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Abstract
Objective Pituitary adenomas (PAs), craniopharyngiomas (CRs), Rathke’s cleft cysts (RCCs), and tuberculum sellar 
meningiomas (TSMs) are common sellar region lesions with similar imaging characteristics, making differential 
diagnosis challenging. This study aims to develop and evaluate machine learning models using MRI-based radiomics 
features to differentiate these lesions.

Methods Two hundred and fifty-eight pathologically diagnosed sellar region lesions, including 54 TSMs, 81 CRs, 
61 RCCs and 63 PAs, were retrospectively studied. All patients underwent conventional MR examinations. Feature 
extraction and data normalization and balance were performed. Extreme gradient boosting (XGBoost), support vector 
machine (SVM), and logistic regression (LR) models were trained with the radiomics features. Five-fold cross-validation 
was used to evaluate model performance.

Results The XGBoost model showed better performance than the SVM and LR models built from contrast-enhanced 
T1-weighted MRI features (balanced accuracy 0.83, 0.77, 0.75; AUC 0.956, 0.938, 0.929, respectively). Additionally, these 
models demonstrated significant differences in sensitivity (P = 0.032) and specificity (P = 0.045). The performance of 
the XGBoost model was superior to that of the SVM and LR models in differentiating sellar region lesions by using 
contrast-enhanced T1-weighted MRI features.

Conclusion The proposed model has the potential to improve the diagnostic accuracy in differentiating sellar region 
lesions.
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Introduction
The most common sellar region lesions, including pitu-
itary adenomas (PAs), craniopharyngiomas (CRs), 
Rathke’s cleft cysts (RCCs) and tuberculum sellar 
meningiomas (TSMs), may present with similar clinical 
symptoms [1, 2]. Although physical and laboratory exam-
inations are important in the diagnosis of these diseases, 
magnetic resonance imaging (MRI) is a particularly vital 
tool for obtaining a precise diagnosis.

Some PAs can infiltrate the sellar floor, cavernous sinus, 
and suprasellar region, resembling TSMs. Additionally, 
approximately 48% of PAs contain cystic components [3], 
and due to acute or chronic bleeding, they may exhibit 
varying signal intensities on T1- or T2-weighted MRI. 
CRs and RCCs also show diverse signal characteristics on 
MRI due to differences in lesion composition and intra-
cystic protein levels [4]. These similarities in imaging fea-
tures pose challenges for differential diagnosis [5]. Wen 
et al. [6] reported that 50% of RCCs were preoperatively 
misdiagnosed as PAs and 13.6% as CRs. Accurate diagno-
sis of these lesions is crucial as the surgical approach or 
treatment varies depending on the specific disease.

Previous studies have demonstrated that machine 
learning (ML) performs well in classifying and predict-
ing PA subtypes on T2-weighted images (T1WI) [6, 7]. 
Huang et al. [4] showed good performance in diagnos-
ing CR pathological subtypes on T1-weighted images 
(T1WI). However, there has been only one study [8] uti-
lizing ML to analyze anterior skull base lesions based on 
contrast-enhanced T1-weighted images (CE-T1WI), and 
most prior studies relied on only a single MRI sequence.

Radiomics can be used to extract high-dimensional fea-
tures from MRI of different sequences, which may help 
to improve diagnostic accuracy. This study is to develop 
ML models that can differentiate common sellar region 
lesions, including PAs, CRs, RCCs, and TSMs, using 
radiomics features from MRI. We hypothesize that ML, 
particularly with CE-T1WI, can improve diagnostic accu-
racy and assist in clinical decision-making by reliably dis-
tinguishing between these lesions, ultimately enhancing 
patient outcomes.

Materials and methods
Patient population
A series of 259 patients with preoperative MR images 
and common sellar lesions confirmed by postoperative 
pathology were enrolled from the Neurosurgery Depart-
ment of the West China Hospital, Sichuan University, 
between January 2016 and February 2021. The lesions 
included 54 cases of TSM, 81 cases of CR, 61 cases of 
RCC and 63 cases of PA.

The inclusion criteria were as follows: (1) diagnosis 
confirmed by postoperative pathology; (2) MR images of 
sufficient quality to provide lesion information; and (3) all 

MR images obtained within one week before surgery. The 
exclusion criteria were as follows: (1) previous operations 
or radiosurgery, (2) lesion diameter less than 1  cm [9], 
and (3) obvious artifacts on MR images.

