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techniques adopted, and the technical setups or the 
architectural components of the implemented mod-
els [3]. Computational efficiency is another challenge 
because deep models require considerable memory 
capacity to reach state-of-the-art performances on avail-
able datasets [4].

For a better understanding of the deep learning 
approaches used to perform medical image classifica-
tion tasks, a scoping review is conducted in this study. 
Authors have taken into consideration only X-ray, MRI, 
and Ultrasound image modalities due to their wide clini-
cal application, versatility, accessibility in medical insti-
tutions, and cost-effectiveness [5, 6]. Although there 
are several related reviews in the literature, they vary in 

Introduction
Deep learning has provided accurate solutions in the 
healthcare system [1], and the future of deep models 
seems to be very promising [2]. However, the devel-
opment of robust deep learning models requires a lot 
of effort and faces so many challenges related to the 
employed dataset characteristics, image preprocessing 
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Abstract
Medical images occupy the largest part of the existing medical information and dealing with them is challenging 
not only in terms of management but also in terms of interpretation and analysis. Hence, analyzing, understanding, 
and classifying them, becomes a very expensive and time-consuming task, especially if performed manually. Deep 
learning is considered a good solution for image classification, segmentation, and transfer learning tasks since it 
offers a large number of algorithms to solve such complex problems. PRISMA-ScR guidelines have been followed 
to conduct the scoping review with the aim of exploring how deep learning is being used to classify a broad 
spectrum of diseases diagnosed using an X-ray, MRI, or Ultrasound image modality.

Findings contribute to the existing research by outlining the characteristics of the adopted datasets and the 
preprocessing or augmentation techniques applied to them. The authors summarized all relevant studies based 
on the deep learning models used and the accuracy achieved for classification. Whenever possible, they included 
details about the hardware and software configurations, as well as the architectural components of the models 
employed. Moreover, the models that achieved the highest accuracy in disease classification were highlighted, 
along with their strengths. The authors also discussed the limitations of the current approaches and proposed 
future directions for medical image classification.
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scope and coverage. For example, reviews in [7–14] cover 
specific conditions such as diabetic retinopathy [7], rare 
diseases [8], breast cancer [9], covid-19 [10, 11], muscu-
loskeletal malignancies [12], skin cancer [13], and psy-
chiatric diseases [14], respectively. Similarly, the authors 
in [15] explore the use of deep learning in dental regen-
eration and rehabilitation procedures with a focus on 
segmentation and object detection tasks. Other reviews 
are concentrated on transfer learning tasks applied to 
neuroimaging [16] and other modalities [17]. Moreover, 
there is a complete review presented by the authors in 
[18] on medical image preprocessing, but it has a strict 
focus on image-denoising techniques. They performed an 
in-depth analysis of noise sources and performance indi-
cators; however, numerous other image preprocessing 
and augmentation techniques are adopted by the state-
of-the-art to improve the quality of the input datasets for 
their deep learning models.

In contrast to previous work, this review focuses spe-
cifically on image classification tasks and has a broader 
scope, meaning that it is not limited to specific condi-
tions, but instead spans across multiple diseases. It also 
provides details about the size and accessibility of the 
datasets used in existing experimental studies to offer 
researchers practical insights for selecting appropri-
ate datasets or assessing the reproducibility of results. 
In addition, the authors highlight the preprocessing and 
augmentation techniques employed in image classifica-
tion studies. Through that researchers can understand 
which techniques worked best and which ones were 
overlooked or need further exploration. Furthermore, 
other reviews tend to remain focused on the algorithms 
or implemented deep models, often neglecting hardware 
and software configurations used for implementation. To 
the best of the authors’ knowledge, there are no review 
studies that provide details regarding such technical 
characteristics for each image classification model. By 
documenting such information in this work the authors 
help users evaluate whether they have enough resources 
to replicate the setup in their specific context or if they 
need to scale up.

This research work is guided by the following questions:

  • RQ1: What are the most common diseases covered 
by the studies and what anatomical site/organs do 
they affect?

  • RQ2: How are medical image modalities distributed 
in the selected studies, considering only the sample 
size and accessibility of the datasets adopted?

  • RQ3: What are the most applied image 
preprocessing techniques during the data 
preparation stage? Is data augmentation required?

  • RQ4: What are the architectural components and 
hardware configurations of the models employed 

by the studies and what deep learning frameworks/
libraries are used for their implementation?

  • RQ5: What are the limitations of the deep learning 
approaches for image classification?

After applying the inclusion and exclusion criteria 
described in the methodology, this review considered 80 
studies published between 2014 and 2024 for final analy-
sis. The most frequently studied diseases were the ones 
affecting the lungs, brain, and mammary glands. X-ray 
image modality was the most commonly used compared 
to MRI and Ultrasound. In 50% of cases, image classifica-
tion was conducted on a dataset size ranging between 1 K 
and 10 K samples. With the increase in the sample size, 
the adoption of private datasets decreased compared to 
public ones. 54% of the studies adopted both, prepro-
cessing and augmentation as a pre-training step for the 
model. The most applied preprocessing techniques were 
image normalization, image resizing, gray-scaling, and 
denoising. For augmentation, image rotation, horizon-
tal/vertical flipping, and zooming were the most adopted 
approaches. The most employed deep learning model was 
custom CNN and the environment used in the major-
ity of studies for model implementation was Tensorflow 
as a backend combined with Keras or Google Colab as 
interfaces. Regarding the architectural components, 
54% of the studies used ReLU or LeakyReLU activation 
functions in the hidden layers and Softmax in the last 
output layer. Adam optimizer was used in 46% of cases, 
followed by SGD optimizer in 18%. The majority of the 
models employing the Adam optimizer performed train-
ing using 16GB-64GB of dedicated GPU. Meanwhile, the 
ones employing SGD optimizer performed training using 
16GB of dedicated GPU or less. In Table 4 we present the 
models with the highest accuracy and for the most stud-
ied organs EfficientNet (combined with XAI techniques) 
and custom CNN both demonstrated great results. Limi-
tations and future directions of authors in this area are 
mentioned in RQ5. Small dataset size, imbalanced data-
sets, lack of historical patient information, considering 
only one image modality per disease, performing binary 
classification instead of multi-class, incorrect data anno-
tation, and limited hardware capacities were some of the 
issues affecting the interpretability and generalizability of 
deep learning models. To address that, the authors sug-
gest applying several augmentation approaches, such as 
using SMOTE, DARI, and cGAN models, and using pre-
trained models. Also, leveraging the benefits of Explain-
able AI (XAI) techniques can significantly reduce the 
complexity of the model making it more interpretable.

