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Abstract
Objective  Development of a deep learning model for accurate preoperative identification of glioblastoma 
and solitary brain metastases by combining multi-centre and multi-sequence magnetic resonance images and 
comparison of the performance of different deep learning models.

Methods  Clinical data and MR images of a total of 236 patients with pathologically confirmed glioblastoma and 
single brain metastases were retrospectively collected from January 2019 to May 2024 at Provincial Hospital of 
Shandong First Medical University, and the data were randomly divided into a training set and a test set according 
to the ratio of 8:2, in which the training set contained 197 cases and the test set contained 39 cases; the images 
were preprocessed and labeled with the tumor regions. The images were pre-processed and labeled with tumor 
regions, and different MRI sequences were input individually or in combination to train the deep learning model 3D 
ResNet-18, and the optimal sequence combinations were obtained by five-fold cross-validation enhancement of the 
data inputs and training of the deep learning models 3D Vision Transformer (3D Vit), 3D DenseNet, and 3D VGG; the 
working characteristic curves (ROCs) of subjects were plotted, and the area under the curve (AUC) was calculated. 
The area under the curve (AUC), accuracy, precision, recall and F1 score were used to evaluate the discriminative 
performance of the models. In addition, 48 patients with glioblastoma and single brain metastases from January 
2020 to December 2022 were collected from the Affiliated Cancer Hospital of Shandong First Medical University as an 
external test set to compare the discriminative performance, robustness and generalization ability of the four deep 
learning models.

Results  In the comparison of the discriminative effect of different MRI sequences, the three sequence combinations 
of T1-CE, T2, and T2-Flair gained discriminative effect, with the accuracy and AUC values of 0.8718 and 0.9305, 
respectively; after the four deep learning models were inputted into the aforementioned sequence combinations, the 
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Introduction
As a common intracranial malignant tumor in adults, 
glioblastoma accounts for about 49% of primary malig-
nant brain tumors, and this highly aggressive tumor not 
only has a high incidence rate, but also has a relatively 
poor clinical prognosis [1]. According to statistics, the 
average survival time of patients with glioblastoma is 
about 15 months, and the 5-year survival rate is only 
about 7% [2–3]; in contrast, brain metastases are the 
most common brain tumors in adults, and the inci-
dence of brain metastases is higher compared with that 
of primary brain tumors, with about 20–40% of cancer 
patients experiencing brain metastases in the course 
of their disease [4–5]. The high incidence and diversity 
of brain metastases make them a major challenge for 
clinical diagnosis and treatment. Clinicians are able to 
correctly diagnose brain metastases in patients with a 
clear history and the presence of multiple foci; however, 
approximately 25–30% of brain metastases are usually 
single foci, and some brain metastases are diagnosed 
with neurologic symptoms on clinical examination [6, 7], 
resulting in misdiagnosis in approximately 40% of clinical 
cases [8, 9]; because the treatment options for glioblas-
tomas and single brain metastases are not identical, it is 
important to Magnetic resonance examination for early 
identification of the two is the preferred noninvasive 
modality for neurological tumors [10], and different mag-
netic resonance imaging techniques can provide a wealth 
of information; however, glioblastomas and solitary brain 
metastases usually have similar imaging manifestations, 
such as cystic necrosis, ring enhancement, and peritu-
moral edema [11–12], and thus, identifying the two by 
the naked eye alone can be a great challenge.

In recent years, the joint application of imaging histol-
ogy and MR images has achieved promising results in the 
field of tumor identification, and the computer model can 
automatically extract image information that is difficult 
to be found by the human eye and carry out autonomous 
learning, which, combined with different MR imaging 
techniques, provides a powerful tool for tumor identifica-
tion [13], some studies [14] applied machine learning and 
MR images to construct glioblastoma and single brain 
metastases discriminative model, and achieved better 
results, but traditional machine learning needs to spend 