Clinical MRI assessment
All patients had undergone MRI examinations, including 
T1WI, T2WI, and CE-T1WI, on a device (Siemens Trio, 
3.0 T, Germany) and a cranial MRI coil. All images were 
obtained with a 2D spin-echo sequence in coronal MRI 
mode. The parameter settings for each sequence were 
as follows: (1) T1WI: repetition time (TR) 600 ms, echo 
time (TE) 8.1 ms, field of view (Fov) 200 mm, Voxel size 
0.8*0.6*2.0  mm; (2) T2WI: TR 4000 ms, TE 93 ms, Fov 
220 mm, Voxel size 0.8*0.6*2.0 mm; (3) CE-T1WI: TR 232 
ms, TE 8.1 ms, Fov 200 mm, Voxel size 0.9*0.6*2.0 mm.

Lesion delineation and radiomic feature selection
ITK-SNAP software (version 3.8.0, www.itk-snap.org) 
was used to load all MRI sequences. The sellar region 
lesions of each slice on each MRI sequence were delin-
eated as the region of interest [10]. The delineation of the 
ROI was performed by comparing different sequences 
and carefully separating the lesion from adjacent brain 
tissues using surrounding anatomical structures as 
references.

One neurosurgeon (with 14 years of working experi-
ence) and one neuroradiologist (with 13 years of work-
ing experience) performed this manual delineation. Then, 
another expert neurosurgeon and radiologist reviewed 
the results together. Any disagreements regarding the 
lesion boundaries were documented and resolved by the 
senior neurosurgeon and radiologist.

The extraction of radiomic features was based on the 
segmentation results described in the previous para-
graph. Using the Simple ITK software library  (   h t t p : / / w w 
w . s i m p l e i t k . o r g /     ) , individual DICOM images of each MRI 
sequence for each patient were loaded and integrated 
into a three-dimensional near-raw raster data (NRRD) 
image. Similarly, each image slice with an ROI mask was 
processed to generate a three-dimensional labeled NRRD 
image. All three sequences were acquired using the same 
localization images during scanning, facilitating uniform 
ROI delineation across the sequences. Subsequently, 
the images were standardized and subjected to wavelet 
transformation.

MRI images from 40 randomly selected patients (10 
cases each of TSM, CR, RCC, and PA) were used to assess 
intra- and inter-observer consistency. ROIs on T1WI, 
T2WI, and CE-T1WI were independently segmented 
by a neurosurgeon and a neuroradiologist within the 
same time frame to evaluate inter-observer agreement 
for radiomic feature extraction. To assess intra-observer 
reproducibility, the neurosurgeon re-delineated the ROIs 

http://www.itk-snap.org
http://www.simpleitk.org/
http://www.simpleitk.org/
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following the same protocol after a two-week interval. 
Agreement was evaluated using the intraclass correla-
tion coefficient [11], with features achieving an ICC > 0.75 
considered to have good reliability [12]. Upon analysis, all 
extracted features demonstrated ICCs above 0.75.

PyRadiomics 1.2.0 ( h t t p  s : /  / p y r  a d  i o m  i c s  . r e a  d t  h e d o c s . i o 
/) was used to extract radiomics features from the images 
in each MR sequence. After feature extraction, a total of 
100 features were obtained from the original images of 
each MRI sequence, which are shown in Table 1. In addi-
tion, 688 texture features of the same type were extracted 
from 8 wavelet-transformed images (688/8 = 86 features 
per transformation, which did not include shape fea-
tures). Therefore, 788 individual radiomic features were 
extracted from each MRI sequence.

Data processing
All patients were randomly divided into 5 subsets, of 
which 4 were randomly used for training the model, 
while the remaining subset was used for validation. First, 
the training set was normalized with standard software 
( h t t p  s : /  / s c i  k i  t - l  e a r  n . o r  g /  s t a  b l e  / m o d  u l  e s /  p r e  p r o c  e s  s i n g 
. h t m l). To balance the data, number of the TSM, RCC, 
and PA samples in the training set was increased to 65 
through the SMOTE [13] algorithm ( h t t p  s : /  / p y p  i .  o r g  / p r  
o j e c  t /  i m b a l a n c e d - l e a r n / /), the number of samples in the 
CR training set. Subsequently, after training, the normal-
ized model was applied to the validation set.

