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Abstract
Background Cardiovascular diseases are the number one cause of death globally, making cardiac magnetic 
resonance image segmentation a popular research topic. Existing schemas relying on manual user interaction or 
semi-automatic segmentation are infeasible when dealing thousands of cardiac MRI studies. Thus, we proposed a 
full automatic and robust algorithm for large-scale cardiac MRI segmentation by combining the advantages of deep 
learning localization and 3D-ASM restriction.

Material and methods The proposed method comprises several key techniques: 1) a hybrid network integrating 
CNNs and Transformer as a encoder with the EFG (Edge feature guidance) module (named as CTr-HNs) to localize the 
target regions of the cardiac on MRI images, 2) initial shape acquisition by alignment of coarse segmentation contours 
to the initial surface model of 3D-ASM, 3) refinement of the initial shape to cover all slices of MRI in the short axis by 
complex transformation. The datasets used are from the UK BioBank and the CAP (Cardiac Atlas Project). In cardiac 
coarse segmentation experiments on MR images, Dice coefficients (Dice), mean contour distances (MCD), and mean 
Hausdorff distances (HD95) are used to evaluate segmentation performance. In SPASM experiments, Point-to-surface 
(P2S) distances, Dice score are compared between automatic results and ground truth.

Results The CTr-HNs from our proposed method achieves Dice coefficients (Dice), mean contour distances (MCD), 
and mean Hausdorff distances (HD95) of 0.95, 0.10 and 1.54 for the LV segmentation respectively, 0.88, 0.13 and 1.94 
for the LV myocardium segmentation, and 0.91, 0.24 and 3.25 for the RV segmentation. The overall P2S errors from our 
proposed schema is 1.45 mm. For endocardium and epicardium, the Dice scores are 0.87 and 0.91 respectively.

Conclusions Our experimental results show that the proposed schema can automatically analyze large-scale 
quantification from population cardiac images with robustness and accuracy.
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Introduction
Exponential growth of cardiac data is due to continuous 
progress in biomedical devices and technologies, which 
creates an opportunity for exploring the underlying 
mechanisms of disease, as well as a challenge for current 
capabilities to extract objective and quantitative cardiac 
phenotypes. Being the leading cause of death worldwide 
[1], cardiovascular diseases are an important societal 
health concern and burden.

Quantitative analysis of cardiac function requires 
establishing global or regional parameters of cardiac 
performance such as: left ventricular End-diastolic Vol-
ume (LVEDV) and left ventricular End-systolic Vol-
ume (LVEDV) for the blood pool, left ventricular mass 
(LVM) of the myocardium, left ventricular ejection frac-
tion (LVEF), left ventricular stroke volume (LVSV), and 
wall thickening or wall thinning. To compute any of 
these parameters, the left ventricle must be segmented. 
However, it is tedious and time consuming task for car-
diologists, radiologists or technicians to manually, or 
semi-manually (aided by software) identify and delineate 
the relevant cardiac structures for further analysis. Inter 
and intra-observer variability also undermines the valid-
ity of the derived parameters. Therefore, methods are 
desperately needed to accelerate and facilitate the process 
of image segmentation to support diagnosis, treatment 
evaluation and patient follow-up. A number of algo-
rithms have been proposed for automatic and semi-auto-
matic cardiac MRI (CMR) segmentation: image-based 
[2–4], pixel-/voxel-level classification [5], deformable 
models [6–9], atlas construction [10], and machine learn-
ing [11–13]. For a detailed account of previous work we 
refer the reader to recent topical reviews [14–16].