The rest of the article has been arranged as follows: 
Sect.  “Literature review” portrays brief results from 
the literature review. Section  “Methodology” explains 
the methodology used in this study. Section  “Results & 
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discussions” presents the results and discussion. Sec-
tion  “Open issues” concludes the article with further 
research suggestions.

Literature review
Medical imaging plays an important role in different 
clinical procedures and in the detection or diagnosis of 
various pathologies [19, 20]. Imaging techniques can eas-
ily reach the internal structures of the body and identify 
a lot of abnormalities [5]. In order to achieve an effective 
treatment of these abnormalities, image classification 
needs to be accurate, but this process is usually tedious 
and prone to errors because of a subjective interpretation 
by medical experts [21]. Recently, the automation of the 
disease diagnosis process came with a lot of advantages 
and potential [22]. An automated solution that can be 
taken into consideration is machine learning, but medical 
images are complex in nature compared to other types of 
images due to data variation from patient to patient, so 
traditional machine learning is not sufficient [2]. Given 
that, deep learning makes a good alternative and many 
review studies about its application in processing medical 
image data have been published.

Khosravi et al. [23] performed a scoping review on 
the application of machine learning and deep learn-
ing in cardiothoracic imaging. Kim et al. [15] focused 
their research on the task of transfer learning by provid-
ing guidance on how to choose a backbone CNN model 
and the appropriate transfer learning approach, in order 
to correctly perform image classification. Mohammad-
Rahimi et al. [8] discussed in their work how deep 
learning is performed on periodontal or oral implantol-
ogy tasks using classification, segmentation, and object 
detection techniques. Lee et al. [7] explored how deep 
learning is advancing in rare disease diagnosis, including 
rare neoplastic diseases, rare genetic diseases, and rare 
neurological diseases.

Tsiknakis et al. [9] focused on diabetic retinopathy seg-
mentation, classification, and detection through deep 
learning, using fundus images. Mao et al. [10] performed 
a systematic scoping review to summarize the contribu-
tion of machine learning and deep learning in the clas-
sification of breast tumor using ultrasound elastography. 
Gillman et al. [11] and Wang & Hargreaves [16] focused 
their research on the classification of COVID-19 from 
chest radiological images and reviewed deep learning 
techniques adopted in that direction.

Another scoping review about transfer learning 
approaches is conducted by Ardalan & Subbian [17], 
but this time about neuroimaging analysis. Meanwhile, 
Morid et al. [12] explored the use of transfer learning 
on medical image analysis using ImageNet. Deep learn-
ing on musculoskeletal malignancy diagnosis was stud-
ied by Hinterwimmer et al. [13] and the article had an 

explorative nature. More scoping reviews are conducted 
for skin cancer detection [14] and human brain neuro-
logical and psychiatric diseases [24].

Methodology
A scoping review was conducted following the PRISMA-
ScR checklist [25] and the updated methodological guid-
ance [26]. Figure  1 shows the step-by-step procedure 
needed for the systematic selection and screening of the 
available studies in the research area.

Selected databases and search strategy
The five well-known digital libraries that were chosen to 
perform the research and identify the relevant studies are 
mentioned below along with the respective search que-
ries applied as shown in Fig.  2. Their combination cov-
ered a wide variety of papers about the application of 
technology in medicine.

Selection criteria
The total number of papers gathered from the electronic 
search during the identification stage was 2807. These 
studies were filtered considering the publication period, 
publication type, and presence of duplicates. The remain-
ing number of papers (2011) underwent a screening 
process by titles, abstracts, and other exclusion criteria, 
reducing in this way the number of papers to 166. The 
latter were assessed for full-text relevance and finally, 80 
papers were found eligible for this scoping review. Table 1 
shows the inclusion and exclusion criteria applied.

Results & discussions
In the upcoming sections, we will offer a more detailed 
analysis and interpretation of our findings. We will begin 
by describing the relevant studies and examining pub-
lication trends. Each subsequent section will address 
one of the five research questions outlined in this scop-
ing review. We will conclude with a discussion of open 
issues and suggest future trends that researchers should 
explore.

Description of the relevant studies
The number of papers published from 2016 to 2024, 
following a deep-learning approach for the classifica-
tion of medical images is displayed in Fig. 3. It helps us 
to gain a better understanding of the evolution of the 
subject matter and to provide context for the period in 
which researchers have been publishing in this area. The 
graph is limited to the number of studies chosen for the 
final screening phase of this scoping review and it dem-
onstrates that numbers have risen rapidly over the last 
seven years. A growing trend of publications is reported 
starting from the second half of 2017 to the first half of 
2020, but a sharp rise is seen in the second half of 2020 



Page 4 of 17Laçi et al. BMC Medical Imaging          (2025) 25:156 

with 12 relevant papers, which coincides with the expan-
sion of COVID-19. Even if we can spot a decrease in the 
second half of 2021, the number of pertinent papers pub-
lished remains significant. Given that, we can certainly 
say that this is still a trending topic.

RQ1: What are the most common diseases covered by the 
studies and what anatomical site/organs do they affect?
The majority of studies (34%) were focused on patholo-
gies or diseases affecting the lungs, for instance, COVID-
19, pneumonia/pediatric pneumonia, and pulmonary 
tuberculosis. Diseases affecting the brain, including 
Alzheimer’s, dementia, brain tumors, autism spectrum 
disorder, and cortical tubers, were also present in a con-
siderable number of studies, 31% to be more precise. 
Another anatomical site considered in 10% of the arti-
cles by researchers was the mammary gland. In the ana-
lyzed papers, diseases affecting the thoracic cavity and 
the organs it includes, liver, thyroid gland, bones, spine, 
uterus, and prostate gland were the least studied, 8%, 
6.25%, 5%, 2.5%, 1.25%, 1.25%, 1.25% respectively. Fur-
thermore, regarding the imaging modality, X-rays were 

the most frequently used for disease diagnosis (44%), 
followed by MRI image modality (35%) and Ultrasound 
image modality (21%). The distribution is displayed in 
more detail in Table 2.