Machine learning methods and model development
Three machine learning methods were used for model 
development based on their proven ability to deliver high 
and stable performance in medical imaging studies [14]. 
(1) Support vector machine, SVM ( h t t p  s : /  / s c i  k i  t - l  e a r  n . o 
r  g /  s t a  b l e  / m o d  u l  e s / s v m . h t m l, scikit-learn software  p a c k 
a g e s ) , (2) Logistic regression, LR ( h t t p  s : /  / s c i  k i  t - l  e a r  n . o r  
g /  s t a  b l e  / m o d  u l  e s /  l i n  e a r _  m o  d e l  . h t  m l # l  o g  i s t i c - r e g r e s s i o 
n), (3) Extreme Gradient Boosting, XGBoost, ( h t t p  s : /  / x g 
b  o o  s t .  r e a  d t h e  d o  c s . i o / e n / l a t e s t /). The parameter settings 
for XGBoost included the gbtree tree model as the base 
classifier, n_estimatores = 400, max_depth = 10, learn-
ing_rate = 0.2, and the remaining parameters were set to 
default values.

Five-fold cross-validation was used for all models to 
evaluate their performance in the differential diagno-
sis of sellar lesions. In our study, the training and test-
ing datasets in each fold of the five-fold cross-validation 
were strictly independent, with no overlap of patient 
data between the two, ensuring an unbiased evaluation 
of model performance. The overall flow of the radiomics 
processing is shown in Fig. 1.

To assess computational efficiency, inference time was 
measured on the test subset of the best-performing fold 
during the five-fold cross-validation. GridSearchCV was 
used to optimize model hyperparameters within each 
training set of the folds [15]. After the optimal configura-
tion was identified, the final model from the best fold was 
applied to its held-out test data, and the forward infer-
ence time was recorded. Since the variation in inference 
time across different folds was minimal, the reported 
value provides a representative estimate of the model’s 
runtime performance in real-world applications.

Hardware and software setup
All computations were performed on a desktop server 
equipped with an NVIDIA GTX 1080Ti GPU (11 GB 

Table 1 Radiomics features in MRI images
Radiomics features Quantity
First-order statistical features 18
Shape features 14
Gray level cooccurrence matrix features 22
Gray level run length matrix 16
Gray level size zone matrix 16
Gray level dependence matrix 14

Fig. 1 The overall process of radiomics processing

 

https://pyradiomics.readthedocs.io/
https://pyradiomics.readthedocs.io/
https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/preprocessing.html
https://pypi.org/project/imbalanced-learn//
https://pypi.org/project/imbalanced-learn//
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
https://xgboost.readthedocs.io/en/latest/
https://xgboost.readthedocs.io/en/latest/
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GDDR5X, 64 GB RAM, Ubuntu 18.04). The implemen-
tation of the model was carried out in Python 3.7, using 
Keras (https://keras.io/)and Tensorflow  (   h t t p s : / / w w w . t e n 
s o r fl  o w . o r g /     ) open-source libraries.

Statistical methods
Continuous variables are expressed as the means ± stan-
dard deviations with SPSS v.23.0 software (Armonk, New 
York, United States). The nonparametric Kruskal‒Wallis 
H test was used to evaluate the sensitivity, specificity, and 
accuracy, and a two-sided P value < 0.05 was considered 
to indicate statistical significance. Balanced accuracy 
normalizes the true positive rate and the true negative 
rate by the number of positive and negative samples and 
divides the sum into two parts.

 
Balanced accuracy = TPR + TNR

2

 TPR : True positive rate, TNR : True negative rate

A confusion matrix was created to evaluate the per-
formance in differentiating sellar lesions for each MRI 
sequence, including sensitivity, specificity, and accu-
racy. Additionally, the area under the receiver operat-
ing characteristic (ROC) curve (AUC) was calculated. 
The macroaveraged ROC curve was used to evaluate 
the performance of the multiclass classifier. To statisti-
cally validate the AUC values, we adopted the nonpara-
metric method proposed by Hanley & McNeil [16], and 
a macro-averaged AUC with its 95% confidence interval 
was calculated based on the t-distribution [17].

