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Abstract
Background To develop and validate deep learning (DL) and traditional clinical-metabolic (CM) models based on 
18 F-FDG PET/CT images for noninvasively predicting high-grade patterns (HGPs) of invasive lung adenocarcinoma 
(LUAD).

Methods A total of 303 patients with invasive LUAD were enrolled in this retrospective study; these patients were 
randomly divided into training, validation and test sets at a ratio of 7:1:2. DL models were trained and optimized on 
PET, CT and PET/CT fusion images, respectively. CM model was built from clinical and PET/CT metabolic parameters 
via backwards stepwise logistic regression and visualized via a nomogram. The prediction performance of the models 
was evaluated mainly by the area under the curve (AUC). We also compared the AUCs of different models for the test 
set.

Results CM model was established upon clinical stage (OR: 7.30; 95% CI: 2.46–26.37), cytokeratin 19 fragment 21 - 1 
(CYFRA 21-1, OR: 1.18; 95% CI: 0.96–1.57), mean standardized uptake value (SUVmean, OR: 1.31; 95% CI: 1.17–1.49), 
total lesion glycolysis (TLG, OR: 0.994; 95% CI: 0.990–1.000) and size (OR: 1.37; 95% CI: 0.95–2.02). Both the DL and CM 
models exhibited good prediction efficacy in the three cohorts, with AUCs ranging from 0.817 to 0.977. For the test 
set, the highest AUC was yielded by the CT-DL model (0.895), followed by the PET/CT-DL model (0.882), CM model 
(0.879) and PET-DL model (0.817), but no significant difference was revealed between any two models.

Conclusions Deep learning and clinical-metabolic models based on the 18F-FDG PET/CT model could effectively 
identify LUAD patients with HGP. These models could aid in treatment planning and precision medicine.

Clinical trial number Not applicable.
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Background
Lung adenocarcinoma (LUAD) is the most prevalent his-
tological subtype of lung cancer [1]. LUAD has strong 
morphological heterogeneity, with invasive nonmucinous 
adenocarcinoma being divided into lepidic, acinar, papil-
lary, micropapillary and solid types [2]. The micropapil-
lary and solid subtypes are often associated with a worse 
prognosis, even when only a small amount are present 
[3]. In addition, non-traditional cribriform and complex 
glandular patterns also indicate poorer outcomes [4, 5]. 
Identifying high-grade patterns (HGPs) at the time of 
diagnosis is highly important for therapeutic strategies 
and precision medicine. In clinical practice, the confirma-
tion of HGP is usually based on surgical samples. Patients 
who have unresectable LUAD or those who are intolerant 
to surgery rely on invasive percutaneous lung or endo-
bronchial biopsies. However, the amount of biopsy tissue 
is so limited that HGPs are sometimes missed. Thus, a 
noninvasive and practical method for pretreatment pre-
diction of HGP in LUAD patients is needed.

Deep learning (DL) technique has emerged as a novel 
and efficient tool in lung cancer screening, diagnosis 
and prognosis in recent years [6, 7]. Mostly using con-
volutional neural networks (CNNs), DL builds deep net-
works to continuously learn from medical image data 
and achieve both feature selection and model fitting. 
Some researchers have used DL techniques to predict the 
invasiveness risk, gene mutation status and prognosis of 
patients with lung cancer, the results of which are satis-
factory [8–10].

18F-Fluorodeoxyglucose (FDG) positron emission 
tomography/computed tomography (PET/CT), as non-
invasive multimodality imaging equipment, provides 
metabolic and anatomical information concurrently. The 
maximum standardized uptake value (SUVmax) is sig-
nificantly associated with histological grade [11] and is 
higher in LUAD patients with micropapillary and solid 
contents [12]. Another study demonstrated that 18F-FDG 
PET/CT radiomics signatures could achieve promising 
prediction efficacy in identifying the presence of micro-
papillary and solid components in LUAD [13].

Recently, the integration of the DL technique in PET/
CT has drawn the attention of several researchers, which 
were used to discriminate LUAD from lung squamous 
cell carcinoma [14] or predict lung cancer progres-
sion and survival [15], epidermal growth factor receptor 
mutations [16] and cell proliferation [17]. However, no 
PET/CT-based deep learning model for predicting HGP 
in LUAD patients has been reported. In this study, we 
aimed to develop and validate DL models based on 18F-
FDG PET/CT images to predict HGP in LUAD patients. 
We also aimed to establish and validate a traditional pre-
dictive model based on clinical and PET/CT metabolic 

parameters (CM model) and compare the predictive effi-
ciency of the two types of models.