As a final point, 77% of the studies using X-ray imaging 
modality are used to classify diseases affecting the lungs, 
and 89% of the studies using MRI imaging modality are 
used to classify diseases affecting the brain. Ultrasound 
imaging modality is mostly used to classify diseases 
affecting the mammary gland (47% of the studies).

RQ2: How are medical image modalities distributed in the 
selected studies, considering only the sample size and 
accessibility of the datasets adopted?
Classifying medical images through deep learning meth-
ods is considered to be an arduous task because of two 
main reasons: the insufficient amount of medical data 
available to train the models and the absence of medical 
specialists needed for the data labeling process [108]. As 
a matter of fact, the lack of data is a limitation in any field 
of study, but what makes it more challenging for medi-
cal images are data privacy issues [109]. Consequently, a 

Fig. 1 Flow of the study selection process
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large number of studies consider publicly available datas-
ets to perform classification.

Through this section, the authors aim to understand 
the availability of data for various diseases, to get insights 
into the trends of public or private data-sharing prac-
tices, and to emphasize collaborative initiatives between 
researchers. The sample size and accessibility of the data-
sets adopted by the studies considered in our research 
are shown in Fig. 4. The largest number of studies (50%) 
fall in the second category, where the image classification 

task is conducted with a dataset size starting from 1  K 
to 10  K samples. The number of studies decreases for 
datasets with more than 10 K samples and the category 
with the least number of studies (6.25%) is the last one, 
which performs image classification with a sample size 
greater than 100  K. As for accessibility, public datasets 
have expectedly the highest frequency for each category 
(65%, 70%, 83% and 100%). Notice the fact that with the 
increase in the sample size, decreases the adoption of pri-
vate datasets compared to public ones.

Figure 4 gives information about the distribution of 
imaging modalities as well. In the first category (< 1  K), 
We can observe an equal distribution (37.5%) between 
the X-ray and MRI samples in the private datasets. 73% of 
the public datasets comprise MRI samples. In the second 
category (1–10 K), 50% of the private datasets comprise 

Table 1 Criteria applied to include or exclude studies for our 
scoping review
Inclusion Criteria Exclusion Criteria
Studies published from 2014 
to 2024.

Nonexperimental studies or studies 
that have not solved a specific clas-
sification problem.

Journal articles and confer-
ence proceedings.

Studies not leveraging a deep learning 
approach or not adopting a deep 
learning model as a problem solver.

Studies written in English. Studies being published for 3 months 
or more and having 0 citations.

Studies focused only on the 
classification task and 
not in other deep learning 
tasks.

Books, Reviews, Early access articles, 
etc.

Studies considering only MRI, 
X-ray, or Ultrasound
image modalities to perform 
classification.

To date Web of Science and Scopus are 
two of the most important databases, 
but Scopus provides a wider content 
coverage [27]. So, studies not present 
and cited in Scopus were excluded.

Fig. 3 Papers published annually from 2016 to 2024

 

Fig. 2 Search queries performed in the chosen databases
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Ultrasound images and 50% of the public datasets com-
prise X-ray images. For the last two categories, 90% and 
80% of the public datasets, respectively, consist of X-rays. 
As a final observation, it is noted that the majority of 
datasets composed of Ultrasound images are private, 
while datasets composed of X-ray or MRI images are 
mostly public.

Additionally, among the articles of the first category 
(< 1 K), the ones performing the image classification task 
for diseases affecting the brain occupy 50% of the studies. 
In the second and third categories, the majority of arti-
cles classify diseases affecting the lungs (40% and 67%). 

In the last category (> 100 K) the articles mostly classify 
diseases affecting the thoracic cavity.

RQ3: What are the most applied image preprocessing 
techniques during the data Preparation stage? Is data 
augmentation required?
When it comes to classification problems the quality 
of the input has revealed to be crucial, especially while 
using deep learning approaches. Different preprocessing 
techniques are being applied to raw data before feeding 
them to the deep models in order to improve their quality 
[110].

Table 2 Distribution of the classified diseases, anatomical sites affected, and medical image modalities used in the relevant studies
Ref. Disease Anatomical Site/Studied 

Organ
Medical Imaging Modality Fre-

quen-
cy

[28–51] Covid-19, Pneumonia, Pediatric Pneumonia Lungs Posterior-Anterior CXR 30%
[52–66] Alzheimer Disease, Dementia Brain MRI/sMRI/ T1-weighted MRI 19%
[67–72] 14-Thoracic Diseases (Atelectasis, Cardiomegaly, Effu-

sion, Infiltration, Mass, Nodule, Pneumonia, Pneumotho-
rax, Consolidation, Edema, Emphysema, Fibrosis, Pleural 
Thickening, and Hernia)

Organs of the thoracic 
cavity

CXR 8%

 [73–79] Brain Tumor, Glioma Tumors Brain MRI, T2-SWI MRI 9%
 [80–83] Thyroid Nodules Thyroid Gland Ultrasound 5%
 [84–91] Breast Cancer Mammary Gland Ultrasound 10%
 [92, 93] Bone Fracture, Femur Fracture Bones Bone X-Ray 2.5%
 [94–96] Pulmonary Tuberculosis Lungs CXR 3.7%
 [97, 98] Liver lesions/Liver tumor Liver DW-MRI, Ultrasound 2.5%
 [99, 100] Liver fibrosis/Hepatic fibrosis Liver Ultrasound 2.5%
 [101, 102] Autism Spectrum Disorder (ASD), DOC Brain rs-fMRI 2.5%
 [103] Cortical Tubers Brain MRI 1.25%
 [104] Disc Herniation Spine Axial MRI 1.25%
 [105] Fetal Malposition Uterus T2-weighted 3D fetal MRI 1.25%
 [106] Voxel-Level Liver Stiffness Liver MRE (MRI + low-frequency 

vibrations)
1.25%

 [107] Prostate Cancer Prostate Gland Ultrasound 1.25%

Fig. 4 Frequency of studies using a specific medical imaging modality for different dataset sizes and accessibility
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Figure 5 shows that over half of the studies (54%) 
adopted both, preprocessing, and augmentation as a 
model pre-training step. Only 26 studies (33%) have not 
applied (N/A) data augmentation, hence the adoption of 
the latter appears to be important.