Results
Clinical characteristics of the four sellar lesions
The clinical characteristics of patients with sellar lesions 
are shown in Table  2. Among female patients, the inci-
dence of TSMs (57.41%), RCCs (55.74%) and PAs 
(53.97%) was slightly higher than that of CRs (48.15%), 
but the difference was not significant (P = 0.745). The 
average age of the patients with CR was 51.62 years, 
which was younger than that of patients with the other 
three sellar lesions. The average diameter of the RCCs 
was 2.48  cm, which was the largest among the sellar 
lesions. However, the differences among the diameters 
of these four lesions were not significant (P = 0.754). The 

clinical laboratory examination data is shown in the sup-
plementary file (Table 1).

Balanced accuracy and confusion matrix for each ML 
model
According to the balanced accuracy, the XGBoost, SVM 
and LR models were able to differentiate common sellar 
lesions with the features from each MRI sequence, while 
XGBoost showed the best performance (Table  3). More 
specifically, when using CE-T1WI features, the balanced 
accuracy was 0.83 in the XGBoost model, which was 
much higher than that in the SVM model (0.77) and LR 
model (0.75). In the validation set, the mean confusion 
matrix of each model in each MRI sequence were calcu-
lated by five-fold cross-validation (Fig.  2). Based on the 
results of the mean confusion matrix, the performance of 
the XGBoost model (Fig. 2B, E, H) was better than that 
of the SVM (Fig. 2A, D, G) and LR (Fig. 2C, F, I) models 
with the features from the T1WI, T2WI, and CE-T1WI 
sequences. The numbers in the figure indicate the num-
ber of patients. The performance of each fold for the 
confusion matrix of each model in each MRI sequence is 
shown in supplementary file (Figs. 1, 2 and 3).

Performance of the XGBoost model in differentiating sellar 
lesions with features from each MRI sequence
The XGBoost model had good performance in differen-
tiating the four common sellar lesions with the features 
from each MRI sequence. The sensitivity, specificity, and 
accuracy in differentiating TSMs, CRs, RCCs and PAs are 
shown in Table 4. The results showed that there were sig-
nificant differences in sensitivity (P = 0.032) and specific-
ity (P = 0.045) when using features from CE-T1WI than 
when using features from the other two MRI sequences. 
The accuracy was more than 0.90 in contrast-enhanced 
T1-weighted, which was not significantly different 

Table 2 Clinical characteristics of patients with four sellar lesions
Variables TSMs CRs RCCs PAs P-Value
Sex(%) 0.745
 Male 23(42.59%) 42(51.85%) 27(44.26%) 29(46.03%)
 Female 31(57.41%) 39(48.15%) 34(55.74%) 34(53.97%)
Age 46.67 ± 11.59 51.62 ± 18.55 43.64 ± 14.77 45.98 ± 13.52 0.509
Diameters (cm) 2.16 ± 0.67 2.09 ± 0.64 2.48 ± 0.77 2.06 ± 0.70 0.754

Table 3 Balanced accuracy in differentiating common sellar 
lesions in MRI sequences
ML model MRI sequences

T1-weighted T2-weighted contrast-
enhanced 
T1-weighted

SVM 0.61 0.72 0.77
XGBoost 0.62 0.75 0.83
LR 0.60 0.72 0.75

https://keras.io/)an
https://www.tensorflow.org/
https://www.tensorflow.org/
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Table 4 The performance of XGBoost model in differentiating sellar lesions in each MRI sequence
Variables MRI sequence TSMs CRs RCCs PAs P-value
Sensitivity T1-weighted 0.60 0.62 0.64 0.61 0.726

T2-weighted 0.76 0.84 0.79 0.76 0.059
contrast-enhanced T1-weighted 0.87 0.82 0.83 0.78 0.032

Specificity T1-weighted 0.88 0.82 0.89 0.87 0.432
T2-weighted 0.91 0.90 0.94 0.90 0.051
contrast-enhanced T1-weighted 0.94 0.98 0.93 0.93 0.045

Accuracy T1-weighted 0.82 0.76 0.84 0.79 0.353
T2-weighted 0.88 0.88 0.91 0.87 0.054
contrast-enhanced T1-weighted 0.93 0.93 0.92 0.90 0.215

Fig. 2 Mean confusion matrix for the three models in different MRI sequences. Mean confusion matrix in SVM model (A, D and G), in XGBoost model (B, 
E and H) and in LR model (C, F and I) in T1, T2-weighted and contrast-enhanced T1-weighted
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(P = 0.215). The XGBoost model has the best perfor-
mance when using the CE-T1WI features.