However, most of the above algorithms cannot meet the 
needs faced when dealing with large-scale heterogeneous 
populations. To address these scenarios, a robust tech-
nique known as ASM (active shape model) [17] can be 
employed for visualizing and quantifying both geometric 
and functional patterns of the heart. This method lever-
ages prior knowledge by encoding the distinct shape and 
appearance variations present in the images. When the 
shape models are adopted for segmentation, the 3D-ASM 
surface needs to be initialized within the capture range 
of the intended boundaries for a robust and accurate fit. 
To get the initial shape for a single patient, Catalina et al. 
adopted a simple mechanism to roughly scale and posi-
tion the mean shape of the model [18]. Three points are 
manually selected, two epicardial points at the basal level, 
and a third one at the apex. Corresponding anatomical 
landmarks of the mean shape were previously defined by 
an experienced operator. Using a similarity transforma-
tion, the initial shape can be derived after the mean shape 
is aligned to the landmarks. However, manual initializa-
tion becomes infeasible when dealing with thousands of 

CMR volumes. Xènia et al. proposed a fully automatic 
method for initializing cardiac MRI segmentation, by 
using image features and random forests regression to 
predict an initial position of the heart and key anatomical 
landmarks in an MRI volume [19]. However, this method 
relies on the intersection of the two LA (long axis) and 
the SA (short axis) images. This may result in failure 
when intersections cannot be obtained from the needed 
images. In addition, initial shapes relying on landmark 
detection sometimes cannot cover all slice images, espe-
cially at the basal and apex levels.

Currently, deep learning techniques have been widely 
used by scholars in pattern recognition, computer vision 
and medical image computing [20–24]. Avendi et al. 
adopted deep convolutional neural networks (CNNs) to 
locate the LV, then inferred the LV shape using stacked 
auto encoders [25]. Excellent agreement with the ground 
truth was achieved for the endocardial contours using 
datasets from MICCAI 2009 LV segmentation chal-
lenge [3]. Inspired by combining their successful meth-
ods with the advantages of a model-based approach, 
here we investigate the analysis of a large population of 
images using both CNNs and SSMs. We design a new 
schema to build the initial shape for 3D-ASM, then apply 
the 3D-ASM method to introduce high-level knowledge 
on cardiac anatomy and deal with sparsely distributed 
multi-view slices in CMR. Our 3D-ASM implementation 
is aided by knowledge on the rough localization of the 
myocardial boundaries, produced by CNNs, to produce a 
stable and robust delineation of both endo and epicardial 
surfaces. Therefore, we propose a cardiac segmentation 
framework that, unlike some approaches requiring pre-
processing operations on image data such as denoising 
and enhancement [26], is an end-to-end segmentation 
method based on CNNs, which streamlines the pro-
cess by removing traditional preprocessing steps. Then, 
by combining CNNs with SSMs, this method features 
better localization and morphological accuracy in LV 
segmentation.

Our paper is organized as follows. In the next sec-
tion, we detail our pipeline for cardiac image segmenta-
tion. Then data source used in this study is described. In 
the following results section, extensive comparisons are 
made to show the properties of our methods. Finally, we 
discuss the significance of our work.

Method
Overview
In this section, our work-flow exploits automatic ini-
tialization and segmentation of the left ventricle using 
3D-ASM. Here the statistical shape model used is SPASM 
(sparse active shape model) [27]. Our algorithm includes 
three steps, i.e. Data pre-processing, Initial shape opti-
mization and SPASM modeling & cardiac quantification, 
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as depicted in Fig. 1. In the beginning, cardiac MR data-
sets with ground truth are organized according to the 
time frames per subject, CTr-HNs (integrated CNNs and 
Transformer for heart segmentation networks) is applied 
to train these organized cases. Secondly, the test cases 
are sent to CTr-HNs to get segmentation. As a result, the 
masks for endo- and epi-cardial can be derived separately. 
Consider that CTr-HNs may cause some bad segmenta-
tion, the masks from CTr-HNs are refined subsequently. 
Then the mean Point Distribution Model (PDM) is fit to 
the endo- and epi-cardial points from CTr-HNs using 
point sets registration [28] to get an initial shape and 
the initial shape are refined using complex transforma-
tion subsequently. Distance maps are computed from 
the endo and epicardial walls obtained by CTr-HNs, 
which are subsequently used to drive the SPASM model 
towards image boundaries. Thirdly, SPASM is applied to 
refine the fit of the static shape model to the image data 
while penalizing large deviations from the ground truth, 
and the obtained results are employed for cardiac func-
tion analysis.

