total of 202 patients were finally enrolled 
(173 men and 29 women; median age, 59 years) (Fig. 1). 
The demographic information, laboratory tests, histo-
pathological diagnosis and follow-up information were 
obtained from the electronic medical records, includ-
ing age, sex, α-fetoprotein (AFP), prothrombin time 
(PT), alanine transaminase (ALT), aspartate transami-
nase (AST) and hepatitis B virus DNA (HBV DNA). CT 
images were retrieved from the picture archiving and 
communication system.

CT protocols
The CT was performed using Philips Iqon-Spectral CT 
(Netherland), Philips Ingenuity CT (Netherland), GE 
Lightspeed VCT (the United States), GE Revolution (the 
United States), Siemens Somatom Definition Flash (Ger-
many) or Siemens Definition AS (Germany). The follow-
ing CT scanning parameters were used: 120 kV, 100–300 
effective mA, 2.5–5  mm thickness. The non-enhanced 
phase images were obtained before administration of 
the contrast agent. Enhanced imaging was performed 
after administration of 90–100 ml of non-ionic contrast 
medium at a rate of 3–3.5  ml/s. Arterial phase, portal 
venous and equilibrium phase images were obtained 30, 
65 and 120 s after administration of the contrast material, 
respectively.

Conclusions The combined model showed high accuracy for preoperatively predicting MVI and RFS in HCC ≥3 cm.

Keywords Microvascular invasion, Hepatocellular carcinoma, Radiomics, CT, Relapse-free survival
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Radiological features
The radiological features included diameter, shape, bor-
der, capsule, necrosis, peritumoral enhancement, internal 
arteries, hypodense halo and tumor-liver difference [16]. 
“Internal arteries” is the persistence of discrete arterial 
enhancement within the tumor in the venous phase of 
imaging [16]. “Hypodense halo” is a rim of hypoattenu-
ation partially or completely circumscribing the tumor 
[13]. “Tumor-liver difference” is a focal or circumferen-
tial sharp transition in attenuation between the tumor 
and the adjacent liver parenchyma in the absence of a 
hypodense halo [11]. Two radiologists, with 4 and 6 years 
of experience respectively, who were blinded to the clini-
copathologic data, evaluated the radiological features. 
And a senior radiologist with 20  years of experience 
confirmed the radiological features. The inter-observer 
reproducibility was measured in the first 100 patients by 
two radiologists.

Pathological diagnosis
Histopathology is the reference standard for MVI diag-
nosis. According to the Evidence-based Practice Guide-
lines for the Standardized Pathological Diagnosis of 
Primary Liver Cancer in China (2015 Update) [17], M0 
was defined as no MVI; M1 was defined as MVI of <5 and 
at ≤1 cm away from the adjacent liver tissues; and M2 was 
defined as MVI of >5 or at >1 cm away from the adjacent 
liver tissues. Patients with M0 were grouped into MVI 
(−) group and patients with M1 and M2 were grouped 
into MVI (+) group.

Follow-up
Four patients were excluded due to lack of follow-ups 
for the follow-up cohort. Patients underwent routine 
follow-up with dynamic CT or MRI every 2–3  months 
within 6  months after treatment and every 3–6  months 
after 6 months. RFS was defined as the interval between 
the date of surgery and the detected recurrence or last 

Fig. 1 Flowchart for patient enrolment
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follow-up [18]. Patients were censored at the time of the 
last follow-up, or the study end date of November 15, 
2023.

Image segmentation and radiomics feature extraction
ITK-SNAP software (version 3.6.0;  h t t p s : / / w w w . i t k s n a p 
. o r g     ) was used for the 3D segmentation [19]. Two radi-
ologists, with 4 and 6  years of experience respectively, 
who were blinded to the clinicopathologic data, manually 
delineated the tumors volume of interest (VOI) on the 
arterial phase and portal venous phase CT images. And 
the segmentations were confirmed by a senior radiologist 
with 20  years of experience, and were revised, if neces-
sary (Fig.  2). The intraclass correlation coefficient was 
used to determine the inter- and intra- observer repro-
ducibility using the first 30 lesions. Radiomics features 
were extracted from the VOI of arterial phase and por-
tal venous phase CT images using FeAture Explorer [20]. 
Features were standardized using Z-score normalization 
and were reduced using Pearson correlation coefficient 
value.