a lot of energy on the preprocessing of MR images, such 
as region of interest outlining, feature selection, etc. [15]; 
Deep learning, as an emerging technology, has gained 
wide attention in the field of image analysis in recent 
years. Compared with machine learning, it has stron-
ger performance while saving data processing time [16]. 
Deep learning (DL), which relies on multi-layer neural 
network architecture and simulates the processing of the 
human brain, has demonstrated its powerful ability in 
several fields, and has gained wide attention as an emerg-
ing technology in the field of image analysis. Compared 
with machine learning, it has stronger image detection 
and analysis performance while saving data process-
ing time [17]. First, its algorithm can intelligently and 
automatically carry out feature extraction, which greatly 
reduces the human intervention link, significantly short-
ens the data processing time, and improves the work effi-
ciency [18]. Secondly, the deep learning model is able to 
better capture complex patterns and high-dimensional 
features in the image through the multi-layer neural net-
work structure, and comprehensively analyze the image 
in terms of texture, morphology, signal intensity changes, 
etc., so as to improve the accuracy of classification and 
identification [19, 20]. A study based on convolutional 
neural network (CNN) [21] achieved remarkable results 
by training on MRI image data, which not only can 
automatically identify and classify tumor types, but also 
provide more comprehensive diagnostic information 
by combining with the corresponding clinical data.The 
main structures of CNN are convolutional layer, pooling 
layer, and fully connected layer. The convolutional layer 
extracts features through convolutional operations, the 
pooling layer samples to reduce the size of the feature 
map, and the fully connected layer is used for the final 
classification or regression task, which is outstanding in 
image processing [22]; the performance of deep learning 
models based on the CNN architecture is continuously 
improved after the increase and iteration of the convolu-
tional layer and the pooling layer, which are represented 
by the ResNet (Residual Neural Network), the DenseNet 
(Dense Connected Convolutional Network); at the same 
time, CNNs can also provide more comprehensive diag-
nostic information combined with the corresponding 
clinical data. At the same time, the emergence of Vision 

accuracy and AUC of the external validation of the 3D ResNet-18 model were 0.8125, respectively, 0.8899, all of which 
are the highest among all models.

Conclusions  A combination of multi-sequence MR images and a deep learning model can efficiently identify 
glioblastoma and solitary brain metastases preoperatively, and the deep learning model 3D ResNet-18 has the highest 
efficacy in identifying the two types of tumours.
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Transformer (Vit), a deep learning model with the core 
of Self-Attention Mechanism and feed-forward neural 
network, brings us a different framework from CNN, 
which consists of Encoder, and in the structural design, 
it abandons the localization of CNN. abandons the local 
convolution operation of CNN and adopts the global 
attention mechanism to process the global information 
of the image, which is fundamentally different from the 
local feature extraction approach of CNN [23]. In addi-
tion, deep learning can continuously improve the analy-
sis and judgment ability through continuous learning and 
updating, so as to provide more accurate and personal-
ized medical services in clinical practice.

Most of the previous studies have focused only on a 
single application of a deep learning model in tumor 
identification. However, as in the case of machine learn-
ing, when facing the same dataset, different deep mod-
els exhibit significantly different discriminative abilities 
due to the differences in their structures, algorithms, and 
learning styles. Therefore, under the current research 
trend, it is undoubtedly of vital significance to explore 
the most efficient and accurate model for identifying 
tumors, in order to substantially improve the accuracy 
of tumor identification and thus promote the improve-
ment of clinical diagnosis and treatment; in this study, we 
comprehensively collect and systematically organize rou-
tine MRI sequence images from two hospitals, normal-
ize the images and individually or reasonably combine 
them, and then select the most effective deep learning 
model. In this study, we comprehensively collected and 
systematically organized routine MRI sequences from 
two hospitals, normalized the images and combined 
them individually or in a reasonable way, and then used 
them to train a deep learning model to identify the best 
sequence combinations for discriminating glioblastoma 
and solitary brain metastasis, and then trained four deep 
learning models with different architectures to compre-
hensively compare and analyze the evaluation metrics of 
the validation set of multicenter, so as to find the model 
with optimal discriminating efficiency.