Figure 6 shows the frequency of studies using specific 
preprocessing techniques. Image normalization, image 

resizing, gray-scaling, and denoising were the most fre-
quently applied, in 55%, 40%, 28%, and 26% of the papers 
respectively, followed by image enhancement (18%). For 
image denoising, an effective approach to be considered 
is the integration of.

The frequency of studies using specific augmentation 
approaches is displayed in Fig.  7. Image rotation (41%), 
horizontal/vertical flipping (36%), and zooming (15%) 
were the most used methods to increase the dataset size. 
Scaling (10%), image translation (10%), shifting (9%), and 
shearing (9%) seem to be significant as well.

RQ4: What are the architectural components and hardware 
configurations of the models employed by the studies and 
what deep learning frameworks/libraries are used for their 
implementation?
Table  3 organizes the relevant studies according to the 
deep learning model employed, the dataset size, and 
the accuracy achieved during training. It provides also 
details regarding the hardware and software configura-
tions adopted for implementation. Whenever there was 
evidence, we extracted the time taken by the model for 

Fig. 7 Percentage of papers using a specific augmentation approach

 

Fig. 6 Percentage of papers using a specific preprocessing technique

 

Fig. 5 Adoption of preprocessing & augmentation by the eligible studies
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Ref Disease Dataset 
Size

Model Acc.% Technology/Environment

 [28] Pneumo-
thorax 
disease

Data-
set1: 
12,047
Data-
set2: 
3315

Combines 3 CNN: 
VGG-16, VGG-19, DenseNet-121

82.68 • SW: Keras + TensorFlow + Python

 [97] Liver le-
sions/Liver 
tumor

130 CNN 83 • SW: TensorFlow + Python

 [29] Covid-19 5000 genetic DCNN 98.84 • SW: TensorFlow 
• HW: NVIDIA Tesla TitanXp GPU, 512 GB memory, 240 SSD Intel i7 
2.50 GHz

 [52] AD and
Dementia

6400 CNN 95.23 • HW: NVIDIA Quadra RTX6000 workstation (24GB GPU)

 [94] Pulmonary 
Tuberculosis

662 VGG16 93.18 Not Mentioned

 [30] Covid-19 82,670 CNN 91.53 • SW: PyTorch implementation ( h t t p  s : /  / g i t  h u  b . c  o m /  I l i a  s P  a p / C O V I D N 
e t)

 [31] Covid-19 33,231 DARI/GAN + CNN 93.94 • SW: Keras + TensorFlow library + Python’s Matplotlib library.
• HW: Nvidia RTX 2060 GPU, Intel Core i7 workstation, 3.00 GHz CPU, 
16 GB RAM

 [32] Covid-19 5863 ResNet-50 + MLP 91 Not Mentioned
 [53] AD 427 RNN 86 • SW: PRO version of Google Colab cloud service + Keras
 [67] Thoracic 

diseases
112,120 CNN - Not Mentioned

 [33] Covid-19 2905 cGAN + U-Net + ResNet-50 97.8 • SW: Tensorflow API on Google Colab Pro Cloud platform.
 [34] Covid-19 5956 CNN 89.47 • SW: python version 3.7.3 + Keras + TensorFlow2.0.0

• HW: NVIDIA Quadro k620 GPU with 2GB GPU, Intel Corei7-3.6 GHz
 [35] Pneumonia 5856 VGG16 97.4 • SW: Keras v2.2.5 + TensorFlow v1.14.0

• HW: Foxconn HPC M100-NHI with an 8-GPU cluster of NVIDIA Tesla 
V100 16GB cards

 [68] Thoracic 
diseases

108,948 CNN - • SW: Caffe framework + Dev-Box linux server with 4 Titan X GPUs

 [36] Covid-19 3000 CNN 97.33 • SW: Keras + TensorFlow 2.0 + Python 
• HW: NVIDIA Tesla P100 PCIe GPU of 16 GB on Google Colaboratory 
Server

 [73] Brain Tumor 2406 VGG16 98.4 • HW: NVIDIA Quadro P5000 GPU card with 16GB memory.
• Training time: 16 h

 [54] AD 400 CNN 73.4 • SW: Keras + TensorFlow backend
• HW: NVIDIA RTX2080 GPU

 [37] Covid-19 1415 CNN 98.62 • SW: Keras + Tensorflow + Python 
• HW: NVIDIA GEFORCE GTX 1050 Ti 8 GB & 4 GB RAM, Intel corei7 GHz

 [55] AD 4786 CNN 93.21 • SW: Pytorch library
• HW: NVIDIA TITAN RTX GPU
• Training time: 20 h

 [95] Tuberculosis 4701 AlexNet and GoogleNet 85.68 • SW: Pycaffe + Scikit-learn + Pandas-ml
• HW: NVIDIA Tesla K80 GPU
• Training time: less than 1 min per image (2 to 3 days training)

 [38] Covid-19 17,990 DenseNet 94.3 Not Mentioned
 [104] Disc 

Herniation
2329 AlexNet 87.75 • SW: Caffe framework + Ubuntu Linux OS + CUDA Math Library

• HW: Intel core i5 6500 (3 MHz) 4GB RAM, a 960 GPU GTX graphics 
card

 [56] AD 530 CNN 88.31 • SW: Keras + Tensorflow + Python 3.6.6 + Ubuntu16.04-x64/ 
• HW: NVIDIA GeForce GTX TITAN X

 [57] AD 428 RNN + MLP 89.69 • HW: NVIDIA GeForce GTX 1080 GPU 8GB
• SW: Keras + Theano

 [39] Pneumonia 5856 VGG16 96 • SW: Keras + TensorFlow

Table 3 Classification based on the deep learning model adopted, accuracy achieved and technical implementation details

https://github.com/IliasPap/COVIDNet
https://github.com/IliasPap/COVIDNet
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Ref Disease Dataset 
Size

Model Acc.% Technology/Environment

 [58] AD 6400 CNN 50 Not Mentioned
 [59] AD 56 CNN 97.75 • SW: OpenCV python and OpenCV3
 [60] AD 388 Self-Attention Transformer 88.2 • SW: PyTorch