Model development, validation and evaluation
We up-sampled by repeating random cases to remove the 
unbalance of the groups. The optimal radiomics features 
were chosen using the analysis of variance (ANOVA), 
and SVM was used as the classifier [20]. A radiomics 

model was established using radiomics features, and a 
combined model was established using demographic 
information, laboratory index and radiological features 
and ANOVA-SVM-selected radiomics features. Cross 
validation with 5-fold on the training set was used, and 
an external validation set was used for external valida-
tion of model performance. Patients were classified into 
a high-risk group (rad-score ≥ 0.5) and a low-risk group 
(rad-score < 0.5) of MVI. Receiver operating character-
istic (ROC) curve analysis, calibration curves and deci-
sion curve analysis (DCA) were used for evaluating the 
performance of each model. And the area under the 
ROC curve (AUC), accuracy, sensitivity, specificity, posi-
tive predictive value (PPV) and negative predictive value 
(NPV) were calculated.

Statistical analysis
The statistical analyses were performed with SPSS ver-
sion 26.0 (IBM Corp., Armonk, NY, USA) and STATA 
version 15. Continuous variables that do not follow a 
normal distribution were summarized as median (inter-
quartile range), and categorical variables were summa-
rized using counts (percentage). Mann-Whitney U tests 
and chi-square tests were used as appropriate for univari-
ate analyses. The DeLong test was used to compare the 
ROC of the two models. The Kaplan-Meier method was 
used to generate survival curves, and the log-rank test 

Fig. 2 CT images and segmentations in patients with hepatocellular carcinoma. Volume of interest (VOI) of arterial phase (A) and portal venous phase 
(B) in hepatocellular carcinoma (HCC) without MVI, and the corresponding volume-rendering images. VOI of arterial phase (C) and portal venous phase 
(D) in HCC with MVI, and the corresponding volume-rendering images
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and Breslow test were performed. A two-sided p < 0.05 
was considered statistically significant.

Results
Patient characteristics
The characteristics of the patients in the training, the 
test set and the external validation set are summarised 
in Table 1. The rates of MVI (+) were 38.0 % (41 of 108), 
37.8 % (17 of 45) and 65.3 % (32 of 49) in the training, the 
test and the external validation set, respectively. There 
were no significant differences in age, sex, diameter, AFP, 
PT, ALT or AST between the sets (p = 0.363–0.822).

Development of the CT radiomics model
From the CT images, 1888 radiomics features were ini-
tially extracted. Thirteen radiomics features were finally 
selected as follows: A_original_gldm_GrayLevelNonUni-
formity, A_original_glszm_GrayLevelNonUniformity, 
A_square_glszm_LargeAreaLowGrayLevelEmphasis, A_
wavelet-HHL_glszm_GrayLevelNonUniformity, A_wavelet-HHL_glszm_SizeZoneNon-
Uniformity, A_wavelet-HHL_glszm_SmallAreaEmphasis, 
A_wavelet-HHL_glszm_SmallAreaLowGrayLevelEm-
phasis, A_wavelet-LLL_gldm_GrayLevelNonUniformity, 
V_original_gldm_GrayLevelNonUniformity,V_original_
glrlm_GrayLevelNonUniformity, V_wavelet-HHL_glcm_
ClusterShade, V_wavelet-LLH_gldm_DependenceNonUniformity, 
V_wavelet-LLL_gldm_GrayLevelNonUniformity. The 
rad-score was related to MVI (+) in the training set 
(p < 0.001) and the external validation set (p = 0.043). 
The AUCs of the training set, the test set and the exter-
nal validation set were 0.780 (95 %CI 0.687, 0.871), 0.761 
(95 %CI 0.600, 0.921) and 0.752 (95 %CI 0.615, 0.889), 
respectively.

Development of the combined model
The inter-observer reproducibility was moderate to good, 
with a Kappa of 0.450–0.741 (p < 0.001). Twenty-four 
features were selected for the combined model, with 13 
radiomics features, 3 laboratory feature and 8 radiologi-
cal features (Table 2). The rad-score was related to MVI 
(+) in the training set, the test set and the external vali-
dation set (p < 0.001). The AUCs of the training set, the 
test set and the external validation set were 0.914 (95 %CI 
0.854, 0.973), 0.878 (95 %CI 0.758, 0.999) and 0.890 (95 
%CI 0.794, 0.985), respectively. The accuracy, sensitivity, 
specificity, PPV and NPV are listed in Table 3.

