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Abstract
Diabetes is a widespread condition that can lead to serious vision problems over time. Timely identification and 
treatment of diabetic retinopathy (DR) depend on accurately segmenting retinal vessels, which can be achieved 
through the invasive technique of fundus imaging. This methodology facilitates the systematic monitoring and 
assessment of the progression of DR. In recent years, deep learning has made significant steps in various fields, 
including medical image processing. Numerous algorithms have been developed for segmenting retinal vessels 
in fundus images, demonstrating excellent performance. However, it is widely recognized that large datasets are 
essential for training deep learning models to ensure they can generalize well. A major challenge in retinal vessel 
segmentation is the lack of ground truth samples to train these models. To overcome this, we aim to generate 
synthetic data. This work draws inspiration from recent advancements in generative adversarial networks (GANs). 
Our goal is to generate multiple realistic retinal fundus images based on tubular structured annotations while 
simultaneously creating binary masks from the retinal fundus images. We have integrated a latent space auto-
encoder to maintain the vessel morphology when generating RGB fundus images and mask images. This approach 
can synthesize diverse images from a single tubular structured annotation and generate various tubular structures 
from a single fundus image. To test our method, we utilized three primary datasets, DRIVE, STARE, and CHASE_DB, 
to generate synthetic data. We then trained and tested a simple UNet model for segmentation using this synthetic 
data and compared its performance against the standard dataset. The results indicated that the synthetic data 
offered excellent segmentation performance, a crucial aspect in medical image analysis, where smaller datasets are 
often common. This demonstrates the potential of synthetic data as a valuable resource for training segmentation 
and classification models for disease diagnosis. Overall, we used the DRIVE, STARE, and CHASE_DB datasets to 
synthesize and evaluate the proposed image-to-image translation approach and its segmentation effectiveness.
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Introduction
The advancements in medical imaging technologies have 
facilitated the prompt and accurate detection of dis-
eases. Furthermore, significant steps have been made in 
the realm of computer vision technologies, which have 
enabled the automatic processing of medical images 
without the need for human intervention. These develop-
ments have greatly enhanced the efficiency and precision 
of medical diagnosis and treatment and hold great prom-
ise for the future of healthcare [1].

Long-term diabetes can lead to vision loss, which is 
becoming increasingly prevalent due to the growing 
number of people with diabetes worldwide. This rise in 
the diabetic population has also resulted in a rise in eye 
diseases. To combat this issue, the World Health Organi-
zation began a global initiative in 2020 aimed at prevent-
ing visual impairment [2]. According to global statistics, 
the primary causes of blindness are cataracts, age-related 
macular degeneration, and DR. Fundus imaging is a 
non-invasive imaging technique for early diagnosis and 
monitoring of DR [3]. It allows physicians to inspect the 
geometrical [4] and physiological properties of the ves-
sel structures, providing valuable clinical information for 
early diagnosis of DR [5]. However, it is time-consuming 
to perform manually since we have a large diabetes popu-
lation. To overcome this, many semi-automated [6, 7] 
and automated retinal vessel segmentation techniques [8, 
9] have been proposed to help ophthalmologists. How-
ever, these techniques need a huge number of annotated 
images, particularly for automated vessel segmentation 
techniques. Acquiring annotated images for these retinal 
fundus vessel images remains challenging. Typically, only 
a limited number of annotated images are available where 
domain experts precisely define the vessel structures 
through a protracted manual process. This lack of anno-
tated images poses a significant challenge to the develop-
ment of automated retinal vessel segmentation models. 
The progress in artificial intelligence has led to a surge in 
the utilization of synthetic data generation, particularly 
due to the emergence of GAN. This trend is indicative of 
the impactful role played by advanced AI techniques in 
facilitating synthetic data creation [10].

With the growing need for huge annotated datasets 
in the realm of medical image analysis, the generation 
of synthetic data has emerged as a viable solution to the 
challenges posed by manual annotation. Recent develop-
ments in GANs and Variational Autoencoders (VAEs) 
have facilitated the creation of high-quality synthetic 
images that significantly enhance the training of deep-
learning models [11]. Research indicates that GAN-based 
architectures, including Pix2Pix, CycleGAN, and Style-
GAN, are particularly effective in generating annotated 
data that captures the inherent variability of real-world 
patient populations. For instance, CycleGAN has proven 

to be instrumental in producing cross-domain images, 
while StyleGAN allows for precise manipulation of spe-
cific attributes, which is advantageous for generating 
variations in the shapes, sizes, and intensities of vascular 
structures. Despite the progress made in the field, sub-
stantial challenges persist in synthesizing anatomically 
precise and clinically relevant medical images. A key dif-
ficulty lies in ensuring that synthetic images accurately 
represent realistic anatomical variations, which is crucial 
for tasks such as detecting retinal vessels. Furthermore, 
generating high-resolution images that exhibit intricate 
vessel structures closely resembling those in authentic 
fundus images remains a significant challenge. The lim-
ited diversity present in current synthetic datasets can 
result in overfitting, thereby reducing the model’s ability 
to generalize when evaluated with novel images. In addi-
tion, the scarcity of specialized evaluation metrics aimed 
at medical image synthesis poses difficulty in quantitative 
assessment of the generated images’ practicality and clin-
ical applicability.