• HW: 4 NVIDIA 2080 TI GPUs
 [69] Thoracic 

diseases
1000 DNN - • HW: Model parallelized in two NVIDIA Tesla V100 graphic cards

 [70] Thoracic 
diseases

141,400 DenseNet-169 + ResNet-152 - • SW: PyTorch
• HW: NVIDIA GTX Titan V 12GB GPU

 [74] Brain Tumor 1992 CNN 95.78 • SW: Google Colab + PyTorch + Darknet framework
• HW: NVIDIA Tesla P100 GPU
• Training time: 7 ms per image

 [71] Thoracic 
diseases

984 DenseNet 99.58 • SW: Keras + Tensorflow

 [61] AD 581 ResNet and Inception 81 Not Mentioned
 [40] Covid-19 12,723 VGG16 99.1 • SW: MATLAB2021b

• HW: Personal Workstation 16 GB RAM and 8 GB graphics card
 [41] pneumo-

nia and 
COVID-19

29,400 DenseNet201 + VGG16 + GoogleNe
t + MLP

98.19 • SW: Keras + TensorFlow
• HW: NVIDIA GEFORCE RTX-3080 Ti 10 GB GPU, Desktop 64GB RAM 
Intel Corei9-10850 K CPU running at 3.60 GHz

 [42] Covid-19 18,219 CNN 95.57 • SW: Pytorch
 [43] Covid-19 333 CNN + SVM 99.02 • SW: Keras + TensorFlow.
 [44] Covid-19 16,000 DenseNet-201 99.1 • SW: Keras + TensorFlow 2.2.0
 [45] Covid-19 155 CNN 93.5 • SW: Anaconda with Python + TensorFlow 

 • HW: NVIDIA GeForce GTX 1080 8 GB, PC Intel i7 8700 K 3.70 GHz 
processor, 32 GB DDR4 RAM

 [46] Covid-
19, other 
pneumonia 
issues

5071 genetic DCNN 97.23 • SW: Tensor flow
• HW: NVIDIA Tesla TitanXp GPU, Intel i7 processor 512 GB RAM 240 
SSD, and 2.50 GHz 

 [47] Covid-19 4573 CNN 98.92 • SW: Windows 10 (64-bit) operating system, Matlab R2019a.
• HW: NVIDIA GeForce GTX-850 M GM107 GPU, Intel Core i7 5400 GPU 
2.60 Ghz, 16.0 GB RAM.
• Training time: Task 1 (1,828 images) 25 min and Task 2 (2,745 images) 
49 min

 [106] Voxel-
Level Liver 
Stiffness

149 DeepLabv31 78 • SW: PyTorch
• HW: The Pittsburgh Supercomputing Center using NVIDIA V100 
16-GB GPU
• Training time: 3–5 h

 [75] Brain Tumor 25,000 CNN 99.25 • SW: Keras + Tensorflow
• HW: ThinkStation P620 Tower Workstation, NVIDIA Quadro® P2200 
16 GB, Lenovo

 [92] Femur 
Fracture

1347 ResNet-50 + AlexNet 90 • SW: Linux-based workstation with 16 GB RAM, Intel(R) Xeon(R) CPU 
@ 3.50 GHz and 64 GB GeForce GTX 1080 graphics card

 [103] Cortical 
Tubers

6318 TSCCNN + InceptionV3 + ResNet50 95 • SW: Keras + TensorFlow + Python 3.6

 [48] Pediatric 
Pneumonia

6480 ResNet-50 + Xception + MobileNet 95.83 • SW: Keras + Python + Ubuntu 14.04 OS
• HW: 64 GB RAM workstation and NVIDIA 1080 Ti graphics card

 [101] Autism 
Spectrum 
Disorder 
(ASD)

459 CNN 70.45 • SW: Keras + Theano + python
• HW: PC Intel Core i7 CPU (2.2 GHz) and 16 GB DDR3 memory.

 [93] Bone 
Fracture

34,000 Hybrid SFNet + Canny + Grey 99.12 • SW: Tensorflow + Python 3.6 + window 10 OS
• HW: TITAN X GPU NVIDIA GeForce GTX 128GB RAM, 8 GB dual graph-
ics card

 [76] Glioma 
Tumors

572 CNN 97 • SW: Keras + TensorFlow + Google Colab

Table 3 (continued) 
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Ref Disease Dataset 
Size

Model Acc.% Technology/Environment

 [105] Fetal 
Malposition

144 CNN 97.68 • SW: Keras + TensorFlow + Google Colab
• HW: NVIDIA-T4 and NVIDIA-P100 GPU

 [80] Thyroid 
Nodules

1874 ResNet 88.3 • SW: Pytorch framework + Python 3.7 + Ubuntu18.04 OS
• HW: 11G 2080Ti GPU, InyterCore i7-6700, 16 GB memory,

 [84] Breast 
Cancer

1192 BI-RADS-Net (VGG-16) 88.9 Not Mentioned

 [81] Thyroid 
Nodules

17,447 ResNet50 83 • HW: PC NVIDIA GTX 1080Ti

 [99] Liver 
Fibrosis

6323 ResNet 85.9 Not Mentioned

 [100] Hepatic 
Fibrosis

230 CNN 94.29 • SW: Pytorch 1.11.0
• HW: NVIDIA Quadro P400 GPU, and 16 GB RAM, IntelXeon W-2104 
CPU @ 3.20 GHz

 [82] Thyroid 
Nodules

4554 ResNet50 90.6 • SW: Pytorch framework
• HW: Geforce GTX 1080 Ti GPU

 [85] Breast 
Cancer

1400 VGG16 + ResNet34 + GoogLeNet 91
80
90

• SW: Python 3.6.9 + PyTorch 1.1.0.
• HW: Workstation NVIDIA TITAN XP 12 GB, Intel i9 CPU, and 48 GB 
main memory

 [83] Thyroid 
Nodules

508 ResNet18 98.4 Not Mentioned

 [86] Breast 
Cancer

1052 Fus2Net- a novel CNN 92 • SW: Keras + TensorFlow2.0 + Python + Windows 10
• HW: NVIDIA 1080Ti 16GB with CUDA 3584 cores GPU, Intel Corei7-
8700k CPU 3.70 GHz, 16.0GB RAM