Methods
Patients
Consecutive individuals with lung nodules or masses 
who underwent diagnostic 18F-FDG PET/CT scanning 
between October 2017 and March 2022 at Beijing Hos-
pital were retrospectively recruited first. The inclusion 
criteria were as follows: (1) histopathologically con-
firmed LUAD via surgical resection, and the subtypes 
were detailed in pathological reports; (2) histopathologi-
cally confirmed LUAD via biopsy specimens with HGP 
(the absence of HGP in did not indicate the entire tumor 
lacked HGP); and (3) all the clinical data needed in the 
study were available. The exclusion criteria were as fol-
lows: (1) patients who received any antineoplastic treat-
ment or invasive procedure before PET/CT; (2) patients 
whose time interval between the PET/CT scan and path-
ological examination exceeded 4 weeks; and (3) patients 
whose image quality was not good enough or unsuitable 
for region of interest (ROI) delineation, such as severe 
respiratory artefacts or inflammation-like tumours. HGP, 
including micropapillary and solid subtypes, which are 
recognized by the WHO, as well as cribriform and com-
plex glandular patterns, which are nontraditional but 
have poor prognoses similar to those of the abovemen-
tioned two histologic subtypes, were recorded from ret-
rospective reviews of pathological reports. Finally, 303 
patients were enrolled in the study and randomly divided 
into a training set (n = 208), a validation set (n = 29) and 
a test set (n = 66) at a ratio of 7:1:2. The training set was 
used for model training, the validation set was used for 
model hyperparameter adjustment, and the test set was 
used for assessing model performance. The recruitment 
process is illustrated in the flowchart (Fig.  1), and the 
comparisons among the three sets are detailed in Table 1. 
Potential clinical risk factors, such as age, sex, smoking 
history, carcinoembryonic antigen (CEA), cytokeratin 19 
fragment 21- 1 (CYFRA 21-1) and clinical stage (accord-
ing to the eighth edition of the International Association 
for the Study of Lung Cancer Staging System), were col-
lected from the patients’ medical records.

PET/CT image acquisition
Before intravenous injection of 5.18 MBq/kg 18F-FDG, 
each patient fasted for at least 4 h with a blood glucose 
level less than 11.1 mmol/L. Sixty minutes later, patients 
underwent PET/CT (Biograph mCT, Siemens Health-
care and Vereos digital PET/CT, Philips Medical Sys-
tems) scanning. Acquisition began with a spiral CT scan 
(120  kV, automatic mA or 100-mA tube current, and 
3-mm layer thickness) without contrast medium from 
the skull base to the upper femur in the supine position, 
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Table 1 Comparison of demographic and metabolic features between training set and validation or test set
Training set (n = 208) Validation set (n = 29) Test set (n = 66) Total (n = 303) p1-value p2-value