Materials and methods
Patient population
This retrospective study was approved by the hospital’s 
ethics management committee, and the patient informed 
consent component was exempted due to the retrospec-
tive nature of the analysis and the use of anonymized 
medical records (SDTHEC 2024001002). We included 
a total of 236 patients with glioblastoma (n = 119) and 
solitary brain metastases (n = 117) who underwent pre-
treatment MR examination at the Provincial Hospital of 
Shandong First Medical University between January 2019 
and January 2024, of which 197 (GBM = 99, SBM = 98) 
served as the training set and 39 (GBM = 20, SBM = 19) 

as the internal validation set. Forty-eight patients 
(GBM = 20; SBM = 28) from the Affiliated Tumor Hospi-
tal of the First Medical University of Shandong Province 
served as the external validation set.

Inclusion Criteria: 1). Patients with a clear clinical diag-
nosis and pathological findings; 2) The patient’s T1WI, 
T2WI, T1CE, and T2Flair images were complete; 3). The 
diameter of the tumor entity is ≥ 1.0 cm.

Exclusion criteria: 1). Patient had multiple brain 
tumors.2). Patient had any treatment before the MRI 
examination.3). Artifacts or noise in the patient’s MR 
image.

The diagnosis of brain metastases in all patients was 
made by senior radiologists based on corresponding 
imaging data and clinical symptoms. All of the above 
information was obtained with the informed consent 
of the patient. The flow chart for patient enrolment is 
shown in Fig. 1.

Image acquisition
During this study period, multiple MR devices used in 
both hospitals were from different vendors and had dif-
ferent scanning parameters. Five 3.0T MR machines 
and two 1.5T MR machines from the two hospitals were 
used for imaging with an 8-channel sensitivity-coded 
head coil, and the enhancement scans were performed 
in axial, sagittal, and coronal positions with T1WI scans, 
and the contrast agent used was gadopentetate dextran 
(Gd-DTPA), which was injected into the elbow vein at a 
flow rate of 3.0 mL/s at a rate of 0.1 mmoL/kg.MR images 
were acquired on a SYNGO. VIA system (Siemens Medi-
cal Systems) and acquired on a PACS (Picture archiving 
and communication system) workstation (Table 1).

Image analysis and processing
In this study, images of four conventional MRI sequences, 
i.e., T1WI, T2WI, T2-FLAIR, and T1-CE, were selected 
to be input into the deep learning model; the screen-
ing of image quality was performed by two experienced 
radiologists, one with 3 years of diagnostic work expe-
rience in head and neck imaging, and the other with 
10 years of relevant experience.The patients with GBM 
and SBM were screened according to the World Health 
Organization (WHO) classification criteria for central 
nervous system tumors in 2021. World Health Organiza-
tion (WHO) classification criteria for CNS tumors were 
used for screening, and we defined the high signal region 
around the tumor entity in the T2-FLAIR sequence as 
the peri-tumor region and included it in the differential 
range, and applied it to the other three sequences accord-
ing to this range.

This study is a multicenter experiment, and due to the 
differences in image acquisition methods and equipment 
in different hospitals, the gray-scale information of the 
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Table 1  Different MR machines and scanning parameters
Machines/ Parameters Philips- Achieva Philips- Ingenia CX Siemens- Prisma GE- Signa HD GE MR750 Siemens Amira Siemens Avanto
Strength(T) 3.0 3.0 3.0 3.0 3.0 1.5 1.5
T1WI
TR(ms) 500 510 500 550 520 515 600
TE(ms) 15 12 16 11 12 10 9
Slice(mm) 5 5 5 5 5 5 5
Gap(mm) 6 6 6 6 6 6 6
FOV(mm) 240 × 289 200 × 241 230 × 230 260 × 260 240 × 240 230 × 277 220 × 220
T2WI
TR(ms) 4000 3326 2139 2200 4975 5900 5000
TE(ms) 100 122 90 96 110 100 150
Slice(mm) 5 5 5 5 5 5 5
Gap(mm) 6 6 6 6 6 6 6
FOV(mm) 240 × 289 200 × 241 230 × 230 260 × 260 240 × 240 230 × 277 220 × 220
T2-FLAIR
TR(ms) 9000 9000 7000 9000 8000 6000 9000
TE(ms) 2500 2600 125 2688 2386 2000 140
Slice(mm) 5 5 5 5 5 5 5
Gap(mm) 6 6 6 6 6 6 6
FOV(mm) 240 × 289 200 × 241 230 × 230 260 × 260 240 × 240 230 × 277 220 × 220
T1-CE
TR(ms) 440 410 178 450 440 620 490
TE(ms) 10 9 5 15 10 15 12
Slice(mm) 5 5 5 5 5 5 5
Gap(mm) 6 6 6 6 6 6 6
FOV(mm) 240 × 289 200 × 241 230 × 230 260 × 260 240 × 240 230 × 277 220 × 220