 [98] liver tumors 2168 USC-Enet (based on EfcientNet-B0) 95.6 • SW: Pytorch + CUDA
 • HW: 32GB RAM NVIDIA Quadro P600 with 8G video memory, Intel 
Core i7-8850 H CPU 6cores and 12 threads, core frequency 2.60 GHz

 [87] Breast 
Cancer

1030 DeepBraestCancerNet (custom CNN) 99.35 • SW: MATLAB R2020a
• HW: Intel Corei5-5200U processor and 8 GB of RAM

 [102] disorders of 
conscious-
ness (DOC)

151 3D EfficientNet-B3 92.7 • HW: NVIDIA Tesla V100 32GB Volta GPU

 [49] Pneumonia 5856 EfficientNetV2L 94.02 • SW: TensorFlow framework
 [50] Covid-19, 

Pneumonia, 
Pediatric 
Pneumonia

4523 Resnet 95.97 • SW: PyTorch 2.1.0 + Python3.10.12 + Windows11 Pro OS
• HW: Intel®Core™i7 10,700 CPU @2.90 GHz and 32GB RAM

 [72] thoracic 
disease

312,120 Attention-based CNN 84.67 Not Mentioned

 [62] AD 930 DenseNet-169 98.53 • SW: Pytorch + CUDA + Ubuntu 20.04 OS
 • HW: 4 AMD vCPUs, and 32 GB of RAM with a 16 GB NVIDIA T4 GPU

 [51] tuberculosis, 
pneumonia, 
COVID-19

56,334 IEViT 98.59 • SW: Keras + TensorFlow + vit-keras 4 ( h t t p  s : /  / g i t  h u  b . c  o m /  f a u s  t o  m o r 
a l e s / v i t - k e r a s)

 [88] Breast 
Cancer

1328 ANN 0.9548 Not Mentioned

 [96] Tuberculosis 5600 Efficient Xception CNN 99.29 • SW: Python 3.9 
• HW: 8GB NVIDIA Quadro P4000 GPU, Workstation Intel Core i7 8th 
processor, 16 GB of RAM

 [89] Breast 
Cancer

10,714 AlexNet + MobileNetV2 + ResNet 97.75 • SW: MATLAB R2020b
• HW: NVIDIA GeForce RTXA4000 16GB GPU, and 64GB RAM, Intel 
Xeon Core i7 processor, 3.50 GHz

 [90] Breast 
Cancer

1203 InceptionV3 81 • SW: Keras 2.8.0 + Tensorflowr 2.8.0
• HW: 16 GB of RAM, a GPU-based graphic card with 2176 CUDA cores 
(GeForce RTX 2060-A8G), and Intel Xeon CPU

 [79] Brain Tumor 351 3D CNN 96.49 • SW: Keras + Tensorflow + Python 3.4
• HW: NVIDIA GPU Geforce GTX 1080 Ti 11GB RAM, Intel-i7 2.60 GHz 
CPU, 19.5GB RAM

Table 3 (continued) 
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training. The majority (36%) employed custom CNNs, 
and a vast part (21%) utilized a hybrid approach to clas-
sify images. Several other models, including ResNet (9%), 
VGG-16 (7.5%), EfficientNet (6.25%), DenseNet (5%), 
and Genetic DCNN (3%) were used as well. The remain-
ing part adopted RNN, DNN, AlexNet, Self-Attention 
Transformer, DeepLabV31, Attention-based CNN, IEViT, 
ANN, InceptionV3, and FCN as a solution for the clas-
sification task.

To boost the deep learning community development, 
plenty of open-source frameworks and libraries are 
available for the implementation of deep learning mod-
els [111]. TensorFlow, Caffe, PyTorch, CNTK, MXNet, 
Chainer, Theano, and Keras are some of the most popu-
lar adopted by the state-of-the-art [112]. In this scoping 
review, 39% of the considered studies used Tensorflow 
as a backend combined with Keras or Google Colab as 
interfaces. PyTorch was mostly used alone for the imple-
mentation and training of the models in 18% of the stud-
ies, but in some of them, it was combined with Utils, 
CUDA, and Keras. Caffe was employed alone in 5% of the 
studies, MATLAB in 5% of the studies too, while Theano 
as the backend combined with Keras as the interface in 
3% of the studies. The remaining part utilized OpenCV 
or have given details about the hardware, but not regard-
ing the framework or library employed. As shown from 
the results, TensorFlow is the most frequently used. 
There are several features that make it a more preferred 
approach, including fast and distributed computation, 
effective visualization toolkits, and the ability to support 
specific hardware configurations [113].

However, choosing the appropriate deep learning 
environment is not the only challenging task, but also 
building the model requires effort due to different data 
characteristics and problems that need to be addressed 
[114]. In addition to the activation functions and opti-
mizers, there are some parameters like the batch size, 

number of epochs, and learning rate that should be set 
manually [115]. These architectural components are all 
defined in the identified studies of this scoping review 
and the extracted details can be found in the appendix.

Over half of the studies considered (54%) used mainly 
ReLU or LeakyReLU activation functions in the hidden 
layers and Softmax in the last output layer. The rest of the 
studies applied only ReLU (9%), ReLU with Sigmoid acti-
vation function (6%), Sigmoid without ReLU (7.5%), Tanh 
(1.5%), Softmax with Sigmoid (3%) or have not given 
details (18%).

As for the optimizers, by making the appropriate 
choice, researchers can improve weights during train-
ing in order to minimize the loss function and enhance 
the overall performance of the model [78]. 46% of the 
relevant studies have chosen Adam optimizer, 8% com-
bined Adam with SGD, Adadelta, RMSProp, or Adamax, 
18% used SGD, and 5% only RMSProp. A minor part 
have chosen Nesterov Momentum, Adagrad, ASSOA, 
Grid Search, and Huddle PSO. For the studies that used 
Adam and SGD, the other parameters of the models 
were observed in more detail. This study observed that 
the largest batch size in the papers using SGD optimizer 
was 128 [102], while in the papers using Adam optimizer 
was 400 [37]. Regarding the loss function adopted, cross-
entropy was the most used one in both cases.

The hardware configuration is of great importance 
because it highly affects the training time required by 
the model [115]. The majority of the models that applied 
SGD optimizer performed training using 16GB of dedi-
cated GPU or less, while the models that applied Adam 
optimizer, performed training using 16GB-64GB of dedi-
cated GPU.