Macro-average ROC curve in differentiating sellar lesions
The macro-average shows the performance of the ML 
models on the entire data set, and it can be used to evalu-
ate the performance of the ML model overall without 
specifically analyzing the performance in a certain cat-
egory. The macro-average ROC curves for the training 
set, derived from different MR sequences and different 
ML models, all demonstrated AUC values close to 1. Fig-
ure 3 shows one of the five-fold cross-validations in the 
validation set for the three ML models. The XGBoost 
model’ s macro-average ROC curves for T1-weighted 
(Fig. 3D), T2-weighted (Fig. 3E), and contrast-enhanced 
T1-weighted imaging features (Fig.  3F) outperformed 
those of the SVM (Fig. 3A-C) and LR models (Fig. 3G-I), 

with all models using corresponding features. The 
macro-average ROC curve for the evaluation of the other 
fold for each MR sequence was showed in the supple-
mentary file (Figs.  4, 5, 6). The mean average AUC val-
ues of the XGBoost model constructed with T1-, T2-, 
and contrast-enhanced T1-weighted imaging features 
were 0.852 (95% CI: 0.816–0.889; Z = 26.92, P < 0.001), 
0.931 (95% CI: 0.898–0.965; Z = 35.57, P < 0.001) and 
0.956 (95% CI: 0.942–0.970; Z = 90.57, P < 0.001), respec-
tively. In the SVM model, the values were 0.846 (95% 
CI: 0.827–0.865; Z = 50.68, P < 0.001), 0.925 (95% CI: 
0.906–0.944; Z = 62.41, P < 0.001) and 0.938 (95% CI: 
0.915–0.961; Z = 51.70, P < 0.001), respectively, while in 
the LR model, they were 0.820 (95% CI: 0.789–0.851; 
Z = 28.75, P < 0.001), 0.922 (95% CI: 0.884–0.960; 
Z = 30.92, P < 0.001) and 0.929 (95% CI: 0.907–0.950; 
Z = 55.38, P < 0.001) (supplementary file (Table  2)). The 

Fig. 3 Macroaverage curves of these ML models in different MRI sequences. The performance of XGBoost model on T1-weighted (D), T2-weighted 
(E) and contrast-enhanced T1-weighted (F) was better than that of SVM model (A-C) and LR model (G-I) constructed with the corresponding features. 
The average AUC values of the XGBoost model on T1-weighted, T2-weighted, and contrast-enhanced T1-weighted sequences were 0.8523, 0.9312, and 
0.9560, respectively; for the SVM model, the corresponding values were 0.8460, 0.9247, and 0.9381; and for the LR model, the values were 0.8200, 0.9220, 
and 0.9285, respectively
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macro-average ROC curves showed that the XGBoost 
model had the best overall performance, followed by the 
SVM model and the LR model. Among them, the mod-
els constructed with the CE-T1WI features had the best 
performance, followed those constructed with T1WI fea-
tures and T2WI features. The standard error, z-score, and 
P-value for the AUC in each fold are shown in supple-
mentary file (Tables 3, 4, and 5).

Feature importance
The importance of the radiomic features extracted from 
the MR images of each patient was analyzed. In the 
XGBoost model, features original_firstorder_Variance, 
wavelet-HHL_firstorder_Mean and wavelet-HHL_fir-
storder_Skewness were the most important features in 
the differentiation among the four sellar lesions, with F 
scores (average gain in all trees, importance score) for 
58, 57 and 39, respectively (Fig. 4). The covariance anal-
ysis heatmap indicates outstanding performance with 
CE-T1WI radiomics features, capable of distinguishing 
TSMs, CRs, RCCs and PAs. Figure  5 shows the sample 
distribution. Different colors represent different values, 
which were used to determine the approximate distribu-
tion of each sellar region lesion.

Inference time analysis
The average inference time per case was approximately 
0.1 s.

Discussion
This study investigated the potential value of radiomics-
based analysis in differentiating sellar region lesions by 
using various ML models. We found that the perfor-
mance of the XGBoost model was superior to that of the 
SVM and LR models in distinguishing TSMs, CRs, RCCs 
and PAs. Furthermore, CE-T1WI features appeared to be 
more useful in differentiating sellar region lesions than 
T1WI and T2WI features.

