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Abstract
Objectives  To establish and validate deep learning (DL) models based on pre-treatment multiparametric magnetic 
resonance imaging (MRI) images of primary rectal cancer and basic clinical data for the prediction of synchronous 
liver metastases (SLM) in patients with Rectal cancer (RC).

Methods  In this retrospective study, 176 and 31 patients with RC who underwent multiparametric MRI from two 
centers were enrolled in the primary and external validation cohorts, respectively. Clinical factors, including sex, 
primary tumor site, CEA level, and CA199 level were assessed. A clinical feature (CF) model was first developed by 
multivariate logistic regression, then two residual network DL models were constructed based on multiparametric 
MRI of primary cancer with or without CF incorporation. Finally, the SLM prediction models were validated by 5-fold 
cross-validation and external validation. The performance of the models was evaluated by decision curve analysis 
(DCA) and receiver operating characteristic (ROC) analysis.

Results  Among three SLM prediction models, the Combined DL model integrating primary tumor MRI and basic 
clinical data achieved the best performance (AUC = 0.887 in primary study cohort; AUC = 0.876 in the external 
validation cohort). In the primary study cohort, the CF model, MRI DL model, and Combined DL model achieved AUCs 
of 0.816 (95% CI: 0.750, 0.881), 0.788 (95% CI: 0.720, 0.857), and 0.887 (95% CI: 0.834, 0.940) respectively. In the external 
validation cohort, the CF model, DL model without CF, and DL model with CF achieved AUCs of 0.824 (95% CI: 0.664, 
0.984), 0.662 (95% CI: 0.461, 0.863), and 0.876 (95% CI: 0.728, 1.000), respectively.

Conclusion  The combined DL model demonstrates promising potential to predict SLM in patients with RC, thereby 
making individualized imaging test strategies.
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Introduction
Colorectal cancer is the second leading cause of can-
cer-related deaths worldwide, with rectal cancer (RC) 
accounting for approximately one-third of these deaths 
[1, 2]. When colorectal cancer is initially diagnosed, 
nearly 15–25% of patients are found to have synchronous 
liver metastases (SLM) [3]. SLM is a major concern in 
rectal cancer, as it significantly impacts treatment options 
and prognosis. Surgical intervention remains the primary 
and potentially curative treatment option for patients 
with liver metastases, however, only 25% of patients are 
eligible for surgery at the time of diagnosis [3, 4]. There-
fore, early screening and accurate diagnosis of SLM at the 
preoperative examination is crucial for treatment plan-
ning and prognosis improvement for RC patients.

Currently, the diagnosis of SLM involves a range of 
laboratory tests, physical examinations, tissue biopsies, 
molecular genetic testing, or medical imaging such as 
CT, MRI, and PET-CT. Some studies have found that 
laboratory tests such as carcinoembryonic antigen (CEA) 
and carbohydrate antigen 19 − 9 (CA19-9) can comple-
ment imaging in diagnosing distant metastasis of RC [5]. 
While histopathological examination is regarded as the 
gold standard of diagnosis, biopsy and molecular genetic 
testing are expensive, invasive, and challenging for small 
lesions, and significant intra-tumor heterogeneity within 
the same primary specimen may affect the result [6, 7]. 
Medical imaging is widely used for SLM diagnosis. A 
meta-analysis reported that the sensitivity and specific-
ity of CT for the diagnosis of liver metastases were 82.1% 
and 73.5%, respectively, due to its limited resolution [8]. 
Additionally, small lesions may be overlooked due to a 
similar degree of attenuation to the surrounding paren-
chyma [9]. PET-CT, despite its high specificity of 99% in 
diagnosing liver metastases, had insufficient sensitivity, 
high examination costs, and radiation exposure, which 
restricted its clinical application [10]. MRI offers higher 
soft tissue contrast, which is recommended as first-line 
approach for the preoperative clinical evaluation of SLM 
[11]. However, it also has limited sensitivity in detecting 
intrahepatic lesions smaller than 1  cm [12]. These tra-
ditional imaging methods primarily rely on qualitative 
features, making early and accurate diagnosis of small 
lesions with atypical signals or enhancement patterns 

challenging. Patients with atypical lesions may experi-
ence treatment delays while awaiting further confirma-
tory examination or may require risky invasive tests. 
Therefore, an accurate, rapid, noninvasive, and practical 
tool for SLM risk stratification is necessary.