Initialization of SPASM
Cardiac localization and segmentation
In our task of cardiac segmentation, we adopt a hybrid 
network integrating CNNs and Transformer [29] as a 
hybrid encoder for the segmentation of cardiac on MRI 
images. This architecture is named as CTr-HNs. An over-
view of the network architecture can be seen in Fig. 2.

Given an image x ∈ RH×W ×C  with spatial resolution 
of H × W  and C-channels, the objective is to gener-
ate a prediction of the corresponding pixel-level labeled 
map with the size H × W . Initially, the CNNs process 
MRI image to capture the local features. These features 
include details of edge, texture, and spatial information, 
which are progressively generated through convolu-
tional and pooling operations to form multi-scale feature 
maps. Subsequently, the feature map is partitioned into 
{f i

p ∈ RP 2·C|i = 1, . . . , N} by a patch serialization 
operation, where each patch has a size of P × P  and 
the number of image patches is N = HW

P 2 . Each patch 
is subsequently projected into a D-dimensional embed-
ding space using a trainable linear transformation. 
Additionally, the spatial position information of each 
patches is encoded to obtain an embedding sequence 

Fig. 2 The architecture of the fully neural network

 

Fig. 1 Pipeline for the proposed cardiac magnetic resonance segmentation
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of f i
p = [f1

p , f2
p , . . . , fN

p |i = 1, 2, . . . , N ], where the 

sequence dimension is fp ∈ R
HW
P 2 ×D . Then this sequence 

is fed into the 12 Transformer Layers. One-layer Trans-
former structure consists of Multi-head Self-Attention 
Mechanism (MSA) and Multi-Layer Perceptron (MLP) 
blocks (See Fig.  3(a)). The Transformer effectively com-
pensates for the limited receptive field of CNNs, generat-
ing features with global dependencies, thereby providing 
rich contextual information for the subsequent decoder.

After the hybrid encoder, we can obtain the sequence 
Zi

L = [Z1
L, Z2

L, . . . , ZN
L |i = 1, 2, . . . , N ] with the size 

of ZL ∈ R
HW
P 2 ×D . The sequence hidden features Zi

L 
are fed into the bottleneck layer. To restore the spa-
tial order of the sequence, the encoded features are 
reshaped from HW

P 2 × D to H
P × W

P × D to match the 

input requirements of the subsequent decoder. In the 
decoder component, a cascaded structure of up-sampling 
and convolution operations is employed to progressively 
recover the resolution. Each level consists of 2 upsam-
pling operations, one 3 × 3 convolutional layer, and one 
ReLU layer, progressively restoring the feature map from 
size H

P × W
P  to the original resolution H × W .

Additionally, the feature maps Xin obtained through 
upsampling are concatenated with the feature maps from 
the CNNs through the EFG (Edge feature guidance) 
module [30] along the channel dimension to achieve fea-
ture fusion. The skip connections combine high-resolu-
tion local features with global contextual information, 
and the EFG module further enhances edge features 
Xout, ultimately predicting the segmentation labels. The 
structure of the EFG module consists of a difference 

Fig. 3 Transformer Layer and EFG Module. (a) Transformer Layer; (b) EFG Module
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convolution operator and a spatial attention mechanism 
(See Fig.  3(b)). The difference operation extracts edge 
information from the image, while the spatial attention 
mechanism enhances the feature representation of edge 
regions, guiding the network to better localize and seg-
ment the target area, effectively avoiding the issue of 
blurred boundaries in traditional networks.

During the training process, the loss function of CTr-
HNs is the sum of The Cross-Entropy (CE) loss and the 
Dice loss, as shown as follows: 

 Losstotal = Lossce + Lossdice (1)

To balance the CE loss and Dice loss, the final loss func-
tion is the weighted sum of CE and Dice loss, as shown in 
Eq. (2), the weights w1 and w1 are learnable parameters 
and subject to w1 + w2 = 1. 