Sex 0.2763 0.0490
 Male 94 (45.19%) 10 (34.48%) 39 (59.09%) 143 (47.19%)
 Female 114 (54.81%) 19 (65.52%) 27 (40.91%) 160 (52.81%)
Age 66.0 (58.8;75.0) 64.0 (60.0;68.0) 66.0 (60.0;75.5) 66.0 (59.0;74.0) 0.0682 0.6666
HGP 0.6792 0.5975
 Absence 80 (38.46%) 10 (34.48%) 23 (34.85%) 113 (37.29%)
 Presence 128 (61.54%) 19 (65.52%) 43 (65.15%) 190 (62.71%)
Smoking Status 0.0828 0.0704
 Never 139 (66.83%) 24 (82.76%) 36 (54.55%) 199 (65.68%)
 Ever/current 69 (33.17%) 5 (17.24%) 30 (45.45%) 104 (34.32%)
 Clinical Stage 0.6129 0.2184
 I~II 125 (60.10%) 16 (55.17%) 34 (51.52%) 175 (57.76%)
 III~IV 83 (39.90%) 13 (44.83%) 32 (48.48%) 128 (42.24%)
CEA 3.5 (2.1;10.0) 4.2 (1.7;10.0) 3.8 (2.0;8.8) 3.6 (2.0;9.9) 0.8782 0.8950
CYFRA21-1 2.7 (2.1;3.9) 2.6 (2.2;4.7) 3.4 (2.5;4.8) 2.8 (2.2;4.4) 0.7049 0.0197
SUVmax 9.0 (3.0;16.3) 8.6 (3.6;16.1) 13.3 (5.3;18.6) 9.5 (3.1;16.7) 0.9424 0.0735
SUVmean 5.3 (1.7;10.0) 5.0 (2.0;9.2) 7.8 (3.0;10.5) 5.5 (1.8;10.1) 0.9481 0.0831
MTV 2.9 (1.4;7.1) 4.2 (2.8;7.6) 6.0 (2.7;15.5) 3.6 (1.9;8.7) 0.0828 0.0001
TLG 11.9 (4.2;44.6) 22.0 (7.3;66.2) 35.1 (14.2;155.4) 16.1 (5.4;65.8) 0.2359 0.0002
Size (cm) 2.3 (1.5;3.3) 2.5 (2.2;3.6) 2.8 (2.1;4.1) 2.5 (1.7;3.5) 0.1639 0.0069
HGP high-grade patterns, CEA carcinoembryonic antigen, CYFRA21-1 Cytokeratin 19 Fragment, SUVmax maximum standardized uptake value, SUVmean mean 
standardized uptake value, MTV metabolic tumor volume, TLG total lesion glycolysis, p1-value for comparing the training set with the validation set, p2-value for 
comparing the training set with the test set

Fig. 1 Flowchart of patient selection
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immediately followed by a PET scan (2 min per bed posi-
tion for 5 ~ 7 beds) in three-dimensional list mode with 
the same coverage. The PET data were corrected for 
attenuation by CT images and reconstructed via a Gauss-
ian filter with an ordered subset expectation-maximiza-
tion algorithm (2 iterations, 20 subsets for mCT and 3 
iterations, 8 subsets for Vereos).

PET/CT image interpretation and tumor delineation
A nuclear medicine physician (GY with 15 years of expe-
rience) completed the two tasks. When encountering 
uncertain situations, a senior physician (LFG with 30 
years of experience) delineated the lesion. Both doctors 
were blinded to the participants’ clinical and pathologi-
cal information. By semiautomatically drawing the vol-
ume of interest (VOI) on reconstructed PET images, 
metabolic parameters, including the SUVmax, mean 
standardized uptake value (SUVmean), metabolic tumor 
volume (MTV) and total lesion glycolysis (TLG), were 
calculated using a threshold of 40% of the SUVmax. In 
cases where the delineation was not very accurate, minor 
manual adjustments were implemented. On the axial CT 
image, the size of the lesion was measured, which was 
represented by the longest diameter (in cm) on the lung 
window.

All the participants’ PET/CT images were subsequently 
exported from the workstation in Digital Imaging and 
Communications in Medicine format and imported into 
the open-source software 3D Slicer (version 5.2.2,  h t t p : / 
/ w w w . s l i c e r . o r g     ) . Lesions were manually segmented on 
both PET and CT images slice by slice. Each annotated 
tumor was labelled with the presence or absence of HGP. 
Finally, the segmentation image files in the Neuroimaging 
Informatics Technology Initiative format were exported.

Data preprocessing
In the training and validation sets, we first identify the 
slices where the lesion is located from the two-dimen-
sional (2D) PET and CT images according to the manu-
ally annotated segmentation labels. For the sake of 
obtaining more training samples, we selected five slices 
containing the largest tumor area instead of one slice to 
represent each case, which was used as a model input. 
In this way, 1040 and 145 slices were obtained in the 
training and validation set, respectively. In view of the 
classification target and removing the impact of large sur-
roundings, we cropped each slice image along the lesion 
and resized it to a fixed input dimension requested by the 
deep learning network. The selection and cropping pro-
cedure is shown in Fig. 2. In addition, data augmentation 
was performed, including random rotation, mirroring, 
flipping, color enhancement, and Gaussian blurring, to 
increase data diversity. In this way, five times more train-
ing data were obtained. In the test set, we used only one 
slice with the largest lesion size to represent each patient. 
Then, the same cropping and resizing processes were 
performed as in the training and validation sets.