Radiomics, utilizing high-throughput extraction of 
image features and machine learning algorithm, provides 
extensive information on the microstructure of the lesion 
[13]. Previous studies have developed prediction mod-
els based on features from relatively simple MR images, 
demonstrating promising prospects for MRI-based 
radiomics in predicting synchronous distant metasta-
sis in patients with primary RC [14, 15]. However, these 
models have certain limitations. Furthermore, based on 
convolutional neural network, the deep learning (DL) 
technique can automatically learn crucial information 
from raw image data to perform tasks such as detection, 
classification, and segmentation [16]. Initial findings have 
demonstrated that DL achieves high accuracy in predict-
ing response to chemotherapy, distant metastases, and 
prognosis in RC patients [17].

In this study, we aimed to utilize DL approaches to con-
struct a classification model for the noninvasive predic-
tion of SLM in patients with RC, solely using routinely 
acquired examination data.

Materials and methods
Institutional review board approval was obtained from 
two medical institutions, Clinical Oncology School of 
Fujian Medical University and Fujian Medical University 
Union Hospital (approval numbers: K2022-196-01 and 
2023KY117). Given the retrospective nature of this study, 
the requirement for informed consent was waived.

Study cohorts: Primary study cohort
Consecutive patients who underwent rectal MRI exami-
nations in our hospital between January 2014 and May 
2020 were retrospectively collected and evaluated. The 
inclusion criteria were: (1) patients with histopathologi-
cal confirmed primary rectal adenocarcinoma; (2) SLM 
confirmed by imaging examinations (CT, MRI, or ultra-
sonography) or pathology at the time of rectal cancer 
diagnosis; (3) no history of malignant neoplasm or other 
malignant neoplasms in combination. The exclusion 

Clinical relevance statement  Accurate synchronous liver metastasis (SLM) risk stratification is important for 
treatment planning and prognosis improvement. The proposed DL signature may be employed to better understand 
an individual patient’s SLM risk, aiding in treatment planning and selection of further imaging examinations to 
personalize clinical decisions.

Clinical trial number  Not applicable.

Keywords  Diagnostic model, Rectal cancer, Deep learning radiomics, Magnetic resonance imaging, Synchronous 
liver metastases



Page 3 of 10Sun et al. BMC Medical Imaging          (2025) 25:173 

criteria were: (1) patients with metachronous distant 
metastases during one year of follow-up (to minimize 
misclassification of “non-SLM” cases with undetected 
micrometastases below imaging detection thresholds); 
(2) patients with mucinous adenocarcinoma or neuro-
endocrine carcinoma; (3) poor image quality, such as 
motion artifact, magnetic susceptibility artifacts and low 
SNR, which might lead to preclude accurate lesion inter-
pretation; (4) incomplete clinical information.

Clinical characteristics were recorded, including age, 
sex, and primary tumor site. The levels of serum tumor 
markers, including carcinoembryonic antigen (CEA) and 
carbohydrate antigen 19 − 9 (CA199) levels, during the 
same period of rectal MRI were also recorded. Finally, 176 
patients were included in the primary study cohort and 
were divided into non-SLM and SLM groups. Patients 
who were found to have metastatic lesions at diagnosis 
of primary rectal cancer were categorized into the SLM 
group. Liver-specific contrast-enhanced MRI was used 
as the preferred modality for assessing liver metastases. 
A multimodal imaging approach, combining ultrasound, 
CT, and MRI, was employed for comprehensive evalu-
ation. All imaging data were reviewed by experienced 
radiologists, and discrepancies were resolved through 
multidisciplinary team discussions to ensure diagnostic 
accuracy. For atypical lesions, further confirmation was 
performed through follow-up imaging within one year 
or percutaneous biopsy. The non-SLM group was defined 
as patients with no metastases at primary staging and no 
evidence of metastases at 1 year of follow-up.