To address these challenges, our proposed GAN model 
with an integrated latent space autoencoder focuses on 
shape preservation, which is crucial for accurate vessel 
segmentation. By enhancing the diversity and anatomi-
cal correctness of generated data, we aim to provide a 
more robust solution for annotated data augmentation in 
retinal vessel segmentation. Even though many research 
activities were performed on retinal vessel segmentation 
[12, 13], only a few efforts have been taken to synthesize 
the data [14]. So, we proposed a GAN model with an inte-
grated Latent space autoencoder to generate synthetic 
data. This could help achieve adequate training data with 
different intensities and vessel structures to create a fun-
dus retinal vessel segmentation model using deep learn-
ing. This paper introduces the following contributions:

1. Our objective is to generate synthetic retinal images 
and their corresponding segmentation masks 
utilizing GAN. This approach seeks to address the 
challenge of limited data availability in developing 
deep learning models for retinal analysis.

2. This paper introduces a Latent space Autoencoder 
responsible for generating multiple images from a 
single image and ensuring the accurate preservation 
of anatomical shapes in generated masks, which is 
critical for precise DR diagnosis and analysis.

3. We conducted retinal vessel segmentation utilizing 
real and synthetic images through a simple UNet 
architecture. The results demonstrated competitive 
performance, indicating the potential application of 
GANs to synthesize the dataset for improved deep-
learning segmentation.
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Related works
Retinal image synthesize
Sagar et al. initiated the development of a retinal image 
synthesis application with the objective of establishing a 
lifelike virtual environment beneficial to eye surgery. This 
innovation involved using advanced visual and mechani-
cal simulations to improve the accuracy and efficiency of 
surgical procedures. The retinal image synthesis appli-
cation has been widely adopted in the medical field and 
continues to be a valuable tool for ophthalmologists [15]. 
Retinal image analysis faces a significant challenge due 
to the absence of annotated vessel structures. The task 
of annotating these structures is expensive and labori-
ous. Furthermore, the subjectivity and annotation errors 
restricting from inter-observer and intra-observer vari-
abilities of human observers further create the issue 
[16]. Fluorescein angiography (FA) is an essential medi-
cal procedure utilized to capture high-resolution images 
of the intricate blood vessels in the retina. It is, however, 
noteworthy that the dye necessary for this procedure is 
associated with potentially harmful side effects. At pres-
ent, the only non-invasive alternative is Optical Coher-
ence Tomography Angiography (OCTA), even though 
it is both costly and provides a limited field of view. In 
contrast, retinal fundus photography, a secure imaging 
modality, comprehensively captures the structural intri-
cacies of the retina.

To visualize the retinal vasculature accurately, in a non-
invasive and cost-effective manner, Tavakkoli et al. [17] 
proposed deep learning conditional GAN to produce FA-
like images from fundus photographs. Schlegl et al. [18] 
employed GAN for the investigation of data distribution 
within the healthy retinal tissue region using patches. The 
GAN model was subsequently assessed for its efficacy in 
detecting anomalies in retinal images within regions of 
unseen and healthy image. The study’s results show the 
potential of GANs in detecting anomalies in medical 
images with high precision and accuracy. This approach 
can potentially be used in clinical settings to detect 
anomalies in medical images early, thereby improving 
patient outcomes.

Beers et al. [19] have conducted a study aiming to 
develop a novel method for synthesizing medical images 
of fundus pictures that depict premature retinopathic 
vascular pathology. The researchers employed a progres-
sively grown generative adversarial network (PGGAN). 
The PGGAN is a deep learning model that has been 
shown to produce high-quality synthetic images that are 
virtually indistinguishable from real ones. The network 
was trained on a large dataset of fundus images labeled 
with retinopathy grades. The generated images were eval-
uated by clinicians, who confirmed their accuracy and 
usefulness for educational and diagnostic purposes. This 

method has the potential to facilitate early diagnosis and 
improve patient outcomes in the field of ophthalmology.

In the field of ophthalmology, vessel segmentation is 
a vital step for disease finding and screening. However, 
the intricate morphological vessel structure can be chal-
lenging when designing segmentation models. Research-
ers have been using GAN for segmentation. The GAN 
has two parts - the generator and the discriminator. The 
generator uses a U-shaped structure with a skip connec-
tion for gradient diffusion, while the discriminator adopts 
deep convolution blocks to evaluate the generator’s seg-
mentation response effectively [20]. The authors reported 
that an effective loss function could be helpful for the 
further development of the model. Researchers also have 
experimented with GAN models for vessel segmentation. 
One such technique is an attention-augmented Wasser-
stein GAN. The generator is designed with a combination 
of attention-augmented convolution and squeeze and 
excitation modules incorporated into the basic UNet. A 
complex vessel structure makes the segmentation of tiny 
vessels complex. To overcome that, an attention-aug-
mented convolution and squeeze-excitation module are 
utilized to handle pixel dependency and channel feature 
maps. The authors reported that the complexity of the 
model can be reduced [21].