MRI is often used as a diagnostic modality in evaluat-
ing sellar region lesions. Contrast-enhanced MRI may 
help neurosurgeons understand the radiographic charac-
teristics of PAs, CRs, RCCs and TSMs [18–20]. However, 
common diseases in the sellar region may be difficult to 
distinguish due to the similar imaging features on con-
ventional MRI (both with and without contrast) [5]. Due 
to the characteristics of cystic contents, the signals of 
RCCs on MRI are different. In addition, it is difficult to 
differentiate RCCs and CRs when the walls of the RCC 
are enhanced and surrounded by the enhanced normal 
pituitary gland on contrast-enhanced MRI [21]. Addition-
ally, cystic PAs may show different intensities on T1- or 

Fig. 4 The scores of the top ten important features of the four sellar region lesions. f31: original_firstorder_Variance. f538: wavelet-HHL_firstorder_
Mean. f544: wavelet-HHL_firstorder_Skewness. f28: original_firstorder_Skewness. f14: original_firstorder_10Percentile. f377: wavelet-HLL_glcm_
JointAverage. f19: original_firstorder_Kurtosis. f55: original_glrlm_GrayLevelNonUniformityNormalized. f366: wavelet-HLL_firstorder_Mean. f15: 
original_firstorder_90Percentile
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T2-weighted images, especially hemorrhagic changes, 
which is similar to the findings for RCCs and CRs on 
MR images. ML could provide better performance in 
classifying and predicting PA subtypes on T2-weighted 
sequences [6, 7]. Ma et al. [22] used a ML algorithm to 
achieve good performance in predicting the CR subtype 
on contrast-enhanced T1-weighted sequences. Huang et 
al. [4] showed good performance in diagnosing patho-
logical subtypes of CR on T1-weighted images. However, 
there has been only one study [8] on the use of ML for 
anterior skull base lesions based on contrast-enhanced 
T1-weighted sequences. In our study, the ML model was 
used to differentiate PAs and CRs, TSMs and CRs, and 
PAs and RCCs separately, with accuracies of 0.8, 0.819 
and 0.836, respectively. Therefore, the results were only 
for comparisons between two kinds of anterior skull base 
lesions, and the performance in differentiating all four 
anterior skull base lesions from each other was not truly 
determined. In our study, three models were established 
to verify their performance in differentiating the four sel-
lar region lesions. The results showed that the XGBoost 
model had the best performance, and its balanced accu-
racy with contrast-enhanced T1-weighted sequence fea-
tures was up to 83%. The average AUC value was 0.9560, 
which is better than that in the above literature.

The XGBoost framework, proposed by Chen et al. [23], 
is an efficient and scalable tree-enhanced ML system 

that is provided in the form of an open-source soft-
ware package. Its features include distributed process-
ing and high prediction accuracy; it can be adapted to 
high-dimensional features and can effectively prevent 
overfitting. The impact of this system has been widely 
recognized in many fields, especially environmental 
analysis [24], molecular biology [25, 26], and neuroimag-
ing [10, 27]. The benefit of using the XGBoost model is 
that an importance score for each attribute can be calcu-
lated, which represents the value of the related attribute 
in building the enhanced decision tree within the model. 
In this study, by calculating the importance scores of the 
extracted imaging features, especially for adjusting the 
parameters of XGBoost, sparse large-scale image fea-
ture data are processed efficiently, and the flexibility of 
distributed and parallel computing is realized. The opti-
mal XGBoost identification model is obtained by using a 
series of decision trees to estimate the target features and 
define quantized weights for each leaf node. However, 
the lack of a formal ablation study remains a limitation, 
as it limits detailed insights into the contribution of indi-
vidual feature subsets. In future studies—especially when 
extending feature extraction across imaging sequences or 
modalities—integrating cross-domain attention-guided 
fusion and optimization strategies may offer more inter-
pretable and efficient feature selection mechanisms [28].