Fig. 1  Patient enrolment flowchart
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same tissue may be biased on images acquired in differ-
ent hospitals. In order to eliminate or reduce the errors 
caused by differences in image size and intensity, the 
images need to be normalized; the images of each patient 
were preprocessed using SimpleITK (an open-source 
image processing software based on python 3.7.0, ​h​t​t​p​​s​:​/​​/​
g​i​t​​h​u​​b​.​c​​o​m​/​​S​i​m​p​​l​e​​I​T​K​/​S​i​m​p​l​e​I​T​K), and the images were 
resampled The images were resampled to 1 × 1 × 1  mm³ 
isotropic voxels, WhiteStripe normalization was used to 
equalize the overall intensity distribution of the images, 
and N4 bias-corrected intensity normalization was used 
to eliminate the bias field effect in the images due to 
the uneven magnetic field and other factors. Thereafter, 
two experienced radiologists manually drew rectangular 
ROIs on T1WI, T2WI, T2-FLAIR, and T1-CE images 
by 3D-Slicer (https://www.slicer.org) software, and a ​u​
n​i​f​o​r​m standard was established before image outlining 
and segmentation, which was completed under the guid-
ance of a senior imaging expert when differences were 
encountered. Compared with the fine outlining method 
of tumor entities in previous experiments, this study 
adopts a rectangular segmentation framework, which can 
more comprehensively show the tumor entities and peri-
tumor high-signal areas while reducing the physician’s 
image segmentation time, providing comprehensive 
information for the deep learning model, and improving 
the model’s adaptive ability.

Deep learning model selection
In order to explore the performance of different mod-
els in medical image analysis tasks, this study intro-
duces three classical CNN models, 3D ResNet-18, 3D 
DenseNet, 3D VGG, and 3D Vision Transformer (3D Vit) 
based on the Transformer architecture. 3D ResNet-18 
convolutional layer consists of 7 × 7 × 7 convolution and 
64 filters, while 3D DenseNet consists of densely con-
nected blocks. The 3D ResNet − 18 convolutional lay-
ers are composed of 7 × 7 × 7 convolutions and 64 filters, 
which effectively solves the gradient vanishing problem 
through residual connections; 3D DenseNet is composed 
of densely connected blocks, and its internal convolu-
tional layers are set up in a way that helps to enhance the 
feature transfer and improve the model learning ability. 
3D VGG consists of multiple 3 × 3 × 3 convolutional lay-
ers stacked together, and each convolutional layer is 
operated immediately after using the Rectified Linear 
Unit (ReLU), which is the most powerful and efficient 
CNN model in the world. The 3D VGG consists of mul-
tiple 3 × 3 × 3 convolutional layers stacked on top of each 
other, and each convolutional operation is immediately 
followed by a Rectified Linear Unit (ReLU) activation 
function, which introduces a nonlinear element to the 
neural network, allowing the model to learn more com-
plex features and patterns in the data. 3D Vit is mainly 

composed of three parts: Patch Embedding, Transformer 
Encoder, and Multi-Layer Perceptron (MLP), and Patch 
Embedding partitions the image into multiple The patch 
embedding divides the image into multiple chunks and 
transforms them into feature vectors; the Transformer 
encoder models these feature vectors globally using the 
self-attention mechanism; and the MLP performs the 
final classification or regression task based on the fea-
tures output from the encoder.