Recent studies have found that the structure of blood 
vessels in the retina can be difficult to analyze in low-con-
trast regions due to their complex and indefinable nature. 
Researchers have proposed a symmetric equilibrium 
generative adversarial network to address this issue. This 
network utilizes a generator to produce realistic images 
that include local details, which can aid in extracting the 
morphological parameters of the vessels [22]. A GAN 
variant featuring a single generator and three discrimina-
tors is utilized. The generator is a U-shaped network that 
executes the segmentation process. Three discriminators 
with varying receptive fields are integrated to assess the 
generator’s performance. This effectively directs the gen-
erator to generate more intricate segmentation outcomes 
[23].

A conditional generative adversarial network has been 
developed. It utilizes a fully stacked convolutional neural 
network to balance the loss. The generator has two fully 
convolutional networks and a multi-kernel block that 
helps to balance the scale invariance. The discriminator 
uses deep convolutional networks to evaluate the genera-
tor’s response by comparing the generated image to the 
corresponding ground truth [24]. Kar et al. [25] proposed 
a GAN for fundus retinal vessel segmentation. Multi-
scale feature extraction is facilitated by incorporating the 
inception module. A discriminator with multiple self-
attention modules stacked with a point-wise fully con-
nected feed-forward network acts as a binary classifier to 
discriminate vessel and non-vessel pixels.
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Liang et al. [26] presented is an end-to-end conditional 
GAN incorporating class feature loss and enhanced reti-
nal detail loss to tackle the scarcity of annotated retinal 
images in academic research. The network generates 
high-quality retinal images and evaluates them using 
objective metrics: subjective effect, FID, and SWD. Kim 
et al. [27] aims to use deep learning to create realistic 
retinal images for computer-aided diagnosis systems. The 
efficacy of these synthetic images in augmenting imbal-
anced datasets with specific diseases is being evaluated 
through various tests and analyses, including deep learn-
ing-based classification performance.

Saeed et al. [28] aims to create realistic fundus images 
with morphologically changed vessel structures using a 
technique called Sharpening and Varying Vessels (SVV). 
SVV sharpens and varies vessel structures, reducing the 
need for expensive annotated medical data. The approach 
also preserves critical fundus characteristics using recent 
advancements in GANs and Variational Autoencoder. 
Ahn et al. [29] proposed a high-performance model, to 
generate fundus disease images for DR and Age-Related 
Macular Degeneration (AMD) using a semi-supervised 
learning approach using GAN. The model addresses the 
lack of labeled data and data imbalance issues by utilizing 
a guidance mask and a disease-feature matching loss to 
accurately generate initial symptoms for the two diseases.

Researchers have been exploring various GAN mod-
els for image-to-image translation. However, only very 
little effort has been taken to synthesize retinal images to 
expand the training data and accurately segment blood 
vessels. The synthesis of retinal images has the potential 
to significantly enhance the segmentation of retinal ves-
sels using deep learning techniques. Automatic fundus 
retinal image analysis has been developed to address 
inconsistencies in human observers’ assessments and 
to support ophthalmologists in managing the increas-
ing population of individuals with diabetes. Deep learn-
ing techniques have become increasingly popular for 
segmenting and classifying medical images for disease 
diagnosis. It is essential to note that vessel segmentation 
plays a pivotal role in the early diagnosis of DR. Several 
vessel segmentation algorithms based on deep learn-
ing have been proposed. Since deep learning algorithms 
are data-hungry, a large dataset is necessary to develop a 
generalized prediction model or segmentation algorithm. 
Obtaining ground truth from ophthalmologists for this 
specific problem is a critical and long process due to the 
large amount of data, ethical considerations, and patient 
consent. We used a GAN model to synthesize data and 
perform vessel segmentation. The proposed methodol-
ogy is explained in further sections. Section  3 presents 
the proposed methodology for synthetic data generation; 
Sect. 4 discusses the results of the proposed GAN model; 

and Sects. 5 and 6 describe the discussion and conclusion 
on the proposed model.

Methodology
Conditional Generative Adversarial Networks (cGANs) 
are one variant of the generative adversarial network 
model. In cGANs, the generation of an image depends 
not only on random noise but also on some specific input 
image, which allows for the generation of targeted and 
controlled image outputs. cGANs comprise two main 
neural networks: the generator and the discriminator. 
These networks participate in a competitive association, 
constantly improving and evolving their capabilities. 
The generator is responsible for creating synthetic data, 
while the discriminator’s role is to differentiate between 
real and generated data. The generator strives to pro-
duce data visually indistinguishable from real data, while 
the discriminator aims to become increasingly effective 
at detecting any differences. By effectively training the 
generator and discriminator in this adversarial manner, 
cGANs can produce outputs that closely resemble real 
data, yielding more realistic and reliable results.

The overall concept of the proposed architecture is 
shown in Fig. 1, which consists of a generator and a dis-
criminator. The generator follows a U-shaped network 
design, incorporating two downsampling encoders and 
one upsampling decoder. The downsampling encoders 
consist of a latent space autoencoder aimed at preserving 
vessel shape and a second encoder featuring a sequence 
of convolution and downsampling operations. On the 
other hand, the decoder network entails a series of 
upsampling operations. The discriminator’s training data 
is sourced from two different channels. The first source 
comprises real data instances, such as actual fundus 
images, which the discriminator uses as positive exam-
ples during training. The second source consists of data 
instances created by the generator, which the discrimina-
tor uses as negative examples during training. The two 
input images depict these data sources feeding into the 
discriminator. It is important to note that the generator 
does not undergo training during discriminator training. 
Instead, its weights remain constant while it produces 
examples for the discriminator to train on. Detailed 
working operation of a proposed model is described in 
the following sections.