 Losstotal = w1Lossce + w2Lossdice (2)

All coarse segmentation experiments are run on NVIDIA 
RTX A5000 GPU with 24GB RAM. CTr-HNs are trained 
for 300 epochs with a batch size of 6, and the Adam opti-
mizer, with an initial learning rate of 1e−4 and the weight 
decay constant of 3e-5, is used to iteratively update all 
parameters in the network. During training, the cosine 
annealing schedule to select the optimal learning rate. 
Additionally, to improve the robustness of CTr-HNs, in 
pre-processing, we also performed data augmentation 
operations on the training dataset, including rotation, 
translation, horizontal flipping, and vertical flipping.

To optimize initialization for SPASM, a slice-by-slice 
evaluation of the CTr-HNs segmentation starts from 
mid-slice and extends to the top-end slice and the bot-
tom-end slice separately. For a slice image, if the CTr-
HNs fails to process it, then the CTr-HNs results from 
neighbor slice are assigned to those of the current slice. 
Prior information about spatial relationships between 
slice segmentation is considered in this process, which 
makes the initialization accurate and robust.

Figure  4 shows the matching process for the initial 
shape of the SPASM. In Fig.  4(c), the initial shape is 
derived using a point-set registration algorithm [31]. 
However, the matching result is not optimal since the 
initial shape cannot cover all slices, which can be seen in 
Fig.  4(d). It is necessary to develop a technique to opti-
mize the initial shape for SPASM. This refinement will be 
detailed in next step.

Initial shape refinement
Let’s assume a points set P  with n points each described 
by three-dimensional coordinates pi(xi, yi, zi) with 
i = 1 . . . n. Assume P (x y z) is the center of points set P . 

 





x = 1
n

n∑
i=1

xi

y = 1
n

n∑
i=1

yi

z = 1
n

n∑
i=1

zi

 (3)

Hence, the matrix X is 

 

X =




x1−x y1−y z1−z
... ... ...

xi−x yi−y zi−z
... ... ...

xn−x yn−y zn−z


 (4)

Singular value decomposition is applied to X producing 
a diagonal matrix S, of the same dimension as X and with 
nonnegative diagonal elements in decreasing order, and 
unitary matrices U and V so that 

 X = U ∗ S ∗ V ′ (5)

where V = (v1, v2,v3), and v3 is corresponding to 
the smallest singular value. A fitting plane P l passing 
through the center point P (x y z) can be obtained with 
unit normal vector −→n  (See Fig. 5(a)). 

 

{ −→n = (cosα cosβ cosγ)−→nz = (0 0 1)  (6)

Where cos α, cos β and cos γ are directional cosines 
with x-, y- and z-axes respectively, is Z-axis unit normal 
vector.

Then the fitting plane P l is rotated around the cen-
ter point P (x y z) helped by a complex transforma-
tion matrix T to ensure P l perpendicular to Z-axis (See 
Fig. 5(b)). 

 T = T1
−1 ∗ T2

−1 (7)

Where T1 and T2are two rotation transformation matrix 
defined as follows 

 
T1=




1 0 0
0

√
cos2α + cos2γ − cos β

0 cos β
√

cos2α + cos2γ


 (8)

 

T2=




cos γ√
cos2α+cos2γ

0 − cos α√
cos2α+cos2γ

0 1 0
cos α√

cos2α+cos2γ
0 cos γ√

cos2α+cos2γ


 (9)

Using the above technique, the endocardial contour 
points set from CTr-HNs in base slice is fitted and get 
a plane (See Fig.  6(a) and (b)). Then the fitted plane is 
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Fig. 5 Plane fitting of points set and complex transformation. (a) Plane fitting from 3D points set; (b) Rotating the fitting plane perpendicular to Z-axis 
around the center point of the 3D points set

 

Fig. 4 SPASM initialization. (a) Points from the mean PDM; (b) Points from CTr-HNs outputs; (c) Approximation of PDM to the points derived from CTr-HNs 
results; (d) Endocardial point sets derived from registered initial shape and CTr-HNs results respectively
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rotated to be perpendicular to Z-axis (See Fig.  6(c)). 
Assume Z1 and Z4 are the average Z-axis values for the 
marked points set from PDM in base and apex slices 
respectively, Z2 and Z3 are their counterparts from 
CTr-HNs. A scale is applied to stretch points from PDM 
defined as follows: 

 
ratio = Z2 − Z4

Z1 − Z3
 (10)