During the training process, the Adam optimizer is 
used, which is able to adaptively adjust the learning rate 
and performs well when dealing with large-scale data-
sets and complex models; the weight decay is set to 
0.01, the batch size to 32, and the initial learning rate to 
0.0001. Two measures are taken to prevent model overfit-
ting: first, the loss function is added with an L2 penalty 
term for the weight, i.e., L2 regularization (L2 - Ridge), 
which limits the model complexity; second, the model is 
enhanced by a data enhancement method, i.e., random 
rotation (rotation by 90°), which enhances the model 
adaptation to images with different morphologies. Ridge) 
as a way to limit the model complexity; and secondly, 
through data enhancement methods, i.e., random rota-
tion (rotating at 90°), thus enhancing the model’s adapt-
ability to different morphological images. In addition, we 
use a five-fold cross-validation method to obtain a com-
prehensive evaluation index of the model performance by 
averaging the results of five validations.

This study is based on Python version 3.7.0 and uses 
the PyTorch framework to train the above model on an 
NVIDIA GeForce RTX 3090 Ti graphics processor for 
up to 200 iterations. The performance of each model in 
the identification task is evaluated through the metrics of 
accuracy, recall, F1 value, and the area under the curve 
(AUC) of the subjects’ work characteristics.

Deep learning model construction and evaluation
Among the total 236 patients in the internal dataset, 197 
samples of GBM and SBM patients were included in the 
training group to construct the model according to the 
ratio of approximately 8: 2. 80% of the ratio can provide 
relatively sufficient samples for the model to be trained, 
so as to better fit the data, enable the model parameters 
to be efficiently updated and converged, and avoid over-
fitting; the other 39 samples were also included in the test 
group by random stratified sampling, and approximately 
20% could provide enough data to accurately assess the 
generalization ability of the model on unknown data, so 
that the model could be optimized and adjusted; firstly, 
the single-sequence MRI model was constructed using 
images of four MRI sequences (T1WI, T2WI, T2-FLAIR, 
and T1-CE), and the area under the working charac-
teristics (AUC), accuracy (ACC) of the subjects were 
also used, At the same time, the area under the working 

https://github.com/SimpleITK/SimpleITK
https://github.com/SimpleITK/SimpleITK
https://www.slicer.org
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characteristic (AUC), accuracy (ACC), precision (Preci-
sion), recall (Recall), F1 score and other indexes are used 
to comprehensively evaluate the classification perfor-
mance of the single-sequence model; in order to improve 
the classification performance, the MR sequences with 
the optimal indexes are screened out from the above 
single-sequence model evaluation results, and then a 
combined model is constructed, which outputs for the 
classification of GBM and SBM, and compares the dis-
criminative efficiencies of the combined model and the 
single-sequence model. This process is carried out based 
on 3D ResNet-18, which is due to the unique residual 
structure of the ResNet model that enables the model 
to efficiently extract multilevel features while maintain-
ing parameter efficiency and training stability, espe-
cially for tumor identification tasks. At the same time, 
this study wishes to explore the possibility of new model 
architecture, so the self-attention mechanism model 3D 
Vit is introduced; after obtaining the optimal sequence 
combination we train the four deep learning models 3D 
ResNet-18, 3D DenseNet, 3D VGG, and 3D Vit at the 
same time. After the training is completed, the ROC 
curve is plotted, and the classification performance is 
evaluated by combining the AUC and ACC of the inter-
nal test set and the external validation set, thus compar-
ing the differential diagnosis ability of the four models. 
The overall workflow diagram is shown in Fig. 2.