Generator
The proposed generator utilizes a UNet architecture, 
which is well-known for its ability to perform effectively 
with minimal data. This generator comprises two paral-
lel encoders: a latent space autoencoder, a downsampling 
encoder, and a decoder with an upsampling block and 
skip connections.
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Latent space autoencoder for vessel mask generation
Ideally, an image-to-image translation algorithm should 
generate a realistic vessel network from a fundus retinal 
image. The model should be able to absorb original data 
and produce a wide range of vessel networks as needed 
while maintaining anatomical precision. In this work, we 

propose achieving this through the use of a Latent Space 
auto-encoder [30].

The latent space auto-encoder is a powerful tool that 
shrinks the original input image (I) into a lower-dimen-
sional representation (Z) in a smooth and abstract man-
ner. This reduced representation captures a wide range 

Fig. 1 Overview of the proposed architecture
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of input image features, such as shape, texture, and other 
vital characteristics. In our work, we have connected the 
latent space auto-encoder alongside the UNet encoder 
and decoder to produce vessel masks from the input 
image. By compressing the image into latent space, the 
auto-encoder aims to retain the essential aspects of the 
fundus data while filtering out the noise, which is crucial 
for generating accurate masks.

The auto-encoder outputs a mean µ and the logarithm 
of the variance log

(
σ 2)

 of the latent variables men-
tioned in Eqs. (1),

 µ , log
(
σ 2)

= E (I) (1)

The latent variable Z is sampled from a normal distribu-
tion parameterized by µ and σ, sampling the latent vari-
able mentioned in Eqs. (2),

 Z = µ + σ ⊙ ∈ (2)

Where ∈∼ N (O, I), here the ∈represents noise when 
sampled from a normal distribution. The Latent auto-
encoder loss calculation is given as follows: first, the 
reconstruction loss ensures the reconstructed image is 
close to the original image as given in Eq.  (3), Î is the 
reconstructed image.

 ↕rec = EI ||I − Î||1 (3)

The KL divergence is used to regularize the latent space 
to follow a standard normal distribution given in Eqs. (4),

 ↕KL = EI [DKL( q (Z| I )|p (z))] (4)

Where q (Z| I) is the approximate posterior, and P(Z) 
is the prior (standard normal distribution). Total latent 
space autoencoder loss is given in Eq. (5), where β  is the 
weighting factor.

 ↕KL = ↕rec + β ↕kl (5)

Downsampling encoder
In our implementation, the UNet generator model is 
designed to transform input images into target images by 
gradually decreasing the spatial dimensions and increas-
ing the number of feature channels through a series of 
downsampling operations shown in Fig.  2. This process 
allows for the extraction of high-level features and rep-
resentations from the input image. The downsampling 
path is composed of eight sequential blocks, each exactly 
carrying out convolution operations followed by batch 
normalization and activation functions. This deliberate 
design is aimed at ensuring that the model can profi-
ciently capture a rich hierarchy of features at various lev-
els of granularity. The fundamental components of each 
block encompass the following key aspects: Convolu-
tion Layer: Every block employs a kernel size of 4 × 4 and 
strides of 2 × 2, effectively reducing the spatial dimen-
sions of the feature maps with each step while extract-
ing features. Batch Normalization: This step stabilizes 
and accelerates training by normalizing the inputs of 
each layer, ensuring that the outputs have zero mean and 
unit variance. Notably, batch normalization is purpose-
fully omitted in the first downsampling block to enable 
the network to learn an initial set of features without 
normalization constraints. Leaky Rectified Linear Unit 
(LeakyReLU) Activation Function, this non-linearity is 
strategically applied to facilitate the network in learning 
more intricate representations. LeakyReLU’s ability to 
allow a small gradient when the unit is not active assists 
in mitigating the issue of dying neurons, thereby promot-
ing improved learning outcomes mentioned in Eqs. (6),

 Di = LeakyReLU (BatchNorm (Conv2D (Di−1))) (6)

The downsampling process involves reducing the spatial 
dimensions of the input image from 256 × 256 to 1 × 1 
while concurrently increasing the number of feature 

Fig. 2 Downsampling encoder
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channels from 3 (RGB) to 512. In Eq.  (6) Di represents 
the number of down-sampling layers. This transforma-
tion enables the neural network to abstract high-level 
features by aggregating spatial information across pro-
gressively larger image regions. The outputs of each block 
are maintained as skip connections, which are later uti-
lized during the upsampling phase to incorporate fine-
grained spatial detail. These skip connections allow the 
network to merge high-level features with detailed spa-
tial information, thus enhancing the overall accuracy and 
quality of the generated images.