The points from PDM is stretched according to the 
ratio, and then aligned to the points from CTr-HNs (See 
Fig. 6(d)). A Procrustes analysis [32] is then employed to 
get a left ventricular model initialization in its original 

Fig. 6 Initial shape refinement procedure. (a) Endocardial contour points from PDM and CTr-HNs at their original position, (b) Plane fitting for points from 
CTr-HNs, (c) Rotated endocardial contour points from PDM and CTr-HNs, (d) Stretched & aligned initial shape with CTr-HNs points, (e) Refined initial shape 
and CTr-HNs results in their original position. Points with black circles are adopted for plane fitting and transformation
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position (See Fig.  6). Once the CTr-HNs is trained, we 
can segment the blood pool and myocardium on SA 
CMR images, and get the initial endo- and epicardial 
contours. Two distance maps are constructed from the 
initial endo- and epicardial contours for SPASM seg-
mentation, which were used in our previously published 
work [6, 7, 33]. The distance maps are helpful to eliminate 
the long range deviations between the target LV and the 
trained active shape model.

Datasets
In this paper, UK BioBank dataset is adopted to train 
and test our CTr-HNs network. The UK Biobank encom-
passes short-axis and long-axis cine Cardiovascular 
Magnetic Resonance (CMR) images from 50,000 cardiac 
MRI cases, forming part of a large-scale, prospective, 
population-based study based in the United Kingdom. 
This initiative aims to investigate both genetic and non-
genetic factors influencing a wide array of diseases. As 
part of this extensive research effort, CMR examinations 
are planned for an additional 100,000 participants, build-
ing upon the existing cohort of 500,000 middle-aged and 
older adults who have been recruited for comprehensive 
health studies.

The CTr-HNs network parameters are learned from 
short-axis (SA) view CMR images obtained from 700 
subjects from the UK Biobank. In training phase, all MR 
images undergo a series of preprocessing steps, includ-
ing slicing and the standardization of image dimensions. 
These images are then resized to a same size of 256 × 256 
pixels through a combination of cropping and padding. 
The primary objective of the CTr-HNs network is to 
accurately distinguish between four classes: background, 
LV cavity, RV cavity and myocardium. Each case is 
accompanied by expert-drawn endocardial and epicardial 
contours, providing high-quality ground truth annota-
tions essential for supervised learning.

After the CTr-HNs network is trained, more than 1200 
cardiac MRI cases from CAP (Cardiac Atlas Project) 
dataset [34] are used for the SPASM segmentation. CAP 
is a resource for cardiac image data sharing and atlas-
based shape analysis for population studies which can be 
web-accessible (http://www.cardiacatlas.org). The cases 
used in our work include two cohorts: asymptomatic 
volunteers (AV) and patients with myocardial infarction 
(MI). Manual contours were also provided by the Cardiac 

Atlas Project. Readers can refer to literature [35] for the 
detail about the imaging protocols of CAP.

Results
Evaluation of the method (segmentation accuracy 
measurement)
To validate the efficacy(performance) of the proposed 
model, we conducted the evaluation in two ways: 1) 
employing standard metrics for segmentation accu-
racy, such as the Dice coefficient, mean contour distance 
(MCD), and Hausdorff distance (HD95), and 2) utiliz-
ing clinically relevant measures derived from segmenta-
tions, including ventricular volume and mass. The Dice 
Coefficient serves as a metric to evaluate the overlap 
between the predicted segmentation and the ground 
truth. It ranges from 0 to 1, the closer the value is to 1, 
the higher overlap between the segmentation and ground 
truth. The mean contour distance quantifies the average 
distance between the contours derived from automatic 
segmentation and the ground truth, while the Hausdorff 
distance measures the maximum distance between the 
two segmentation contours. A lower the distance met-
ric indicates a higher level of alignment between the two 
contours of the segmentation and the ground truth [36].