Table 4 presents the models that achieved the highest 
accuracy during classification for each disease studied in 
the selected papers, along with their strengths. The table 
indicates that EfficientNet and custom CNN models 

Ref Disease Dataset 
Size

Model Acc.% Technology/Environment

 [63] AD 850,080 ResNet18 97.92 • SW: Caffe + FloydHub cloud service
• HW: NVIDIA Tesla K80 GPU

 [64] AD 20,060 3D-CNN 86 • HW: NVIDIA TitanX GPU
• Training time: 60 h per image

 [107] prostate 
cancer

21 CNN 89.9 • HW: Windows system Intel core i5 and 16G memory

 [77] Brain Tumor 2870 CNN + Multi-Branch Network + Incep-
tion block

99.3 Not Mentioned

 [78] Brain Tumor 7023 FCN 95 • SW: TensorFlow + Scikit-learn
 [65] AD 6400 CNN 98.63 • HW: 5 GB 421 NVIDIA P2000 GPU, PC Intel Xeon 2687 W v4 (3.0 GHz 

clock 420 speed, 12 cores, and 24 threads) CPUs, 64 GB RAM
 h t t p s :   /  / g i t h u   b .  c o  m  / s h a  h i  d z i k r  i a / A  D D - N e t

 [66] AD 1140 3D-CNN 85 Not Mentioned
 [91] Breast 

Cancer
780 EfficientNet-B7 and Explainable AI 99.14 Not Mentioned

Table 3 (continued) 
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appear more frequently. Reconnecting to the findings in 
Table 2, the most considered anatomical sites in the lit-
erature were the lungs, brain, and mammary gland. It is 
important to notice that, regardless of the dataset size 
and its accessibility, EfficientNet and custom CNN both 
demonstrate great results when classifying diseases 
affecting these organs. We want to emphasize that in two 
cases where EfficientNet results in a high performance, 
it is combined with XAI, which researchers should con-
sider in their studies.

RQ5: What are the limitations of the deep learning 
approaches for image classification?
Deep neural networks play an important role in classify-
ing large amounts of complex data accurately and making 
the correct decisions about them [116]. However, they 

come along with a lot of challenges that need to be high-
lighted. In almost all the studies considered for this scop-
ing review, the main limitation mentioned, which directly 
impacts the deep model performance, is the small size 
of the data gathered and used for the classification task. 
This refers to not only private datasets collected from 
local hospitals but also to publicly available ones. Besides 
that, the small number of episodes per patient reduces 
the ability of the model to predict possible future abnor-
malities. Additionally, a diagnosis does not depend only 
on what is shown in a medical image modality, but can 
also be induced from other patients’ information, such 
as physical conditions, age, gender, lifestyle, etc [71]. 
These variables are often ignored but considering them 
as inputs of the model is of great importance.

Table 4 The models that achieved the highest accuracy for classifying diseases, along with their strengths
Organ Disease Ref. Model Acc.% Strength Access. Da-

taset 
size

Year

Lungs Covid-19, Pneu-
monia, Pediatric 
Pneumonia

 [40] Efficient-
Net + VGG16 + ELM + ex-
plainable AI

99.1 Computational efficiency of EfficientNet and in-
creased model interpretability through XAI

public 12,723 2022

 [44] DenseNet-201 99.1 High computational & memory efficiency public 16,000 2022
Pulmonary 
Tuberculosis

 [96] Efficient Xception CNN 99.29 High efficiency + fast training + good generalizability public 5600 2023

Brain Alzheimer Dis-
ease, Dementia

 [65] CNN 98.63 Synthetic oversampling technique public 6400 2022

Brain Tumor, 
Glioma Tumors

 [77] CNN with Multi-Branch 
Network + Inception 
block

99.3 Interpretability and visual explanation of the results 
through Grad-CAM + Computational efficiency of 
EfficientNet

public 2870 2023

ASD, DOC  
[102]

3D EfficientNet-B3 92.7 Addressing class imbalance via synthetic oversam-
pling technique

private 151 2024

Cortical Tubers  
[103]

TSCCNN + Incep-
tionV3 + ResNet50

95 Multi-scale extraction of features + efficiency on 
complex tasks

private 6318 2020

Mam-
mary 
Gland

Breast Cancer  [87] DeepBraestCancerNet 
(Custom CNN)

99.35 customization + flexibility in solution design public 1030 2023

Breast Cancer  [91] EfficientNet-B7 and 
Explainable AI

99.14 Computational efficiency of EfficientNet and in-
creased model interpretability through XAI

public 780 2024

Tho-
racic 
Cavity

Thoracic 
Diseases

 [71] DenseNet 99.58 High computational & memory efficiency public 984 2018

Liver Liver lesions/
Liver tumor

 [98] USC-Enet (based on 
EfcientNet-B0)

95.6 Computational efficiency of EfficientNet and in-
creased model interpretability through XAI

private 2168 2023

Thy-
roid 
Gland

Thyroid 
Nodules

 [83] ResNet18 98.4 Low computational costs private 508 2022

Bones Bone Fracture, 
Femur Fracture

 [93] Hybrid 
SFNet + Canny + Grey

99.12 Integration of Canny Edge algorithm for feature lo-
calization + high efficiency + low computational cost

public 34,000 2022

Spine Disc Herniation  
[104]

AlexNet 87.75 Feature extraction + classification performed in a 
common structure and the use of real private patient 
data

private 2329 2019

Uterus Fetal 
Malposition

 
[105]

Fet-Net (CNN) 97.68 Customization + flexibility in solution design private 144 2023

Pros-
tate 
Gland

prostate cancer  
[107]

CNN 89.9 Customization + flexibility in solution design private 21 2017
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To detect or classify specific diseases, different image 
modalities can be used, but in the studies considered the 
datasets are limited to only one type of image. In addi-
tion, images are mostly gathered from a single institution 
and image parameters differ for different institutions [46, 
49, 50, 62, 100, 102]. Moreover, many studies performed 
binary classification, even if diseases have many cat-
egories or stages. Hence, not taking into consideration 
multiple image modalities, multiple institutions for data 
collection, and multi-class disease categorization, leads 
to a lack of the model’s generalizability.