Deep learning model construction
Considering the training sample size as well as the rep-
resentation learning capability, the ResNet-18 resid-
ual network is finally adopted as the feature extractor. 
Additionally, to alleviate overfitting and increase the 
robustness of the DL model, the dropout technique was 
employed. The network architecture is shown in Fig.  3. 
The network consists of a 7 × 7 convolution layer, a 2 × 2 
pooling layer, two ResNet Block1 layers, three ResNet 
Block2 layers and a fully connected layer. For the cropped 
input images, a 7 × 7 convolution kernel was employed 
for feature extraction, and downsampling was conducted 
because of the large receptive field of neighboring pix-
els. Then, the low-level feature maps of the transformed 

Fig. 2 Image preprocessing--selecting and cropping procedures. (A) PET images. (B) CT images.
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image passed several ResNet blocks to obtain the cat-
egory discriminant high-level features. Finally, the 
extracted features are fed into a fully connected layer 
for two-category classification. Compared with Block 1, 
Block 2 contains an additional 1 × 1-convolution layer 
used to match the channel sizes of the input and output. 
Supposing that the input image is x and the extracted fea-
tures are f, the above feature extraction processing of the 
deep learning model can be formulated as Eq. 1:

 f = block2*3 (block1*2( maxpool (conv7*7( x )) )) (1)

The classification performed by the fully connected layer 
on the extracted convolutional features f is formulated in 
Eq. 2:

 Rcls = sigmoid (fc( reshape (f) )) (2)

As shown in Eq. 2, the output features f of the convolu-
tional network were first transformed to match the input 
dimension of the fully connected layer and then passed 
through the sigmoid function to obtain the final classifi-
cation results.

ResNet-18 was optimized by the Adam optimizer with 
an initial learning rate of 1e-3, which decays by 0.5 times 
every 10 epochs. Binary cross-entropy loss was used as 
the loss function, which can be represented as:

 BCE(y, ŷ) = −(y˙log(ŷ) + (1 − y)˙log(1 − ŷ ))

In this function, y denotes the real label of each object 
(0 represents HGP negative, whereas 1 represents HGP 
positive), and y ̂ represents the predicted probability of 
the DL model. Three DL models were trained on PET 
alone, CT alone and PET/CT fusion images, and the out-
puts were the PET-DL model, CT-DL model and PET/
CT-DL model, respectively.

Establishment of clinical-metabolic nomogram prediction 
model
A nomogram prediction model was also built based on 
the training set, with the clinical and metabolic variables 

selected via backwards stepwise logistic regression. The 
best model and included variables were determined 
by the Akaike information criterion (AIC) values. The 
CM model was subsequently visualized in the form of a 
nomogram.

Statistical analysis
R software (version 4.3.1, Vienna, Austria; URL  h t t p s : 
/ / w w w . R - p r o j e c t . o r g /     ) was used for statistical  a n a l y s i s 
. Continuous variables with a normal distribution are 
expressed as the means ± standard deviations, whereas 
other variables are expressed as medians (interquartile 
ranges). Categorical variables are presented as numbers 
(percentages). Comparisons of continuous variables were 
conducted via Student’s t-test or the Wilcoxon/Kruskal‒
Wallis rank sum test, and categorical variables were ana-
lysed via Pearson’s chi-square test or Fisher’s exact test. 
The “MASS” package was used to select optimal variables 
and establish a predictive model, with odds ratios (ORs) 
with 95% confidence intervals (CIs) being calculated. The 
nomogram was drawn via the “rms” package. For the per-
formance assessment, we used mainly the receiver oper-
ating characteristic (ROC) curve and the area under the 
curve (AUC). Furthermore, we calculate the F1 score, 
accuracy, sensitivity and precision of different models to 
reflect their prediction ability more comprehensively. A 
Delong test was conducted to compare the AUCs of the 
DL models and CM model in the test set. Decision curve 
analysis (DCA) was performed to assess the clinical util-
ity by quantifying the net benefits under different thresh-
old probabilities for the test set. A two-sided p value less 
than 0.05 was interpreted as statistically significant.