Fig. 5 The heatmap of the distribution of each sellar region lesion with contrast-enhanced T1-weighted image radiomics features. Columns represent in-
dividual features, while rows correspond to samples. Rows 0–54, 55–135, 136–196, and 197–259 represent patients with TSM, CR, RCC, and PA, respectively
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Buchlak et al. [11] demonstrated that the most com-
monly used ML algorithms in neurosurgery currently 
include LR, SVM and neural networks. However, the 
accuracy of the prediction from LR was 76.17 (14.32; 
12), and that of SVM was 81.85 (6.72; 18); while SVM 
was superior to LR, both can achieve good performance 
in classification tasks. However, although SVM is flex-
ible in handling complex feature relationships, it is prone 
to overfitting. In this study, the balanced accuracy was 
0.75 for LR and 0.77 for SVM, consistent with the values 
observed in a previous study [11]. The main advantage 
of the SVM model is that it can model medium, nonlin-
ear relationships, while LR is limited to linear relation-
ships. It has been noted that the LR model is usually the 
preferred algorithm for predicting the results of binary 
classification tasks [11]. This study focused on the simul-
taneous differentiation of four sellar region diseases, and 
the results showed that the XGBoost model had the best 
performance, followed by the SVM model and the LR 
model. The reasons are two-fold: (1) XGBoost adds regu-
lar terms into the objective function to control the com-
plexity of the model and avoid overfitting; (2) XGBoost 
supports column sampling, that is, random selection of 
features, which enhances model stability.

Many studies [29, 30] have established ML models for 
PAs and CRs, but only with one kind of MRI sequence. 
Machad et al. [31] showed that the accuracy in predict-
ing the postoperative recurrence of nonfunctional PAs 
was 96.3% when using contrast-enhanced T1-weighted 
MRI. Another study [29] achieved AUC values rang-
ing from 0.608 to 0.781 with seven ML models in pre-
dicting recurrence in Cushing’s syndrome patients after 
sphenoidal based on contrast-enhanced T1-weighted 
MRI. Due to the different signal characteristics of these 
sellar region lesions, contrast-enhanced T1-weighted 
MRI is the best sequence for the image-based identifica-
tion of these diseases. In this study, contrast-enhanced 
T1-weighted MRI was also the best MRI sequence 
among conventional MRI sequences, which is consistent 
with the above studies. The reason may be that contrast-
enhanced T1-weighted MRI can highlight the outlines of 
the lesions, which could be analyzed by ML models using 
shape and texture features. However, Kitajima et al. [9] 
reported that the AUC was 0.990 with their artificial neu-
ral network in differentiating PAs, CRs and RCCs with 
contrast-enhanced T1-weighted imaging features. In our 
study, the mean average AUC with the XGBoost model 
built from contrast-enhanced T1-weighted sequence fea-
tures was 0.9560, much lower than the value above. In 
that study, however, only three sellar region lesions were 
included, in contrast to the four we differentiated with 
our ML models, which may explain the performance dif-
ferences between the studies.

Our study has several limitations that warrant consid-
eration. First, although the dataset of sellar region lesions 
was relatively large and comprised four pathological 
subtypes, the number of cases within each subtype was 
limited, which may increase the risk of overfitting. Sec-
ond, the data distribution was imbalanced across classes. 
While we applied the SMOTE algorithm to mitigate this 
issue, synthetic data may not fully replicate the distribu-
tion of real-world clinical samples. Third, all imaging data 
were obtained from a single center using a specific MRI 
scanner, which may introduce site-specific biases and 
limit the generalizability of our findings. Additionally, 
the absence of external validation restricts our ability to 
assess the model’s robustness across heterogeneous pop-
ulations and imaging protocols.

From a technical perspective, although the proposed 
model achieved high diagnostic performance and a fast 
inference time of 0.1 s per case, its integration into clini-
cal workflows remains challenging. The current pipeline 
requires high-performance GPU hardware, manual ROI 
delineation, and lacks interoperability with radiology 
information systems such as PACS. In future work, we 
plan to (1) conduct external validation using multicenter, 
multi-vendor MRI datasets to enhance generalizability, 
(2) incorporate automated or semi-automated segmen-
tation tools to reduce human variability and improve 
workflow efficiency, and (3) integrate the model into real-
time clinical platforms to facilitate seamless deployment. 
Additionally, integrating generative models to improve 
image quality and enhance latent representations may 
benefit automatic segmentation performance, especially 
in low-contrast regions [32].

Conclusions
Our study demonstrated that the XGBoost model, using 
radiomics features from contrast-enhanced T1-weighted 
MR images, outperformed SVM and LR models in dif-
ferentiating common sellar region lesions. The proposed 
model may have potential as a decision-support tool to 
aid in diagnostic evaluation. However, given the study’ 
s single-center design, further validation using larger, 
multi-center datasets is essential to confirm its robust-
ness and clinical applicability.
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