Comparison of the predictive performance of the models
A comparison of the models is provided in Fig.  3. 
The combined model had a higher AUC than the CT 
radiomics model (p < 0.001). The calibration curves and 
the DCA indicated that the combined model provided a 
higher net clinical benefit than the CT radiomics model.
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Predictive value of the combined model for postoperative 
recurrence
The median survival time was 746  days. The median 
follow-up time was 664  days. Among the 198 included 
patients, there were 85 (42.9%) patients with recur-
rence, including 50 (25.3%) with intrahepatic recurrence, 
12 (6.1%) with extrahepatic metastasis and 23 (11.6%) 
with both intrahepatic recurrence and extrahepatic 

metastasis. The 1-, 2- and 3-year RFS rates were 64.2%, 
49.8% and 41.9%, respectively. MVI (+) group (1-, 2- and 
3-year RFS rates of 57.7%, 32.9% and 20.6%, respectively) 
showed a shorter RFS than MVI (−) group (1-, 2- and 
3-year RFS rates of 69.3%, 59.6% and 54.7%, respectively) 
(P = 0.001) (Fig. 4).

There was no statistically significant difference of RFS 
between MVI (+) group and high-risk group (P = 0.807), 
or MVI (−) group and low-risk group (P = 0.948) (Fig. 4). 
The high-risk group (HR, 2.055, 95% CI: 1.341, 3.149, 
P < 0.001) was an independent predictor for RFS after 
surgical resection. High-risk group showed a shorter RFS 
(1- and 2-year RFS rates of 52.5% and 32.6%, respectively) 
than low-risk group (1- and 2-year RFS rates of 71.7% 
and 61.3%, respectively) (P < 0.001). Moreover, high-risk 
group (1- and 2-year intrahepatic recurrence-free sur-
vival rates of 58.6% and 48.5%, 1- and 2-year extrahe-
patic metastasis-free survival rates of 74.8% and 56.1%) 
showed a shorter intrahepatic recurrence-free survival 
(P = 0.049) and extrahepatic metastasis-free survival 
(P < 0.001) than low-risk group (1- and 2-year intrahe-
patic recurrence-free survival rates of 73.6% and 63.2%, 
1- and 2-year extrahepatic metastasis-free survival rates 
of 92.8% and 91.0%).

Discussion
In this study, we developed and validated a CT radiomics 
model and a combined model based on ML to preopera-
tively predict MVI and RFS in patients with HCC ≥ 3 cm. 
The results showed that both models had good to excel-
lent predictive performance. In particular, a high rad-
score of MVI in the combined model was associated with 
shorter RFS, indicating its potential clinical application.

Although rate of MVI (+) in the external validation set 
was significantly different from that in the training and 
the test set, the combined model shows good perfor-
mance for MVI prediction in the external validation set, 
suggesting its strong ability in generalization. There have 
been several studies that preoperatively predict MVI in 
HCC using contrast-enhanced CT or contrast-enhanced 
MRI. These studies included HCC of any size, and the 
AUCs of the combined radiomics model in the exter-
nal validation set were 0.756–0.840 [13, 21–23]. Com-
pared to the above studies, the combined model in our 
study which contains demographic information, labo-
ratory index, radiological features and ANOVA-SVM-
selected radiomics features shows better MVI prediction 

Table 2 Twenty-four features in the combined model
Feature MVI (−) MVI (+) p*

A_original_gldm_GrayLevelNonUniformity 12326.1 46972.6 <0.001
A_original_glszm_GrayLevelNonUnifor-
mity

61.0 194.4 <0.001

A_square_glszm_LargeAreaLowGray-
LevelEmphasis

3.9*108 5.5*109 <0.001

A_wavelet-HHL_glszm_GrayLevelNon-
Uniformity

4.1 6.4 <0.001

A_wavelet-HHL_glszm_SizeZoneNonUni-
formity

2.1 4.0 <0.001

A_wavelet-HHL_glszm_SmallAreaEm-
phasis

0.46 0.55 <0.001

A_wavelet-HHL_glszm_SmallAreaLow-
GrayLevelEmphasis

0.27 0.34 <0.001

A_wavelet-LLL_gldm_GrayLevelNonUni-
formity

6402 24981 <0.001

V_original_gldm_GrayLevelNonUniformity 12823 46259 <0.001
V_original_glrlm_GrayLevelNonUniformity 3542 9498 <0.001
V_wavelet-HHL_glcm_ClusterShade 4.5*10-4 −1.5*10-