Results
Patient characteristics
Among the 303 LUAD patients, 143 (47.2%) were males 
and 160 (52.8%) were females, with ages ranging from 27 
to 88 years (median: 66.0 years); 199 (65.7%) were non-
smokers, whereas 104 (34.3%) were former or current 
smokers. With respect to the clinical stage, 175 (57.8%) 
patients were classified as early stage (stage I or II), 
and 128 were classified as advanced stage (III or IV). In 

Fig. 3 Architecture of ResNet-18 network
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addition, 190 (62.7%) and 113 (37.3%) patients had LUAD 
with or without HGP, respectively. Among the training, 
validation and test sets, the HGP positivity rate was not 
significantly different, with a p value of 0.8236. Table  2 
summarizes the demographic and metabolic characteris-
tics of the patients. The metabolic parameters showed no 
significant difference between the two PET/CT scanners 
in HGP positive patients, with all p values > 0.05 (Table 
S1).

Prediction performance of DL models
To obtain the best prediction efficacy, the dropout rate of 
the fully connected layer was adjusted based on the CT 
images of the test set. The highest AUC value in the test 
set was achieved when the dropout rate was set at 0.55. 
This algorithm was then used for training PET and PET/
CT fusion images, and the performance metrics are dis-
played in Fig.  4. In the training set, the PET/CT model 
achieved the highest AUC (0.890), F1 score (0.776) and 
sensitivity (0.873), whereas the PET model yielded the 
highest accuracy (0.803) and precision (0.892). In the 
validation set, the highest AUC, F1 score, accuracy and 
sensitivity were generated by the PET/CT model, with 
corresponding values of 0.977, 0.894, 0.901 and 0.986, 
respectively. The PET model exhibited the best precision 
(0.913). In the test set, the CT model was at the top of the 
AUC and sensitivity lists, with values of 0.895 and 0.920, 
respectively, the PET model had the highest accuracy 
(0.789) and precision (0.837), while the PET/CT model 
contributed the highest F1 score (0.752). For further vali-
dating the robustness and reliability of the proposed DL 

models, we conducted 5-fold cross-validation in training 
and test datasets. PET/CT-DL model showed the high-
est mean AUC (0.908), accuracy (0850) and sensitivity 
(0.864) while PET-DL model demonstrated the highest 
F1 score (0.876) and specificity (0.934). The results were 
detailed in Supplementary Table S2. In addition, we 
applied Grad-CAM [18] in four patients in the test set 
to identify the key image features contributing to predic-
tion, which was displayed in Fig. 5.

Establishment and performance assessment of the CM 
model
After backwards stepwise regression selection, five vari-
ables were ultimately included in the predictive model: 
clinical stage (OR: 7.30; 95% CI: 2.46–26.37), CYFRA 
21-1 (OR: 1.18; 95% CI: 0.96–1.57), SUVmean (OR: 1.31; 
95% CI: 1.17–1.49), TLG (OR: 0.994; 95% CI: 0.990–
1.000) and size (OR: 1.37; 95% CI: 0.95–2.02). The AIC 
values of the initial and final models were 190.1 and 
180.74, respectively. The details are shown in Table 3.

The CM model was visualized via a nomogram (Fig. 6). 
The performance metrics (Fig.  4) revealed good predic-
tive ability, with AUCs of 0.893 (95% CI: 0.848 ~ 0.938), 
0.916 (95% CI: 0.857 ~ 1.000) and 0.879 (95% CI: 
0.797 ~ 0.961) in the training, validation and test sets, 
respectively. The F1 score, accuracy, sensitivity and preci-
sion of the CM model in the three cohorts are also dis-
played in Fig. 4.

Table 2 Demographic and metabolic characteristics of included LUAD patients
Variables Training set (n = 208) Validation set (n = 29) Test set (n = 66)

HGP (+) HGP (-) p-value HGP (+) HGP (-) p-value HGP (+) HGP (-) p-value
n = 128 n = 80 n = 19 n = 10 n = 43 n = 23