Statistical analysis
CNN and Transformer model training was implemented 
using the PyTorch software package, and the five-fold 
cross-validation method was used to ensure the stabil-
ity and generalization ability of the models. Data were 

statistically analyzed by SPSS 22.0 software: continuous 
variables (age) were tested for normality using the Kol-
mogorov-Smirnov test, independent samples t-tests were 
used to compare the differences between the GBM and 
SBM groups for those who conformed to a normal distri-
bution, and the Mann-Whitney U test was used for those 
who did not have a normal distribution; and the chi-
square test was used for the categorical variables (gen-
der, tumor region). The scikit-learn software package was 
used to evaluate the discriminative efficacy of the deep 
learning model by obtaining the subject’s work charac-
teristic curve (ROC) and calculating the area under the 
curve (AUC), which was combined with the accuracy, 
precision, recall, and F1 score of the model’s output to 
make a comprehensive judgment.

Results
Patient clinical characteristics
In this study, the internal dataset was divided into a train-
ing set and a test set based on a ratio of approximately 
8: 2. The internal training set consisted of 197 patients 
(103 males and 94 females; mean age of GBM 58.9 (14) 
years, mean age of SBM 62 (12) years), and the internal 
test set consisted of 39 patients (21 males and 18 females; 
mean age of GBM 58 ± 13.3 years, mean age of SBM 
63 ± 8.8 years). To assess the generalizability and robust-
ness of the model, we nabbed 48 patients (29 males and 
19 females; mean age of GBM 53 ± 13.1 years, mean age 
of SBM 58 ± 7.3 years) from another hospital as the exter-
nal validation set. No statistical differences in age, gen-
der, and tumor imaging characteristics were observed 
between GBM and SBM patients in the internal and 

Fig. 2  Workflow diagram. Note: LN: Layer Normalization: Mean Long Self-Attention Layer. MVF: Mean Value Filter. LAS: Long Attention Layer FFN: Feed-
forward Neural Network. 3D ResNet-18, 3D DenseNet, 3D VGG are all based on the CNN network structure, and the schematic diagrams are shown in Fig
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external datasets. Table  2 shows the clinical baseline 
characteristics of all patients.(Table 2).

Training results on internal datasets with different MR 
sequences
Single MR sequence
In the internal dataset, we first trained the 3D ResNet-18 
model with four sequences, T1WI, T2WI, T2-FLAIR, 
and T1-CE, respectively, and after the training was com-
pleted, we compared the differential diagnosis perfor-
mance of each model in the internal test set. The AUC, 
ACC, precision, recall, and F1 score of the deep learn-
ing model constructed based on the T1-CE sequence 
are 0.8690, 0.8205, 0.8000, 0.9091, and 0.8511 in the 
internal validation set in that order, and the values of the 
AUC and ACC are at the highest level among the single-
sequence deep learning models; whereas the AUC, ACC, 
and F1 score of the T1WI sequence-based deep learn-
ing model based on T1WI sequences, its AUC, ACC, 

precision, recall, and F1 score in the internal validation 
set are 0.8063, 0.7215, 0.7797, 0.5974, 0.6765, respec-
tively, and all the indexes are at the lowest level in the 
single-sequence deep learning model, in which the level 
of recall is lower than 0.6, which indicates that the mod-
el’s recognition of the target category is not good, and it 
results in a misjudgement in the process of identification. 
The probability of misjudgment in the identification pro-
cess is larger. The results of the deep learning model with 
a single MR sequence are shown in Table 3.

MR sequential portfolio modelling
A Given the relatively low efficacy of T1WI in single-
sequence deep learning models, in order to avoid poten-
tial bias and reduce model complexity, we exclude T1WI 
in multi-sequence combinations, and instead incorporate 
the relatively high single-sequence efficacy of the T1-CE 
and T2-FLAIR sequences to construct a two-channel 
model, which achieves an accuracy and an AUC of 0.8462, 

Table 2  Clinical and demographic characteristics of patients
Training set P Internal validation set P External Validation Set P
GBM SBM GBM SBM GBM SBM

Quantities 99 98 20 19 20 28
Age* (years) 58.9(14) 62(12) 0.053a 58 ± 13.3 63 ± 8.8 0.08b 52.6 ± 13.1 57.8 ± 7.4 0.181b