4
0.005

V_wavelet-LLH_gldm_DependenceNon-
Uniformity

1305 4399 <0.001

V_wavelet-LLL_gldm_GrayLevelNonUni-
formity

7035 22552 <0.001

Diameter 49 80 <0.001
Shape, irregular, % 55 81 <0.001
Border, ill-defined, % 27 40 0.047
Capsule, without, % 10 39 <0.001
Peritumoral Enhancement, % 8 29 <0.001
Internal Arteries, % 18 61 <0.001
Hypodense Halo, % 25 41 0.015
Tumor-Liver Difference, % 12 31 <0.001
AFP 10 150 <0.001
ALB 41 39 0.002
HBV_DNA 6290 651 0.002
Note: Unless otherwise specified, data are summarized as median

Abbreviations: AFP, α-fetoprotein; ALB, albumin; HBV_DNA, hepatitis B virus 
DNA
*The p value reflects the comparison between the MVI (+) group and MVI (-) 
group

Table 3 Performance of the combined model in the training set, the test set and the external validation set
Set AUC Accuracy Sensitivity Specificity PPV NPV
Training set 0.914(0.854,0.973) 0.843(0.762,0.899) 0.829(0.687,0.915) 0.851(0.747,0.917) 0.773(0.630,0.872) 0.891(0.791,0.946)
Test set 0.878(0.758,0.999) 0.800(0.662,0.891) 0.765(0.527,0.904) 0.821(0.644,0.921) 0.722(0.491,0.875) 0.852(0.675,0.941)
External Validation Set 0.890(0.794,0.985) 0.714(0.576,0.822) 0.594(0.423,0.745) 0.941(0.730,0.990) 0.950(0.764,0.991) 0.552(0.376,0.716)
Abbreviations: AUC, the area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value
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performance, indicating that integrating a full range of 
information is important for MVI prediction. Further-
more, some studies focused on MVI in HCC ≤ 5 cm, and 
the AUCs of the combined radiomics model in the exter-
nal validation set or the test set were 0.74–0.858 [24–26]. 
Tian, YQ et al. used enhanced MRI radiomics-based 
nomogram to preoperatively predict MVI in HCC ≤ 3 cm, 
and the external validation AUC was 0.934 [27]. We only 
included HCC ≥ 3  cm in this study, and there are few 
studies focusing on MVI prediction in HCC ≥ 3 cm. We 
assume that limiting the lesion size within a certain range 
might contribute to the improvement of the radiomics 
models’ performance, and future work is needed to verify 
this hypothesis.

Ultrasound features including color Doppler flow, 
maximal elasticity of HCCs, and maximal elastic-
ity of the periphery of HCCs were significantly differ-
ent between MVI (+) HCCs and MVI (−) HCCs [28]. 
However, there is room for improvement in the predic-
tion performance of nomogram based on multi-modal 
ultrasound with AUC of 0.789 [29]. Zhang, R et al. used 
a new dynamic radiomics method based on dynamic 

contrast-enhanced-MRI for predicting MVI in HCC. 
The dynamic radiomics had an improved effect on the 
MVI prediction in HCC with AUC of 0.777, compared 
with the static dynamic contrast-enhanced-MRI-based 
radiomics models [23]. Chen, YD et al. constructed a 
radiomics-based nomogram to predict MVI of small 
HCC. The AUC of hepatobiliary phase and diffusion-
weighted imaging were 0.801–0.970 [30]. Although MRI 
has advantages in some aspects compared to CT, such as 
early diagnosis of HCC, the performance in MVI predic-
tion of CT radiomics model is no worse than that of MRI 
radiomics model. 18  F-FDG PET metabolic and volu-
metric parameters were significant factors for predicting 
MVI in HCC [31, 32]. The hypermetabolic bright signal 
in PET can provide complements to the structural infor-
mation in CT, and combining PET and CT can improve 
the performance of the model [33].