Upsampling decoder
Upsampling serves as an important technique to convert 
low-resolution feature maps into higher-resolution ones 
within a neural network. This transformation enables 
the model to capture and reconstruct intricate details 
present in the original image. Specifically, in the UNet 
architecture, upsampling is strategically used to progres-
sively elevate the resolution of the feature maps until they 
reach the size of the original input. The model can gen-
erate output images with precise and fine-grained details 
through this method. In the proposed architecture, the 
upsampling block includes transposed convolution, batch 
normalization, ReLU activation, and optional dropout 
mentioned in Eq. (7),

 Ui = ReLU (BatchNorm( Conv2DTranspose(Ui−1)) (7)

Incorporating optional dropout [31] in the upsampling 
blocks of the generator functions as an efficient regular-
ization technique to avoid overfitting during the training 
process. Dropout is an effective method of regularization 
used to protect neural networks from overfitting. During 
training, dropout randomly deactivates a proportion of 
the input units in each iteration, preventing the network 
from relying excessively on any individual neuron. This 

approach encourages the network to acquire more intri-
cate features, improving new data generalization. In the 
proposed model, dropout is selectively applied within the 
upsampling blocks of the generator, which helps refine 
lower-dimensional feature maps to produce the final out-
put image.

Discriminator
The discriminator classifies the real and generated syn-
thetic images by concatenating them and passing through 
a series of downsampling blocks and convolutional lay-
ers, shown in Fig. 3. The discriminator plays a critical role 
in classifying image pairs as either real or fake. By com-
bining the generated image with the target image, the dis-
criminator gains valuable context about the relationship 
between the input image and the generated output. This 
understanding is particularly important for tasks like 
image translation. The discriminator’s ability to detect 
differences goes beyond the appearance of the gener-
ated image alone, as it also considers how well it aligns 
with the target image. This joint evaluation significantly 
enhances the discriminator’s capacity to guide the gener-
ator in creating more contextually accurate images. Loss 
calculation helps the generator to produce more realistic 
images.

Generator loss
The generator aims to fool the discriminator, which is 
measured using the mean Square Error (MSE) and Mean 
Absolute error (MAE) mentioned in Eqs.  (8), (9), and 
(10).

 
LGAN = EX,Y

[
(D (X, G (X)) − 1)2

]
 (8)

 LL1 = EX,Y [Y − G(X)1] (9)

Fig. 3 Proposed discriminator
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 LGEN = LGAN + λ LL1 (10)

Here, G is the generator, D is the discriminator, X is the 
input image, and Y is the target image. λ  is a hyperpa-
rameter that balances GAN loss and L1 loss.

Discriminator loss
The discriminator loss is a combination of the MSE 
and MAE for real and generated images mentioned in 
Eqs. (11), (12), and (13).

 
Ldisc−real = EX,Y

[
(D (X, Y ) − 1)2

]
 (11)

 
Ldisc−gen = EX,Y

[
(D (X, G (X)))2

]
 (12)

 LDISC = Ldisc−real + Ldisc−gen + MAE loss terms (13)

Different optimization functions are used in the dis-
criminator and generator, RMS prop for convolu-
tion layers, and Adam for remaining layers. Where 
Ldisc−real (Eq.  11) and Ldisc−gen (Eq.  12) are based 
on MSE loss, and the MAE loss term is intended 
to capture the absolute deviation between the dis-
criminator’s output for real and generated images. 
MAE = E(X, Y ) [|D (X, Y ) − D(X, G (X))|]. E (X, 
Y) represents the expected value over the joint distribu-
tion of input image X and the target image Y. D(X, Y) 
represents the discriminator function D takes an input 
image X and its real target image Y and outputs a prob-
ability indicating how real the image pair is. G (X) is the 
generator function G takes an input image X and gener-
ates a synthetic output G(X), which is intended to be as 
close as possible to the real target image Y. The model is 
trained by altering between optimizing the generator and 
discriminator. During each training step, gradients are 
clipped to -1.0 <

_
gradient <

_
 1.0 to stabilize the train-

ing. During training, the generator and discriminator 
gradient descent are adjusted using Eqs. (14) and (15).

 θD ← θD − η∆θD
LDISC  (14)

 θG ← θG − η∆θG
LGEN  (15)

Here θ D  and θ Gare the parameters of the discrimina-
tor and generator, respectively, and η  is the learning rate.

Results of the proposed GAN model
Dataset details and experimental setup
We have utilized the DRIVE [32], STARE [33], and 
CHASE_DB [34] datasets, each containing 20, 10, and 14 
training images. Employing the proposed GAN model, 
we generated 200, 100, and 140 images from these data-
sets, respectively. As these images are intended for vessel 

segmentation, we used Mask data as input to ensure accu-
rate extraction of vessel information and subsequently 
generated RGB images. The Mask data was created using 
the RGB image as input, a process that will be essential in 
assessing the performance of the GAN model. We gener-
ated 440 synthetic RGB images and corresponding masks 
derived from these three standard datasets. The same 
GAN model depicted in Fig.  1 was employed to gener-
ate both Mask and RGB images. The generator produces 
a synthetic RGB image for the mask input, as illustrated 
in Fig. 4. Similarly, synthetic mask data is generated from 
the RGB image shown in Fig. 5. The model yields pairs of 
images with a resolution of 256 × 256. Each actual image 
was downscaled to the synthetic data size for a meaning-
ful comparison.