Study cohorts: External validation cohort
To further assess the validity and generalizability of the 
proposed DL model, we also collected external validation 
data from another institution. Consecutive patients who 
underwent rectal MRI examination between August 2017 
and August 2020 were retrospectively evaluated using the 
same inclusion and exclusion criteria. Finally, 31 patients 
were included in the external validation cohort.

Image acquisition and segmentation
All enrolled patients underwent bowel preparation fol-
lowed by rectal MRI examination before receiving treat-
ment. MRI examinations were performed in the supine 
position on a 3.0T MRI scanner (Signa HDxt; GE Health-
care, Milwaukee, WI, USA) equipped with an eight-
channel phased-array body coil. Axial T1-weighted 
imaging (T1WI), T2-weighted imaging (T2WI), diffu-
sion-weighted imaging (DWI), and contrast-enhanced 
T1-weighted imaging (T1CE) were acquired. For the 
T1CE acquisition, a bolus of Gd-DTPA (gadopentetate 
dimeglumine, BeiLu Pharmaceutical, Beijing, China) 
at 0.1 mmol/kg was injected at a rate of 2  ml/s by a 
power injector. The detailed acquisition parameters are 

presented in Supplementary Material Table S1. Appar-
ent diffusion coefficient (ADC) maps were calculated 
from DWI by mono-exponential fitting using Advantage 
Workstation 4.6 (GE Healthcare, Milwaukee, WI, USA). 
Tumor regions of interest (ROIs) were semi-automat-
ically delineated on each consecutive slice of oblique 
axial high resolution T2WI using ITK-SNAP 3.8.0 soft-
ware (www.itksnap.org). All ROIs were delineated by 
a junior radiologist (with 5 years of diagnostic experi-
ence) and reviewed by a senior radiologist (with 18 years 
of GI diagnostic experience). The ROIs were contoured 
along the margin of each tumor slice, avoiding air and 
necrotic areas of the tumor. Using ITK-SNAP’s automatic 
expansion tool, this process was repeated for each slice 
to ensure thorough and accurate delineation of the entire 
tumor volume. Manual corrections were used to address 
ambiguities caused by adjacent tissues or artifacts.

Image preprocessing
All data from the primary study cohort were randomly 
divided into training and validation datasets in an 8:2 
ratio. For image preprocessing, we first performed a 
rigid registration among multiparametric MRI images 
using SPM12 software (​h​t​t​p​​:​/​/​​w​w​w​.​​f​i​​l​.​i​​o​n​.​​u​c​l​.​​a​c​​.​u​k​/​s​p​m​
/). The resampling was carried out using linear interpo-
lation to align the images. Images were then resampled 
into the same matrix size as that in T2WI (256 × 256) by 
cubic B-spline interpolation method. To account for vari-
ability in signal intensities, we applied z-score standard-
ization to each MRI sequence. This normalization step 
ensured that the intensities across different sequences 
were standardized, facilitating better comparison and 
feature extraction. For the training dataset, if the number 
of tumor slices was > 5, then 5 slices were chosen in the 
middle of the tumor. Subsequently, data were augmented 
by random cropping (according to the tumor center), 
random flipping (along the left-right axis), and random 
rotating (± 10°), resulting in a total of 12,200 2D patches 
(112 × 112) in the training dataset. Data from the external 
validation cohort were also preprocessed with the same 
procedure. All data processing was done using MATLAB 
2018a (MathWorks, Natick, MA, USA).