Model evaluation metrics can be impacted by imbal-
anced datasets, which are the main cause of model 
overfitting and a very common problem for image clas-
sification through deep-learning models [98]. Further-
more, considering the black-box nature of deep learning 
models and the large number of parameters used for clas-
sification, understanding the prediction results becomes 
a complicated task [117]. Thus, model interpretability 
has become another challenge identified in the studies. 
Other issues concerning datasets are the need for medi-
cal experts to label the images and the limited hardware 
capacities to run them [74, 102].

Class imbalance is present in a large number of stud-
ies included in this review and it is mainly addressed 
through preprocessing and data augmentation tech-
niques mentioned in RQ3. In [52] authors have used the 
Synthetic Minority Over-sampling (SMOTE) technique 
to balance the dataset by performing a random duplica-
tion of minority classes. Another method used by [30, 67, 
70, 72] is adding weighted categorical cross-entropy loss 
function and regularization components in the last dense 
layers to alleviate the imbalance. In this way, penalties 
are added during training to shift the focus of the model 
more to the minority classes. DARI algorithm oper-
ates similarly to SMOTE to improve class distribution 
through oversampling minority classes or undersampling 
majority ones [31]. An alternative solution considered is 
the use of the cGAN model [33] to increase the number 
of images in the underrepresented class through the gen-
erator and discriminator networks [68]. have used posi-
tive (βP) and negative factors (βN) to adjust the focus of 
the model equally in the minority and majority classes. 
An effective approach is the use of a pre-trained model to 
have a strong feature foundation and then fine-tuning it 
on the given dataset [95].

It is worth noting that many researchers are leverag-
ing the benefits of Explainable AI (XAI) as a set of tech-
niques that bridges the gap between model complexity 
and its diagnosis transparency. XAI is becoming crucial 
in addressing issues such as generalizability, class imbal-
ance, and interpretability. For instance, authors in [118] 
exploited the Guided Backpropagation XAI technique to 
improve denoising in the Feature-guided Denoising CNN 

that they proposed to effectively perform noise removal 
from portable ultrasound images while preserving impor-
tant image features. Meanwhile, in [119] they developed 
a feature-preserving loss function using gradient-based 
XAI and achieved good results in terms of generalization 
and interpretability. Also, including segmentation as a 
prior step to classification has revealed to be important 
for so many studies due to the impact it has on effectively 
increasing accuracy [120]. Some of the identified stud-
ies of the review, strongly suggest the use of segmenta-
tion [28, 37, 73, 97], particularly ‘U’ shaped architectures 
or fully CNNs [103], attention mechanisms [72, 98] and 
applying appropriate visualization techniques/tools [53, 
61, 98]. However, XAI plays a significant role even during 
segmentation by ensuring that the model considers rel-
evant anatomical features as the basis for the final image 
classification. Authors in [121] proposed GradXcepU-
Net for image segmentation. They combined U-Net with 
Grad-CAM XAI technique to identify critical regions 
of medical images resulting in a higher Dice coefficient 
compared to other state-of-the-art methods.

Open issues
The scoping review performed showed that diseases 
affecting the lungs, brain, and mammary glands received 
the most attention in the relevant studies. This could be 
due to the public relevance of specific conditions. For 
instance, the COVID-19 pandemic shifted the research 
priorities globally creating gaps in studying other diseases 
[40, 44]. Also, lung, brain, and breast cancer are signifi-
cant health concerns and early predictions can be life-
changing for patients. Other causes for that could be the 
lack of publicly available datasets or the limited number 
of specialized clinics. To balance the research directions, 
other organs and diseases must be targeted. Furthermore, 
an analysis of effective de-identification or anonymiza-
tion techniques for medical images before classifica-
tion can pave the way for future collaborations between 
researchers and health institutions to increase data acces-
sibility. By strictly following privacy regulations [109] 
public awareness about the importance of such initiatives 
can be increased. Moreover, the authors have considered 
only unstructured data (medical images) to conduct the 
research, but historical patient data provide important 
context about diseases and if analyzed, can significantly 
improve the reliability of results. Besides that, extend-
ing the datasets to cover multi-class diseases [29, 52, 59, 
105], and considering structured data (personal informa-
tion, medical history, clinical notes, and patient habits) 
will bring models closer to real-world scenarios [39, 41, 
53, 68]. Also, making the models suitable for classifying 
other similar pathologies [41, 43, 44, 97, 103] or for more 
than just one image modality [31, 46, 60], which can be 
used to diagnose the same pathology, and apply statistical 
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methods to equalize images collected from various insti-
tutions [106], would definitely increase the model’s gen-
eralizability, and facilitate scaling.

Although this scoping review was limited to experi-
mental studies applied to X-ray, MRI, and Ultrasound, 
it is necessary to acknowledge that deep learning image 
classification has been performed on other medical 
images, as well. Given that, other researchers might 
extend this work by studying the uncovered modalities. 
In addition, despite their relevance, this work excludes 
studies not published in English. Also, it is important to 
emphasize that we have tried to extract the training time 
required by the models for the classification tasks per-
formed, but only 9% of the relevant studies had evidence 
in this regard. Hence, the authors were not able to pro-
vide detailed results and discussions on that topic.

Conclusions
Many systematic and scoping reviews are performed on 
a specific disease or category of diseases affecting the 
same organ/anatomical study. In the state of the art, the 
authors were unable to find a publication that explores 
and makes a synthesis on the application of deep learn-
ing in a broad way. It means covering a wide spectrum of 
diseases, affecting different organs/anatomical sites of the 
body, and considering different imaging modalities, espe-
cially, with the focus on no other task rather than classifi-
cation. Therefore, the authors chose to conduct a scoping 
review which aims to explore and highlight this situation 
in a better way. By following the PRISMA-ScR guidelines, 
80 articles were considered for full-text analysis. The 
analysis addressed the five research questions outlined in 
the introduction section.

The findings of this research work emphasize the fact 
that issues concerning the model’s generalizability, the 
model’s interpretability, and the size of the imbalanced 
datasets adopted to train the models are the main limi-
tations present in the state-of-the-art. Possible ways to 
address such concerns are presented in the limitations 
section of this review. Furthermore, through the open 
issues section, the authors outline the gaps that require 
the attention of the research community, and some future 
trends.
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