To balance the GAN Loss and L1 loss, we used a hyper-
parameter λ. In the generator loss equation (Eq. 10), λ is 
utilized to control the weight of the L1 loss in relation 
to the GAN loss. This enables fine-tuning of the balance 
between generating realistic images (represented by the 
GAN loss) and ensuring similarity to the target images 
(represented by the L1 loss). Our model’s λ value is set 
to 100, effectively scaling the L1 loss alongside the GAN 
loss. By prioritizing the minimization of the L1 loss, the 
generator is encouraged to produce images that closely 
match the target images in terms of pixel-wise similar-
ity. The learning rate is established at 0.0002 for both 
the generator and the discriminator, facilitating an opti-
mal balance between training stability and convergence 
speed. This configuration is particularly effective when 
employed with the Adam optimizer, which enhances 
overall model performance. The weighting factor is set to 
λ = 100, balancing the contributions of the L1 loss and the 
GAN loss. Emphasizing the L1 loss encourages the gen-
erator to produce images that closely align with the tar-
get in pixel space. This enhances the generation process’s 
stability and promotes improved structural fidelity in the 
resulting images.

The peak signal-to-noise ratio (PSNR) and struc-
tural Similarity index (SSIM) are calculated between the 
original input image and the Generated Synthetic data 
mentioned in Table  1 to evaluate the proposed GAN 
model’s performance. The PSNR is a critical metric for 
evaluating the fidelity of a reconstructed image in rela-
tion to its original counterpart. It quantifies the disparity 
between the original and generated images and is typi-
cally expressed in decibels (dB). High image similarity is 
typically represented by PSNR values of 30 dB and above 
[35]. The SSIM is a metric used to assess the similarity 
between two images. In contrast to traditional metrics 
like MSE and PSNR, SSIM considers changes in struc-
tural information, luminance, and contrast, offering a 
more comprehensive evaluation of image quality. A range 
of 0.9 < SSIM < 1 signifies a very high degree of similarity, 
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Fig. 4 Generated synthetic data for Mask input (Columns 1, 2, and 3 represent the input to the network, the generated synthetic data, and the ground 
truth data used to evaluate the generated image, respectively)
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Fig. 5 Generated Synthetic Mask data for RGB input (Columns 1, 2, and 3 represent the input, the synthetic data generated, and the ground truth data 
used for evaluating the generated image, respectively.)
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with the images appearing almost indistinguishable to the 
human eye [35]. We achieved strong performance met-
rics for the generated synthetic data from the proposed 
GAN model and selected only 440 images based on the 
PSNR and SSIM values from these generated images.

Using artificial data for retinal vessel segmentation
The primary reason for this work is the necessity of a 
large training dataset for utilizing deep learning tech-
niques in automatic segmentation. The paper introduces 
a method that generates synthetic images and their 
respective vessel trees. The importance of this task is to 
evaluate how well the generated images can be used to 
separate vessel trees from eye fundus images and assess 
how well the synthetically generated data performs in 
this task; we employed the recommended generator as a 
segmentation network, excluding the use of a latent space 
autoencoder shown in Fig.  6. The segmentation model 
initially underwent training using real data, followed by 
training using only synthetic data for comparison.

UNet is a specialized, fully convolutional neural net-
work architecture tailored for the task of biomedical 
image segmentation, particularly for identifying retinal 
vessels. Its design features an encoder-decoder frame-
work paired with skip connections, enabling the model to 
effectively capture both fine details and broader contex-
tual information crucial for accurate segmentation. The 
training data consists of both real and synthetic fundus 
images, as detailed in Table  2. The datasets employed 
include DRIVE, STARE, and CHASE_DB, which are 
recognized benchmark collections for retinal vessel seg-
mentation. These images come in various resolutions 
(565 × 584, 700 × 605, and 999 × 960). To address the 
limited real data, a GAN model generated 440 synthetic 
images, all sized at 256 × 256. These synthetic images 
add diversity, enhancing the model’s ability to generalize. 
Both types of images are divided into smaller patches of 
64 × 64 pixels, which helps lower computational demands 
and increases the volume of training samples. This patch-
based approach enables a focus on localized details, mak-
ing it easier for the model to learn the structures and 
characteristics of the vessels effectively. Additionally, 
using patches accommodates variations in image sizes by 
maintaining a uniform input size for the model.

For consistent comparison and to account for the low 
resolution of the produced synthetic images, we down-
sampled the original DRIVE, CHASE_DB, and STARE 
datasets to a size of 256 × 256. We developed our segmen-
tation model by training it on two sets of images: real and 
synthetic. The dataset details for the segmentation task 
involving these images can be found in Table 3. In both 
cases, we used a test set comprising 20, 10, and 14 images 
for testing cases.