SLM prediction model construction
A clinical feature (CF) model based on sex, primary 
tumor site, CEA, and CA199 was developed. Discrimina-
tive features between two groups were first selected by 
univariate logistic regression with a threshold of P < 0.1. 
Subsequently, the CF model was constructed using mul-
tivariate logistic regression with a backward stepwise 
likelihood ratio selection method. For the DL model, a 
2D ResNet was constructed based on the architecture of 
the residual network published previously [18] (Fig.  1). 
Specifically, input images consisted of 2D patches with 
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5 channels (T2WI, T1WI, T1CE, DWI, and ADC maps). 
Following 1 convolution layer with 7 × 7 filters and a 
stride of 2, there were 6 residual blocks consisted of 12 
convolution layers with 3 × 3 filters and 6 skip connec-
tions. The leaky ReLU (alpha = 0.2) activation function 
was adopted. Clinical features were incorporated into 
the network using a fully-connected layer and concatena-
tion before the classifier layer. The network ended with a 
global average pooling, a dropout layer, and a 2-way clas-
sifier with softmax activation function. For the optimiza-
tion, we used Adam optimizer [19] with initial learning 
rate = 5 × 10− 6 to minimize the cross-entropy loss with L1 
and L2 regularization. The learning rate was exponen-
tially decayed with a constant of 0.1, the batch size was 
set at 32, and the total number of epochs was set at 100. 
The network was trained using TensorFlow [20] with two 
NVIDIA Quadro GV100 GPUs. Two DL models were 
constructed with (Combined DL model) or without (MRI 
DL model) the CF incorporation. Finally, the SLM pre-
diction model was validated by 5-fold cross-validation 
and external validation.

Statistical analysis
Statistical analysis of clinical characteristics was per-
formed using SPSS 22.0 software (IBM Corp, Armonk, 
NY, USA). P values < 0.05 were considered statistically 
significant. Normally distributed quantitative variables 

were expressed as mean § standard deviations (SD). For 
the comparison of patient characteristics, categorical 
and continuous data were compared using Pearson’s chi-
square test (or Fisher’s exact test) and Student’s t-test (or 
Mann-Whitney U test), respectively. The performance of 
the model in predicting SLM was evaluated by receiver 
operating characteristic (ROC) analysis, and the area 
under the ROC curve (AUC) was recorded. AUCs of 
different models were compared by DeLong’s test. Spe-
cific performance metrics, including accuracy (ACC), 
sensitivity (SEN), specificity (SPE), positive predictive 
value (PPV), and negative predictive value (NPV) at the 
median score threshold were also calculated. Decision 
curve analysis (DCA) was applied to validate the clini-
cal value of the model. Univariate logistic regression was 
used to analyze the association between biological char-
acteristics and DL scores.

Results
Clinical characteristics
A total of 176 patients (123 males and 53 females; age: 
57.72 ± 10.21 years; age range: 28–85 years) were included 
in the primary study cohort. The median follow-up time 
was 33 months (range: 3–84 months). The external vali-
dation cohort comprised 31 patients (22 males and 9 
females; age: 56.55 ± 16.78 years; age range: 24–83 years). 
72 of 176 cases (40.9%) and 10 of 31 cases (32.3%) had 

Fig. 1  Schematic diagram of the input data and DL (deep learning) framework
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SLM in the primary and external validation cohorts, 
respectively. The detailed clinicopathological characteris-
tics of patients and comparison results are summarized 
in Tables 1 and 2.

The primary cohort showed a statistical difference in 
clinical characteristics (primary tumor site, CEA level, 
CA199 level) between SLM and non-SLM-negative 
groups (all P < 0.05), except age was detected between 
two groups. In the external validation cohort, we found 
the CEA level and CA199 level were different between 
two groups (both P < 0.05).