Age (years) 67.0 (60.0, 76.0) 64.0 (58.0, 73.2) 0.1811 62.4 ± 7.4 63.2 ± 10.6 0.8067 68.9 ± 12.4 63.4 ± 8.1 0.0360
Sex 0.0195 0.4137 0.0592
 Male 66 (70.21%) 28 (29.79%) 8 (80.00%) 2 (20.00%) 29 (74.36%) 10 (25.64%)
 Female 62 (54.39%) 52 (45.61%) 11 (57.89%) 8 (42.11%) 14 (51.85%) 13 (48.15%)
Smoking Status 0.0478 0.6328
 Never 79 (56.83%) 60 (43.17%) 15 (62.50%) 9 (37.50%) 19 (52.78%) 17 (47.22%) 0.0208
 Ever/Current 49 (71.01%) 20 (28.99%) 4 (80.00%) 1 (20.00%) 24 (80.00%) 6 (20.00%)
 Clinical Stage < 0.0001 0.0084 < 0.0001
 I~II 50 (40.00%) 75 (60.00%) 7 (43.75%) 9 (56.25%) 14 (41.18%) 20 (58.82%)
 III~IV 78 (93.98%) 5 (6.02%) 12 (92.31%) 1 (7.69%) 29 (90.62%) 3 (9.38%)
CEA 5.2 (2.5;14.3) 2.4 (1.5;3.8) < 0.0001 6.5 (2.4;16.4) 2.8 (1.5;4.0) 0.1299 4.6 (2.9;12.1) 2.7 (1.6;3.7) 0.0022
CRFRA21-1 3.2 (2.2;4.6) 2.5 (2.0;2.9) 0.0001 3.7 (2.4;6.1) 2.3 (1.9;2.6) 0.0735 4.2 (2.8;5.8) 2.7 (2.0;3.2) 0.0010
SUVmax 14.0 (8.4;21.0) 2.5 (1.5;6.8) < 0.0001 14.0 ± 7.7 3.9 ± 2.5 < 0.0001 14.7 (9.1;25.2) 3.1 (2.0;12.7) < 0.0001
SUVmean 8.3 (4.8;12.3) 1.5 (0.9;4.0) < 0.0001 7.8 (4.7;10.5) 1.8 (1.2;2.9) 0.0003 8.7 (5.4;14.8) 1.7 (1.1;7.4) < 0.0001
MTV 3.4 (1.3;8.7) 2.7 (1.8;4.9) 0.2258 5.4 (2.8;8.1) 3.7 (3.0;6.8) 0.6357 7.1 (3.7;16.6) 4.1 (2.2;9.2) 0.0633
TLG 29.3 (9.6;72.2) 4.9 (2.1;12.3) < 0.0001 44.4 (10.6;71.2) 5.0 (3.6;18.4) 0.0029 70.4 (28.2;194.3) 11.4 (3.0;37.3) 0.0001
Size (cm) 2.8 (1.9;3.6) 1.8 (1.2;2.5) < 0.0001 2.8 ± 0.8 2.5 ± 1.2 0.4420 3.0 (2.3;4.5) 2.3 (1.6;2.8) 0.0049
HGP high-grade patterns, CEA carcinoembryonic antigen, CYFRA21-1 Cytokeratin 19 Fragment, SUVmax maximum standardized uptake value, SUVmean mean 
standardized uptake value, MTV metabolic tumor volume, TLG total lesion glycolysis



Page 7 of 11Guo et al. BMC Medical Imaging          (2025) 25:138 

Comparisons of the predictive efficacy and clinical utility of 
DL models and CM model for test set
As shown in Fig.  7, the CT-DL model exhibited the 
best predictive performance in the test set, followed by 
the PET/CT-DL model, CM model and PET-DL model. 
However, no significant differences were revealed 
between any two models through Delong’s test (all 
p > 0.05). The details are displayed in Table 4.

According to the DCA (Fig. 8), all the DL models and 
CM model had good net benefits when the threshold 
probability was above 0.1 in the test set, demonstrating 
the potential clinical utility of the PET/CT-based DL and 
CM models.

Discussion
LUAD with HGP is often associated with poorer clinical 
outcomes and needs intensive surveillance strategies [19]. 
In this study, we established two types of models based on 
18F-FDG PET/CT: one integrated traditional clinical and 
metabolic parameters, while the other included image-
based deep learning models. All the models exhibited 
good ability to predict HGP, with AUCs of 0.817, 0.895, 
0.882 and 0.897 for the PET-DL model, CT-DL model, 
PET/CT-DL model and CM nomogram model in the test 

set, respectively. These results suggest that both the PET/
CT-based traditional clinical-metabolic and deep learn-
ing predictive methods are reliable in the clinic.