We also calculated the Dice Similarity Coefficient 
(DSC), Jaccard Index (IoU), and Hausdorff Distance as 
quantitative metrics to further evaluate the proposed 
GAN model, as shown in Table  2. This represents the 
average performance across all images. We have com-
pared our model with existing state-of-the-art GAN 
models. While only a few studies have utilized GANs for 

Table 1 Performance analysis of the proposed GAN model
Dataset SSIM PSNR (dB)
DRIVE Dataset
Image 1 0.9826 33.54
Image 2 0.8542 32.34
Image 3 0.9755 32.35
Image 4 0.9822 33.67
Image 5 0.9900 32.88
Image 6 0.9767 33.51
Image 7 0.8955 32.91
Image 8 0.9855 32.87
Image 9 0.8654 32.98
Image 10 0.9823 33.12
Image 11 0.9703 34.98
Image12 0.8688 33.16
Image 13 0.8527 33.67
Image 14 0.8955 32.89
Image 15 0.9932 32.97
Image 16 0.9862 33.65
Image 17 0.8878 31.97
Image 18 0.9998 31.45
Image 19 0.9829 32.67
Image 20 0.8907 31.52
STARE Dataset
Image 1 0.9684 33.55
Image 2 0.9692 30.98
Image 3 0.9899 32.88
Image 4 0.9732 31.99
Image 5 0.9741 32.16
Image 6 0.9907 32.78
Image 7 0.9890 33.67
Image 8 0.9910 34.54
Image 9 0.9967 32.97
Image 10 0.9901 32.25
CHASE_DB1 Dataset
Image 1 0.9599 32.11
Image 2 0.9867 32.29
Image 3 0.9874 37.36
Image 4 0.9901 31.56
Image 5 0.9654 34.46
Image 6 0.9891 32.23
Image 7 0.9865 38.17
Image 8 0.9962 32.24
Image 9 0.9879 32.02
Image 10 0.9655 33.51
Image 11 0.9891 32.05
Image 12 0.9761 32.20
Image 13 0.9845 32.71
Image 14 0.9899 31.05
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synthesizing retinal images, many have focused on seg-
mentation. Therefore, our comparisons are limited to the 
existing methodologies in this specific context.

The DSC quantifies how much the generated image 
overlaps with the target image (input data). It is especially 
responsive to small variations in overlap, which makes it 
an effective metric for measuring the quality of the gen-
erated image. In comparison, the IoU directly penalizes 
false positives and false negatives more rigorously, offer-
ing a stricter assessment of overlap accuracy. Meanwhile, 
the Hausdorff Distance differs from both DSC and IoU 
by concentrating on the spatial alignment of boundaries, 
showing how closely the edges of the generated image 
correspond to those of the target image.

To assess the effectiveness of the synthetic data, we ana-
lyzed accuracy, AUC, and IoU for both real and synthetic 
data in segmentation tasks. Accuracy measures how well 

the model identifies pixels as either vessel or background; 
however, in retinal vessel segmentation, where there 
are typically fewer vessel pixels than background pixels, 
relying solely on accuracy may not provide a complete 
picture of the model’s performance. To address this, we 
calculated the AUC, which represents the area under the 
Receiver Operating Characteristic (ROC) curve, illustrat-
ing the relationship between the true positive rate (sensi-
tivity) and the false positive rate (1-specificity). A higher 
AUC score indicates better differentiation between vessel 
and non-vessel pixels. A high AUC in segmentation indi-
cates the model’s capability to effectively identify vessel 
structures amidst the background across various thresh-
olds. As shown in Table 3, the segmentation model uti-
lizing synthetic data achieved a notable AUC of 0.9899, 
highlighting the advantages of synthetic data. IoU, or 
Intersection over Union, quantifies the overlap between 

Table 2 Shape similarity metrics for the proposed GAN model with existing models
Dice similarity coefficient (DSC) Jaccard index (IOU) Hausdorff distance F1 score Accuracy Sensitivity Specificity

CGAN [26] 0.8112 - - 0.8106 - - -
Style-Based_GAN [27] - 0.989 - - 0.970 0.957 0.982
Fundus GAN [29] - - - - 0.8605 0.8654 0.8689
Proposed Model 0.9853 0.9900 1.20 0.9299 0.9804 0.9745 0.9867

Table 3 Dataset details for training the segmentation model
Dataset Number of available images Preprocessed data with a size of 

64 × 64 for training
Testing accuracy
Accuracy AUC IOU

DRIVE, STARE, and CHASE_DB 20, 10, and 14 images with sizes of 
565 × 584, 700 × 605, and 999 × 960 
respectively.

5936 image patches for training 0.9647 0.9857 0.7023

Synthetic data generated from the 
GAN model

440 Images with a size of 256 × 256 7040 image patches for training 0.9956 0.9899 0.9825

Fig. 6 Simple UNet for vessel segmentation to analyse the efficiency of synthesized retinal images
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the predicted and actual segmentation, calculated by 
dividing the intersection of predicted and true vessel 
regions by their union. IoU is particularly useful in seg-
mentation tasks as it evaluates how closely the model’s 
predicted vessel map aligns with the ground truth. The 
higher IoU score of 0.9825 for synthetic data compared 
to real data suggests superior accuracy and precision in 
vessel segmentation. In summary, while accuracy offers a 
general sense of correctness in pixel classification, AUC 
reflects the model’s ability to distinguish between ves-
sels and non-vessels, and IoU assesses the quality of the 
segmentation by measuring the alignment between pre-
dicted and actual vessel regions.