We have further conducted an evaluation of the accu-
racy of clinical metrics that are obtained from image 
segmentation. Specifically, we computed the left ven-
tricular end-diastolic volume (LVEDV), end-systolic 
volume (LVESV), and myocardial mass (LVM) from the 
automated segmentations. These values were then com-
pared to those derived from manual segmentations. The 
volumes were determined by summing the voxels corre-
sponding to the relevant label class in the segmentation 
and multiplying by the volume per-voxel. As for the LV 
mass, it was calculated by multiplying the volume by a 
density of 1.05 g/mL [37].

The CTr-HNs segmentation
To verify the performance of the proposed model, we 
compare the results between Bai and our CTr-HNs 
on a same test set of 600 subjects. Table 1 presents the 
experimental results of cardiac MRI image segmenta-
tion conducted on the UK Biobank dataset. The results 
demonstrate that our proposed approach achieves Dice 
coefficients (Dice), mean contour distances (MCD), and 
mean Hausdorff distances (HD95) of 0.95, 0.10, and 1.54 

Table 1 Our proposed Segmentation Scheme on UK BioBank dataset
Bai (4275 cases for training) Proposed (700 cases for training)
Dice MCD(mm) HD95(mm) Dice MCD(mm) HD95(mm)

LV cavity 0.94(0.04) 1.04(0.35) 3.16(0.98) 0.95(0.03) 0.10(0.09) 1.54(0.70)
LV myocardium 0.88(0.03) 1.14(0.40) 3.92(1.37) 0.88(0.03) 0.13(0.14) 1.94(0.86)
RV cavity 0.90(0.05) 1.78(0.70) 7.25(2.70) 0.91(0.03) 0.24(0.26) 3.25(1.84)
Avg 0.906(0.04) 1.32(0.48) 4.78(1.68) 0.913(0.03) 0.16(0.16) 2.24(1.13)

http://www.cardiacatlas.org
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for the LV segmentation, respectively; 0.88, 0.13, and 1.94 
for the myocardium segmentation; and 0.91, 0.24, and 
3.25 for the RV segmentation. For the Dice, our method 
achieves outperformance compared to the Bai’s method 
in both LV and RV segmentation, while achieving com-
parable results in myocardium segmentation. Specifi-
cally, the Dice for LV cavity and RV cavity are improved 
by 0.01. For the MCD, all segmentation metrics showed 
significant improvement. Compared to Bai’s method, our 
method demonstrates a reduction in MCD by 0.94 for LV, 
1.54 for RV, and 1.01 for myocardium. For the HD95, our 
proposed method also showed significant advantages, 
with achieving reductions of 1.62, 1.98, and 4.00 in the 
LV, myocardium and RV, respectively.

The SPASM segmentation
To evaluate the precision of SPASM, we conducted a 
comparative analysis of point-to-surface (P2S) distances 
and the Dice score between the automated segmentation 
outcomes and the ground truth on CAP dataset.

To show the advantages of the proposed technique, 
P2S errors are calculated between ground truth and 
automatic shapes in Table  2. The overall P2S errors is 
1.45 ± 0.51 mm for the proposed schema, while they are 
2.11 ± 0.56 for SPASM adopted by Alba et al [19].

The cumulative P2S error distribution curves are drawn 
in Fig. 7 for endocardium, epicardium and myocardium, 
which represent the cumulative percentages correspond-
ing to the percentage of test cases for which the error is 
less than a specific value. In our schema, 90% of the P2S 
error are detected with a 1.9  mm for endocardium and 
myocardium, 2.4  mm for epicardium; they are greater 
than 2.8 mm for previous work respectively.

Table 3 shows the results of the clinical cases for two 
methods. In our proposed method, average Dice scores 
from endo- and epi-cardial contours are 0.87 and 0.91, 
respectively.