Diagnostic performance of the SLM prediction model
In the primary cohort, the CF model, MRI DL model, and 
Combined DL model achieved cross-validation AUCs of 
0.816 (95% CI: 0.750, 0.881), 0.788 (95% CI: 0.720, 0.857), 
and 0.887 (95% CI: 0.834, 0.940), respectively. The AUC 
of Combined DL model was significantly higher than that 
of MRI DL model (P = 0.010), and was also higher than 
that of CF model but without significance (P = 0.064). For 
the CF model, the ACC, SEN, SPE, PPV, and NPV were 
77.8% (137/176 patients), 61.1% (44/72 patients), 89.4% 
(93/104 patients), 80.0% (44/55 patients), and 76.9% 

(93/121 patients), respectively. For the MRI DL model, 
the ACC, SEN, SPE, PPV, and NPV were 75.6% (133/176 
patients), 59.7% (43/72 patients), 86.5% (90/104 patients), 
75.4% (43/57 patients), and 75.6% (90/119 patients), 
respectively. For the Combined DL model, the ACC, SEN, 
SPE, PPV, and NPV were 85.8% (151/176 patients), 80.6% 
(58/72 patients), 89.4% (93/104 patients), 84.1% (58/ 
69 patients), and 86.9% (93/107 patients), respectively. 
Worth noting that if we focused on patients with liver 
metastasis smaller than 3 cm, we found a drop of SEN for 
the CF model from 61.1 to 51.0% (25/49 patients), while 
it remained constant for the MRI DL model from 59.7 to 
59.2% (29/49 patients). The representative input images 
and the successful and unsuccessful predictions by the 
Combined DL model are presented in Fig. 2. ROC curves 
discriminating non-SLM and SLM groups from three 
models in the primary study cohort are shown in Fig. 3A.

Similarly, in the external validation cohort, the CF 
model, MRI DL model, and Combined DL model 
achieved external validation AUCs of 0.824 (95% CI: 
0.664, 0.984), 0.662 (95% CI: 0.461, 0.863), and 0.876 
(95% CI: 0.728, 1.000), respectively. For the CF model, 
the ACC, SEN, SPE, PPV, and NPV were 83.9% (26/31 

Table 1  Clinical characteristics of the primary cohort
Characteristic Total Non-SLM (n = 102) SLM (n = 50) P value
Sex, n (%) 0.058
  Male 123 (69.9%) 67 (54.5%) 56 (45.5%)
  Female 53 (30.1%) 37 (69.8%) 16 (30.2%)
Age, years 57.72 ± 10.21 57.12 ± 9.02 58.60 ± 11.72 0.368
Primary tumor site, cm 5.80 (3.15) 5.30 (2.60) 6.35 (5.00) 0.011
CEA level, n (%) <0.001
  Normal (< 5 ng/ml) 87 (49.4%) 66 (75.9%) 21(24.1%)
  Elevated (≥ 5 g/ml) 89 (50.6%) 38 (42.7%) 51 (57.3%)
CA199 level, n (%) <0.001
  Normal (< 37 U/ml) 124 (70.5%) 95 (76.6%) 29 (23.4%)
  Elevated (≥ 37/ml) 52 (29.5%) 9 (17.3%) 43 (82.7%)
Abbreviations: CA19-9, carbohydrate antigen 19 − 9; CEA, carcinoembryonic antigen

Quantitative data are reported as means ± standard deviations or medians with interquartile ranges

Table 2  Clinical characteristics of the external validation cohort
Characteristic Total Non-SLM (n = 21) SLM (n = 10) P value
Sex, n (%) 0.68
  Male 22 (71.0%) 14 (63.6%) 8 (36.4%)
  Female 9 (29.0%) 7 (77.8%) 2 (22.2%)
Age, years 56.55 ± 16.78 52.71 ± 17.45 64.60 ± 12.45 0.064
Primary tumor site, cm 5.2(4.0) 5.1 (3.7) 6.4 (4.8) 0.173
CEA level, n (%) 0.018
  Normal (< 5 ng/ml) 17 (54.8%) 15 (88.2%) 2 (11.8%)
  Elevated (≥ 5 g/ml) 14 (45.2%) 6 (42.9%) 8 (57.1%)
CA199 level, n (%) 0.001
  Normal (< 37 U/ml) 26 (83.9%) 21 (80.8%) 5 (19.2%)
  Elevated (≥ 37 U/ml) 5 (16.1%) 0 (0%) 5 (100%)
Abbreviations: CA19-9, carbohydrate antigen 19 − 9; CEA, carcinoembryonic antigen