It is noted that the high-risk group predicted by the 
combined model, likely indicative of MVI, was associ-
ated with early intrahepatic recurrence and extrahepatic 
metastasis, indicating its potential application value in 
clinical decision-making. The same as previous studies, 

Fig. 3 Performance of the radiomics models for predicting microvascular invasion. Receiver operating characteristic (ROC) curve analysis for the training 
set, the test set and the external validation set showed that the combined model (B) had a higher area under the ROC curve than the CT radiomics model 
(A). Calibration curves for the training set, the test set and the external validation set showed that both the CT radiomics model (C) and the combined 
model (D) had strong consistency between estimated probability and observed probability. Decision curve analysis (E) indicated that the combined 
model was more beneficial for patients than the CT radiomics model
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MVI is an independent predictor for RFS after surgical 
resection. Compared to research by Hui Zhao et al. [34], 
in which the 1-, 3-year recurrence-free survival rates of 
MVI (+) and MVI (−) in HCC ≤ 5 cm were 72.4%, 47.8%, 
81.4% and 60.6%, respectively, MVI (+) group showed 

shorter recurrence-free survival in HCC ≥ 3  cm than in 
HCC ≤ 5 cm, and the difference of RFS between MVI (+) 
and MVI (−) was more obvious in HCC ≥ 3 cm. In clinical 
scenario, patients, who were classified into the high-risk 
group predicted by the combined model preoperatively, 
may undergo aggressive treatment and close surveillance.

SVM was used as a feature classifier in our study, and 
showed great contribution to the model performance. 
Consistent with previous studies, ML based radiomics 
enabled the integration and analyses of a large number of 
radiomics features to build a classification model for diag-
nosis or prediction [35, 36]. However, which ML method 
is the best to predict MVI based on CT radiomics is open 
to debate. Famularo et al. constructed a predictive CT 
radiomics model to assess the MVI status using 3 differ-
ent supervised machine-learning algorithms (random-
forest, fully connected MLP artificial neural network and 
extreme gradient boosting), and random-forest was the 
best performer with accuracy of 96.8% [37]. Xiong, L et 
al. constructed 12 CT radiomics models for MVI predic-
tion using 3 modeling methods (logistic regression, sup-
port vector machine and Bayes) and 4 phase CT images 
(unenhanced phase, artery phase, portal venous phase 
and delay phase), and the logistic regression model with 
the artery phase radiomics signature showed the best 
performance with AUC of 0.848 [35]. Future work is 
needed to explore the optimal ML methods for feature 
selection and classification in terms of certain clinical 
problem and images [38].

All 13 radiomics features selected for the combined 
model are higher-order features, representing internal 
heterogeneity, and might be a result of the combination 
of blood vessels with abnormal hyperplasia, necrosis due 
to fast tumor growth, and uneven microenvironment of 
tumor [39]. In addition, despite different feature selector 
and classifier, several features selected for the radiomics 
model are consistent with previous studies, such as 
glszm_SizeZoneNonUniformity and glcm_ClusterShade 
[24, 40], indicating significant connections between these 
features and MVI. Furthermore, the selected features 
for the combined model, such as shape, capsule, peritu-
moral enhancement, internal arteries, hypodense halo 
and tumor-liver difference have been reported to predict 
MVI in several previous studies [9, 16]. To improve inter-
observer agreement, which was fair to moderate in previ-
ous studies [41], the radiologists were trained through a 
number of cases before evaluating radiological features. 
It turns out that some features show good inter-observer 
reproducibility, such as diameter, shape, necrosis, peri-
tumoral enhancement, internal arteries and hypodense 
halo. However, other features, such as border, capsule 
and tumor-liver difference, show moderate inter-observer 
reproducibility, which needs to be further improved in 
future studies. Besides, the same as previous studies, AFP 

Fig. 4 Kaplan-Meier analysis of relapse-free survival. (A) Kaplan-Meier 
analysis of relapse-free survival rates according to combined model score 
and histopathology. (B) Kaplan-Meier analysis of intrahepatic recurrence-
free survival rates according to combined model score and histopathol-
ogy. (C) Kaplan-Meier analysis of extrahepatic metastasis-free survival rates 
according to combined model score and histopathology
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and ALB were integrated in the combined model indicat-
ing its predictive potential in MVI and RFS [21].

The study has some limitations. First, this was a ret-
rospective study at a single institution. Further prospec-
tive study with patients collected from multiple centers 
is warranted. Second, there is a lack of interpretability 
of radiomics features at the biological level, and future 
work is needed to improve feature interpretability. Third, 
the inter-observer reproducibility needs to be improved. 
Fourth, manual extraction of VOI was used, which need 
extra labor and time cost. Future work is needed to inte-
grate automatic segmentation and radiomics models.

Conclusions
In this study, we developed and validated two ML based 
radiomics models to noninvasively predict MVI and RFS 
in patients with HCC ≥ 3 cm preoperatively. Importantly, 
the high-risk group predicted by the combined model has 
shorter RFS. The combined model may serve as a nonin-
vasive predictor and aid in clinical decision-making.
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