Figure 8 displays segmentation of one case using differ-
ent methods with/without refined initial shape. It can be 
seen that base and apex slices may fail to be segmented 
for the case without optimized initial shape. However, 
only adopting initial shape refinement techniques may 

Table 2 Point to surface errors for the clinical cases (mm)
Method Proposed Alba’s (2018)
Diastolic phase LV Endo 1.12 ± 0.39 1.64 ± 0.46

LV Epi 1.32 ± 0.39 1.77 ± 0.47
LV myocardium 1.11 ± 0.27 1.47 ± 0.31

Systolic phase LV Endo 1.54 ± 0.70 2.21 ± 0.79
LV Epi 1.97 ± 0.76 2.48 ± 0.33
LV myocardium 1.62 ± 0.56 3.06 ± 1.02
Overall 1.45 ± 0.51 2.11 ± 0.56

Fig. 7 Cumulative point-to-surface error distribution curves for LV myocardium, endo- and epi-cardial for the results from the proposed and Alba’s (2018) 
[13]
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cause poor segmentation (see the third row images), and, 
hence, the coarse segment CTr-HNs result is employed 
to drive the contours to the correct location (see the sec-
ond row images).

To evaluate cardiac function, clinic parameters are 
calculated for LVEDV, LVESV, LVSV, LVM and LVEF. In 
Table  4, it can been seen that the results from ours are 
close to those of experts.

To demonstrate whether the cardiac functional indexes 
derived from the ground truth align with those generated 
by our novel algorithm, we present Bland–Altman plots 
(displayed in the first row of Fig. 9) and correlation plots 
(shown in the second row of Fig. 9). These visualizations 
reveal a strongly match between our results and those 

from manual delineation. Correlations of cardiac indexes 
range from 0.89 to 0.99, demonstrating a strong relation-
ship between manual and automatic methods.

Discussion
This paper presents a fully automatic approach which can 
analyze cardiac MRI in large MRI studies. Our schema 
combines a deep learning neural network, an initial 
shape refinement algorithm, and a SPASM segmenta-
tion method. Different from other approaches, the ini-
tial shape derived from CTr-HNs results are rotated and 
scaled to cover all short slices using complex transforma-
tion techniques. Subsequently, the refined initial shape is 
adopted to obtain a three-dimensional LV segmentation 
based on a SPASM search.

In CTr-HNs segmentation experiment, we can observe 
that the standard deviation from ours is notably smaller 
in Dice metrics, which indicate a stable results and a cer-
tain level of performance improvement. Moreover, there 
is a significantly decrease on the MCD metric, demon-
strating that CTr-HNs effectively optimize the segmen-
tation boundaries of various tissues, thereby achieving 
more precise boundary localization. Additionally, the 

Table 3 Dice score for the clinical cases, ED (End-diastole), ES (End-systole)
Endo Epi
ED ES Average ED ES Average

Dice Proposed 0.88 ± 0.07 0.85 ± 0.09 0.87 ± 0.08 0.92 ± 0.06 0.90 ± 0.06 0.91 ± 0.06
Alba’s (2018) 0.82 ± 0.09 0.66 ± 0.15 0.74 ± 0.12 0.79 ± 0.13 0.68 ± 0.15 0.74 ± 0.14

Table 4 Cardiac functional indexes. MADif: Mean absolute 
difference

From experts Proposed  MADif
LVEDV (ml) 171.67 ± 49.39 166.33 ± 47.81 7.68
LVESV (ml) 97.92 ± 45.11 95.93 ± 43.67 6.28
LVSV (ml) 73.76 ± 28.13 70.41 ± 28.73 7.34
LVM (g) 148.74 ± 44.97 149.22 ± 44.23 8.30
LVEF (%) 44.17 ± 16.83 43.34 ± 17.71 3.22

Fig. 8 Short axis slice segmentation of one patient using different strategies (Y: using initial shape refinement; N: without initial shape refinement)
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experimental results also reveal a significant improve-
ment in HD95 on RV, further verifying that CTr-HNs 
can accurately capture the structural boundaries. These 
outcomes exhibit that our proposed method is capable 
of leveraging both global contextual information and 
local boundary features through the hybrid CNNs-Trans-
former architecture. Furthermore, by incorporating the 
edge feature guidance (EFG) module, it achieves more 
precise boundary information localization.