HGP in lung adenocarcinoma tend to be more aggres-
sive in terms of tumor behavior, leading to a high risk of 
lymph node metastasis and early locoregional recurrence 
[20]. Research published recently revealed a potential 
molecular mechanism [21]. The increased expression 
of FAM83A-AS1 (a type of long noncoding RNA) in 
HGP increases the degree of malignancy and glycolysis 
in LUAD via the miR-202-3p/hexokinase II (HK2) axis. 
This finding explains why LUAD with HGP is associated 
with increased FDG uptake, which has been reported in 
some studies [11, 22, 23]. In our study, all the 18F-FDG 
PET/CT metabolic parameters were greater in LUAD 
patients with HGP than in those without HGP, which was 
in line with the findings of previous studies. Moreover, 
some clinical characteristics are also related to HGP. Li 
et al. [24] retrospectively analysed 3100 invasive LUAD 
samples and reported that tumors with solid or micro-
papillary components presented higher CEA and CYFRA 
levels, larger tumor sizes and a greater proportion of 
males. Another study by Wang et al. [25] revealed that 
there were more males in the HGP-positive group, as well 

Fig. 4 Predictive performance of the DL and CM models in LUAD. Performance metrics of models for predicting HGP in the (A) training set, (B) validation 
set, and (C) test set
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as larger lesions and many more smokers. Higher TNM 
stages are also more common in patients with micropap-
illary or solid patterns [13]. The abovementioned results 
were confirmed by our results. After backwards stepwise 
regression, the model combining clinical and metabolic 
features ultimately included five variables, namely, clini-
cal stage, CYFRA21-1, SUVmean, TLG and tumor size, 
yielding excellent prediction performance.

Machine learning-based radiomics, which has the 
ability to capture first-order to higher-order features 
from medical images, has been employed for HGP pre-
diction in LUAD patients in recent years. By extracting 

radiomic features from PET/CT data, Zhou et al. con-
structed a radiomic-clinical combined model that could 
discriminate LUAD patients with HGP from those with-
out HGP well, with AUCs ranging from 0.859 ~ 0.880 in 
the training and two test cohorts [13]. Another PET/CT-
based radiomic model from Choi et al. revealed that, in 
comparison with the conventional predictor SUVmax, 
the radiomic model demonstrated better performance 
in identifying aggressive LUAD subtypes, achieving an 
accuracy of 83.5% and a high negative predictive value 
of 95.6% [26]. However, radiomic feature extraction and 
selection could be laborious tasks, which hinders their 

Table 3 Backward Stepwised regression for CM model
Variables(references) Initial model (AIC = 190) Ultimate model (AIC = 180.74)

OR (95%CI) p-value OR (95%CI) p-value
Age 1.00 (0.96–1.04) 0.992
Sex (female) 0.57(0.22–1.41) 0.223
Smoking status (ever/current) 0.88(0.32–2.41) 0.807
Clinical stage (III~IV) 6.33 (2.00-24.44) 0.003 7.30 (2.46–26.37) < 0.001
CEA 1.00 (0.99–1.01) 0.603
CYFRA211 1.20 (0.96–1.60) 0.190 1.18 (0.96–1.57) 0.200
SUVmax 1.02 (0.56–2.23) 0.951
SUVmean 1.29 (0.36–3.50) 0.658 1.31 (1.17–1.49) < 0.001
MTV 1.04 (0.93–1.15) 0.507
TLG 0.99 (0.98–1.003) 0.103 0.99 (0.98-1.00) 0.04
Size 1.28 (0.81–2.05) 0.300 1.37 (0.95–2.02) 0.096
CM clinical-metabolic, AIC Akaike information criterion, OR odds ratios, CI confidence intervals, CEA carcinoembryonic antigen, CYFRA21-1 Cytokeratin 19 Fragment, 
SUVmax maximum standardized uptake value, SUVmean mean standardized uptake value, MTV metabolic tumor volume, TLG total lesion glycolysis