Quantitative data are reported as means ± standard deviations or medians with interquartile ranges
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Fig. 3  Receiver operating characteristic curves in discriminating SLM (synchronous liver metastasis) and non-SLM from three models in the primary study 
cohort (A) and external validation cohort (B)

 

Fig. 2  Representative images of rectal cancer patients. T2WI (T2-weighted imaging), T1WI (T1-weighted imaging), T1CE (contrast-enhanced T1WI), DWI 
(diffusion-weighted imaging), and ADC (apparent diffusion coefficient) images from 4 representative patients in the validation dataset, indicating the true 
negative, false negative, true positive, and false positive prediction by the Combined DL(deep learning) model
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patients), 50.0% (5/10 patients), 100% (21/21 patients), 
100% (5/5 patients), and 80.8% (21/26 patients), respec-
tively. For the MRI DL model, the ACC, SEN, SPE, 
PPV, and NPV were 67.7% (21/31 patients), 80.0% (8/10 
patients), 61.9% (13/21 patients), 50.0% (8/16 patients), 
and 86.7% (13/15 patients), respectively. For the Com-
bined DL model, the ACC, SEN, SPE, PPV, and NPV 
were 80.6% (25/31 patients), 80.0% (8/10 patients), 81.0% 
(17/21 patients), 66.7% (8/12 patients), and 89.5% (17/19 
patients), respectively. ROC curves in discriminating 
non-SLM and SLM groups from three models in the 
external validation cohort are illustrated in Fig. 3B.

The clinical benefit was confirmed by decision curve 
analysis, Fig. 4A and B.

Discussion
Early diagnosis of atypical hepatic lesions in patients 
with RC remains a challenge. In this two-center study, 
we explored the value of the DL approach in identify-
ing patients at high risk for SLM based on basic clinical 
data and pre-treatment multiparametric MRI of primary 
lesions, using only routinely examination data. Clinical 
factors such as sex, primary tumor site, CEA level, and 
CA19-9 level were included. MRI sequences includ-
ing T1WI, T2WI, T1CE, DWI, and ADC images were 
applied. We demonstrated that DL models displayed 
powerful predictive ability in predicting high/low-risk 
stratification of patients for SLM. Combining DL features 
extracted from multiparametric MRI with clinical fac-
tors achieved better predictive performance compared 
to DL features or clinical factors only. Furthermore, these 
models exhibited stability, which validated in the external 
cohort. According to the DL models, the presence of liver 
metastases should be strongly suspected when cases in 

which the risk probability of metastases calculated by the 
combined model of atypical liver lesions is high. In such 
high-risk cases, a more aggressive systemic examination 
and shorter follow-up should be considered. The clinical 
benefit was confirmed by decision curve analysis.

Tumor markers CEA and CA19-9 are widely recog-
nized as crucial factors in the diagnosis, treatment deci-
sion, and prognosis. Previous studies have revealed 
that laboratory examinations such as CEA and CA199 
can predict synchronous distant metastasis in patients 
with RC [21–23], which aligns with our findings. Some 
researchers have estimated the risk of metastasis using 
clinicopathological variables such as pathological grade 
and T stage, and found that these variables also con-
tributed to metastasis risk stratification [23, 24]. How-
ever, certain pathological features can only be obtained 
surgically and are rooted in the subjective nature of the 
evaluation process. The indicators used in clinical prac-
tice should be as simple, objective and non-invasive as 
possible. Therefore, in our study, we specifically selected 
clinical factors, including sex, primary tumor site, CEA 
level, and CA19-9 level, to establish the CF model. These 
indicators can be readily obtained from routine pretreat-
ment examinations.