In SPASM, an initial estimate, denoted initial shape, 
describes the LV position. Considering the similar 
shapes and edge information between the endo- and 
epi-cardial contours, if initial shapes are in incorrect 
LV positions, failures with cardiac image segmentation 
using SPASM are inevitable. To get the initial shape for 
SPASM, point-sets registration method is used to align 
the points of mean shape to the counterparts from 
CTr-HNs. However, base or apex slice may be missing 
in the cover of the initial shape, this can be seen in Fig. 
7 that poor results are obtained for SPASM when the 
initial shapes are failed to cover all short slices.

To overcome these difficulties, points from CTr-HNs in 
the base slice is fitted into a plane, and the fitted plane is 
rotated to be perpendicular to Z-axis. In the meantime, 
points from CTr-HNs and initial shape is rotated with the 
same angle. Note that the rotation is purposely designed, 
because the initial shape is easily to be scaled and moved 
in Z-axis direction only.

At last, CTr-HNs segmentation results are used in 
building distance maps and combined with an image 
intensity model to drive the initial shapes to the LV 
position. As a result, a 3D shape which represents an 
accurate segmentation for the LV is generated.

To confirm it is the same distribution of cardiac 
functional indexes from manual and automatic meth-
ods, Kolmogorov-Smirnov test analysis is adopted for 

the corresponding clinical parameters. It can be seen 
in the distribution plots a common distribution, com-
mon location and scale, similar distributional shapes.

A limitation of our framework lies in the heavy reli-
ance of our algorithms on model-fitting techniques 
that utilize 3D active shapes to align cardiac con-
tours across 2D imaging plane stacks. Consequently, 
the deep learning algorithm employed in this study 
is geared towards a trainable 2D segmentation model 
that integrates CNNs and Transformers as an encoder. 
This approach was chosen because the implemented 
SPASM method proves effective for increasingly 
sparse image datasets, encompassing various orienta-
tions and originating from different MRI acquisition 
protocols [27]. The incorporation of an update propa-
gation scheme and a fuzzy inference system enabled 
application of SPASM to multi-protocol cardiac sparse 
data sets with a segmentation performance that is bet-
ter than or comparable to other 3D model-based seg-
mentation methods operating on a full data set with 
parallel image planes.

Conclusion
This study introduces a hybrid schema that can auto-
matically build initial shapes to cover all short slices for 
SPASM. Deep learning algorithms are employed not 
only for myocardial detection, but also to drive the shape 
model to the LV endo- and epi-cardial contours. Results 
indicate that our method can overcome technical diffi-
culties and obtain robust segmentation for cardiac MRI 
studies with subvoxel accuracy. Our approach still can 
be improved in some aspects. For example, the detection 
of cardiac images with LVOT (left ventricular outflow) 
and how to use images with LVOT to optimize the initial 
shape and enhance segmentation using SPASM.

Fig. 9 Plots of Bland–Altman and correlation of cardiac functional indexes between the manual and automatic results. In the top row, the mean differ-
ence (i.e., bias) and limits of agreement (LoA, i.e., ± 1.96 standard deviations from the mean) are denoted by black horizontal lines and the two red dashed 
lines respectively; while in the second row, the red lines represent correlation plots
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Abbreviations
CNNs  Convolutional neuron networks
CTr-HNs  Integrated CNNs and Transformer for heart segmentation 

networks
LVEDV  Left ventricular End-diastolic Volume
LVEDV  Left ventricular End-diastolic Volume
LVM  Left ventricular mass
LVEF  Left ventricular ejection fraction
LVSV  Left ventricular stroke volume
ASM  Active shape model
LA  Long axis
SA  Short axis
CAP  Cardiac Atlas Project
CMR  Cardiac MRI
SPASM  Sparse active shape model
PDM  Point Distribution Model
IIM  Image intensity model
AV  Asymptomatic volunteers
ED  End-diastole
ES  End-systole
MI  Myocardial infarction
P2S  Point-to-surface
MCD  Mean contour distance
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