Table  4 Compares the segmentation performance of 
the UNet trained on synthetic data with existing state-of-
the-art methods. Our goal is to generate synthetic data 
and assess the effectiveness of synthetic data in segmen-
tation tasks. The results indicate that synthetic data sig-
nificantly enhances segmentation performance across 

all three datasets using a simple UNet architecture. This 
demonstrates the efficacy of synthetic data in the design 
of segmentation and classification models for medical 
images. It is particularly beneficial when there are chal-
lenges in collecting real-time medical images and their 
annotations, thereby aiding researchers in developing 
more advanced deep-learning algorithms.

We need to generate visually indistinguishable images 
obtained in Figs. 4 and 5. We have calculated the SSIM 
for Figs. 4 and 5 to differentiate the image quantitatively, 
as shown in Table 5. For the RGB image (Fig. 5), we cal-
culated the SSIM for each channel and then averaged 
these values to obtain the final metric. For the mask data 
(Fig.  5), we directly computed the SSIM by comparing 
the generated image with the target image. In Fig. 4, we 
referred to the original image, while in Fig. 5, we referred 
to the Target image; both terms denote the same object, 
namely the original image from the dataset.

Discussion
The effectiveness of generative models depends on the 
amount of training data and its ability to capture real-
world data variability. In this work, we utilized a Latent 
Space Autoencoder GAN trained on a modest dataset 
of 44 images from the DRIVE, STARE, and CHASE_DB 
datasets. Despite the limited training set, our Latent 
Space Autoencoder GAN successfully produced syn-
thetic images that differed notably from those used dur-
ing training. Images generated from the tubular structure 
and RGB images are shown in Figs.  7 and 8. After gen-
erating 250 images from each original image and select-
ing those with SSIM and PSNR values exceeding 0.9 and 
30dB, respectively, we obtained a dataset of 440 high-
quality images. Using these images, we trained a seg-
mentation model to assess the performance of synthetic 

Table 4 Performance analysis comparison of the simple UNet with existing state-of-the-art methods when trained on Synthetic data
Dataset Methods Accuracy Specificity Sensitivity IOU AUC
DRIVE SUD-GAN [20] 0.9560 0.9820 0.8340 - 0.9786

AA-WGAN [21] 0.9651 0.9903 0.7923 - 0.9788
Refined Equilibrium GAN [22] 0.9563 0.9812 0.8294 - 0.9830
M-GAN [24] 0.9706 0.9836 - 0.7129 0.9868

Real Images Ours (UNet) 0.9508 0.8915 0.9144 0.7984 0.8814
Synthetic Data Ours (UNet) 0.9915 0.9950 0.9890 0.9891 0.9897
STARE SUD-GAN [20] 0.9663 0.9897 0.8334 - 0.9734

AA-WGAN [21] 0.9719 0.9923 0.8234 - 0.9873
Refined Equilibrium GAN [22] 0.9671 0.9781 0.8812 - 0.9863
M-GAN [24] 0.9876 0.9938 - 0.7198 0.9873

Real Images Ours (UNet) 0.9513 0.8814 0.9159 0.7990 0.8820
Synthetic Data Ours (UNet) 0.9900 0.9895 0.9897 0.9893 0.9898
CHASE_DB1 AA-WGAN [21] 0.9644 0.9914 0.8335 - 0.9781

M-GAN [24] 0.9736 - - - 0.9859
Real Images Ours (UNet) 0.9451 0.8993 0.9017 0.7877 0.8859
Synthetic Data Ours (UNet) 0.9917 0.9883 0.9891 0.9890 0.9889

Table 5 SSIM for Figs. 4 and 5
Image SSIM
Figure 4 (SSIM between Generated image 

and original image in Fig. 4)
Row 1 0.9602
Row 2 0.9002
Row 3 0.9054
Row 4 0.9100
Row 5 0.9856
Row 6 0.9214
Figure 5 (SSIM between Generated image 

and Target Image in Fig. 5)
Row 1 0.9051
Row 2 0.9756
Row 3 0.9815
Row 4 0.9204
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Fig. 7 RGB images generated from the mask input
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Fig. 8 Mask images generated from RGB input
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data when tested with unseen images, resulting in a seg-
mentation accuracy of 0.9956, surpassing that achieved 
with real images. This demonstrates the potential of 
GAN-generated synthetic data to address data scarcity 
issues. However, it is important to note the limitations of 
this approach, such as the smaller image size (256 × 256) 
compared to current fundus image databases and the 
significant memory requirements, which necessitate 
advanced hardware when it is implemented for real-time 
applications.

Conclusion
This paper presented an advanced generative model that 
employed a Latent space auto-encoder to create synthetic 
vessel mask images and their corresponding eye fundus 
images. This algorithm learned the intricate structure of 
original retinal images from vessel networks and fundus 
images, enabling it to generate synthetic vessel masks 
and retinal images with diverse visual characteristics not 
present in the training examples. The method’s ability 
to produce realistic vessel geometries and retinal image 
textures while maintaining a consistent global structure 
was especially noteworthy. Furthermore, the generated 
synthetic data was leveraged to train the segmentation 
model, resulting in high accuracy, AUC, and IOU scores 
of 0.9956, 0.9899, and 0.9825, respectively. These results 
represented a significant enhancement over the existing 
dataset used for training the segmentation network. This 
demonstrates the potential of synthetic data as a valu-
able resource for training segmentation and classifica-
tion models, thereby addressing the challenges associated 
with the availability of annotated data.
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