Radiomics has emerged as a noninvasive and efficient 
method for quantitatively describing tumor heterogene-
ity [25]. Previous studies found that radiomic features 
extracted from primary RC lesions can stratify the risk 
of synchronous metastases, providing guidance for stag-
ing and treatment decisions [14, 15, 26]. While MRI 
radiomics analysis has shown promising predictive value 
for rectal cancer with distant metastases, these studies 
adopted only single type of MRI image, neglecting the 
potential additional information that can be obtained 

Fig. 4  Decision curve analysis of the three models in the primary study cohort (A) and external validation cohort (B)
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from multi-contrast images provided by various MRI 
sequences. Moreover, radiomics necessitates meticu-
lous lesion delineation and the extraction and selec-
tion of hard-coded radiomic features [27]. DL approach 
allows for more flexible, effective, and accurate mapping 
between medical images and clinical outcomes by auto-
matically learning relevant information through back-
propagating adjustment of network parameters [28]. DL 
has the potential to reveal occult lesions that are hin-
dered by current imaging methods, and different types 
of medical images can reflect diverse perspectives on 
pathological information [29, 30]. The study conducted 
by Liu et al. suggests that MRI-based DL radiomics 
exhibits potential in the prediction of distant metastases 
among RC patients undergoing neoadjuvant chemora-
diotherapy (nCRT) and could assist in assessing the risk 
of distant metastases in patients with diverse responses 
to nCRT, achieving an AUC of 0.894 in the valida-
tion cohort [31]. The results of the study are promising. 
Hence, we proposed a DL approach based on multipara-
metric MRI images of primary lesions in RC. Addition-
ally, we employed a relatively large patch image centered 
around the lesion as the input for DL, thereby including 
the surrounding regions of the tumor in the analysis and 
capturing the impact of microenvironmental data on 
metastases. The results demonstrated the utility of our 
proposed models in quantifying the risk of metastases in 
patients with uncertain hepatic nodules, thereby avoiding 
unnecessary delays in treatment. Patients with less than 
1% risk for SLM may have the opportunity to receive 
individualized imaging test strategy, which may help 
decrease the costs associated with diagnostic evalua-
tions and radiation exposure. Our DL approach can serve 
as an alternative method to improve the timeliness and 
accuracy of liver metastases detection, offering a valuable 
supplement to existing techniques.

This study had certain limitations that warrant dis-
cussion. Firstly, it was a retrospective analysis based on 
a relatively small sample size, which may limit the gen-
eralizability of the findings. The diminished advantage 
of the Combined DL model in the external cohort may 
reflect both the limited sample size. Small validation 
cohorts increase the risk of overestimating or underes-
timating model generalizability due to sampling bias. 
Future multi-center studies with larger, prospectively 
enrolled cohorts are needed to validate the clinical util-
ity of the model across diverse populations and lesion 
characteristics. Secondly, the inclusion of small-sized 
metastases is insufficient. Reducing false negative results 
in the detection of small-sized SLM during preopera-
tive examination remains a considerable challenge. To 
improving the treatment decision-making and decrease 
the costs associated with diagnostic evaluations, future 
studies should focus on investigating the application of 

DL models in predicting small metastases. Additionally, 
A limitation of this study is the selection of only the cen-
tral 5 slices, which may overlook peripheral tumor het-
erogeneity. While a 3D volumetric approach may provide 
additional information, future research could further 
compare this approach to assess its potential benefits. 
Moreover, our study is the lack of advanced interpretabil-
ity analysis, such as SHAP, to assess the contribution of 
clinical features and imaging data to model predictions. 
While we focused on model performance, future work 
will explore these techniques to provide clearer insights 
into their synergy. Lastly, as we chose a relatively shallow 
neural network to prevent overfitting in the training pro-
cess, relevant information in the image may not be well 
learned. Therefore, further studies with an optimized DL 
framework should be conducted to improve the model 
performance and generalizability.

Conclusion
In conclusion, we successfully developed a DL model 
based on multiparametric MRI and clinical features 
to predict SLM in patients with RC. The model dem-
onstrated satisfactory results and was validated in an 
external cohort. These findings highlighted the interplay 
between clinical and radiological findings to facilitate 
early and accurate diagnosis of SLM, leading to improved 
treatment options.
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