Fig. 5 Grad-CAM of ResNet-18 based DL models in four samples of test set
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feasibility in the clinic. Deep learning techniques based 
on convolutional neural networks can discover high-level 
semantic information and serve as alternatives to hand-
crafted radiomic methods [27]. For HGP detection in 
pathology, deep learning methods have been verified to 
be of great assistance to pathologists, achieving a preci-
sion of 0.775 and a recall of 0.896 for the identification 
of micropapillary patterns in one study [28] and AUCs 
of greater than or equal to 0.85 for micropapillary, solid 
and cribriform pattern diagnosis in another study [1]. 
Nevertheless, few publications have reported the utiliza-
tion of deep learning in the prediction of HGP in LUAD 
patients on the basis of PET/CT. Therefore, in the cur-
rent study, we adopted parameter-compact ResNet as the 
primary framework to build prediction models. To avoid 
overfitting during training and enhance the robustness 
of the model for test set data, several operations were 
conducted, including data augmentation and the drop-
out technique. The satisfactory results implied that the 

Table 4 Performance comparisons of DL models and CM model 
for the test set

Z value p-value
CT-DL model VS PET-DL model 1.0039 0.318
CT-DL model VS PET/CT-DL model 0.56949 0.569
PET-DL model VS PET/CT-DL model -0.79473 0.428
CT-DL model VS CM model 0.27056 0.787
PET-DL model VS CM model -0.78296 0.435
PET/CT-DL model VS CM model 0.050187 0.960
CM clinical-metabolic, DL deep learning

Fig. 8 DCA curves of DL and CM models for predicting high-grade pat-
terns of lung adenocarcinoma in test set

 

Fig. 7 ROC curves of DL and CM models for predicting high-grade pat-
terns of lung adenocarcinoma in test set

 

Fig. 6 Nomogram of the CM model for predicting high-grade patterns of lung adenocarcinoma
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data-driven deep learning strategy could automatically 
learn the discriminant category features effectively from 
CT and PET images and facilitate the classification abil-
ity in distinguishing LUAD with HGP from those without 
HGP.

The comparison results in the test set revealed that 
the DL models were not significantly better than the CM 
model in the test cohort. Even in the training cohort, the 
AUCs of the DL models were lower than those of the CM 
model, leading us to doubt the advantages of the DL tech-
niques. Nevertheless, it is worth noting that the DL mod-
els were established on the basis of images only, whereas 
the clinic-metabolic model included two clinical charac-
teristics, stage and serum CRFRA21-1, which may con-
tribute to the prediction efficacy. Previous publications 
have verified that combining classic clinical parameters 
with DL features could increase the predictive capacity of 
these methods. Like CT-based DL models for predicting 
lymph node metastasis in colorectal cancer, the model 
yielded the highest AUC after clinical factors were inte-
grated into the DL model [29]. Shao et al. also developed 
several transfer learning-based PET/CT models for the 
prediction of EGFR mutations in LUAD and reported 
that the three-stream transfer learning model integrating 
PET, CT and clinical data was the most promising, with 
an AUC of 0.833 in the training set and 0.730 in the test 
set [30]. Although the performance preponderance of the 
DL models was not remarkable, DL approaches could 
still offer more confidence in HGP prediction because of 
their powerful image feature extraction and classification 
capability. In further studies, we aim to construct models 
that are more efficient by combining image-based data 
with clinical features.

There are several limitations of our research. First, as 
a data-driven computer technology, the sample size was 
not large enough for the deep learning technique. In 
addition to the DL-CT model, the DL-PET and DL-PET/
CT models both demonstrated better predictive effi-
cacy in the training set than in the test set. This overfit-
ting phenomenon could impact the model generalization 
performance. Second, this was a single-center study, and 
the lack of external or prospective validation weakened 
the reliability of the model to some extent. Finally, the 
retrospective nature of this study may have led to selec-
tion bias. Large-scale and multicenter studies are needed 
to guarantee model efficiency. In subsequent study, the 
state-of-the art CNN networks and radiomics features 
could be applied to increase the discrimination capacity 
of HGP in LUAD.

Conclusions
The deep learning and clinic-metabolic models based 
on 18F-FDG PET/CT showed promising predictive per-
formance in identifying high-grade patterns in lung 

adenocarcinoma, especially the deep learning models, 
which verified their powerful automatic learning and 
feature recognition abilities. This noninvasive prediction 
method could further broaden the clinical utility of 18F-
FDG PET/CT in lung adenocarcinoma.
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