Sexc

  Male 50 53 >0.05 11 10 >0.05 12 17 >0.05
  Female 49 45 9 9 8 11
Locationc

  Supratentorial 78 75 >0.05 20 16 >0.05 19 25 >0.05
  Infratentorial 21 23 0 3 1 3
Hemorrhagec

  Yes 15 12 >0.05 2 4 >0.05 6 5 >0.05
  No 84 86 18 15 14 23
Frontierc

  Clearer 17 20 >0.05 6 3 >0.05 4 8 >0.05
  Blurred 82 78 14 16 16 20
Peritumoral edemac

  Yes 96 96 >0.05 19 15 >0.05 19 27 >0.05
  No 3 2 1 4 1 3
Cranial Symptomsc

  Yes 99 95 >0.05 19 14 >0.05 20 25 >0.05
  No 0 3 1 5 0 3
Note: *Normally distributed data are expressed as mean ± standard deviation, and non-normally distributed data are expressed as median (interquartile spacing); (a) 
Mann-Whitney U test; (b) independent samples T test; (c) chi-square test. p > 0.05 indicates that the difference is not statistically significant

Table 3  Training results based on 3D ResNet-18 model for different MRI sequence internal datasets
Training set Internal validation
ACC Precision Recall F1-score AUC ACC Precision Recall F1-score AUC

T2WI 0.7975 0.7778 0.8182 0.7975 0.8910 0.7949 0.8182 0.8182 0.8182 0.8610
T2-FLAIR 1.0000 1.0000 1.0000 1.0000 1.0000 0.8205 0.7778 0.9545 0.8571 0.8663
T1-CE 1.0000 1.0000 1.0000 1.0000 1.0000 0.8205 0.8000 0.9091 0.8511 0.8690
T1WI 0.7179 0.8667 0.5909 0.7027 0.8262 0.7215 0.7797 0.5974 0.6765 0.8063
T1CE + T2-FLAIR 1.0000 1.0000 1.0000 1.0000 1.0000 0.8462 0.8077 0.9545 0.8750 0.9011
T2WI + T1CE + T2-FLAIR 0.9873 0.9747 1.0000 0.9872 0.9989 0.8718 0.8148 1.0000 0.8980 0.9305
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0.9011, and 0.9011, respectively, in the internal validation 
set., all of which were superior to the single-sequence 
model. Considering that T2WI has a unique advantage in 
reflecting the water content of tissues, etc., and the pre-
vious study found that it has some value in the display 
of tumor-related features, to further improve the model 
performance, we introduced T2WI to construct a three-
channel model based on T2WI, T1CE, and T2-FLAIR, 
whose accuracy and AUC were increased to 0.8718 and 
0.9305, respectively, and recall was increased to 1.0000, 
which was better than the single-sequence model in 
the internal validation set. The accuracy and AUC were 
increased to 0.8718 and 0.9305, and the recall rate was 
increased to 1.0000, and the discriminative efficacy and 
tumor identification ability were significantly better than 
that of single-sequence and T1-CE + T2-FLAIR combina-
tion models. The results showed that multiple sequence 
fusion could synergistically enhance the tumor identifica-
tion performance of the model (Table 3).

Internal validation results of different deep learning 
models
The results of the internal validation sets for the four 
deep learning models are detailed in Table 4. We carried 
out training and internal validation of 3D DenseNet, 3D 
VGG, 3D VIT, and 3D ResNet-18 models using a com-
bination of T2WI, T1CE, and T2-FLAIR images, respec-
tively. In the internal validation set, the AUC, ACC, 
precision, recall, and F1 score of the 3D ResNet-18 model 
were 0.9305, 0.8718, 0.8148, 1.0000, and 0.8980, respec-
tively, which gave the best results among the four models 
(Figs. 3 and 4).

External validation results of different deep learning 
models
The results of the external validation sets of the four 
deep learning models are detailed in Table  5.The 
T2WI + T1-CE + T2-FLAIR sequence images from the 
external validation sets are inputted into the trained 3D 
ResNet-18, 3D DenseNet, 3D VGG, and 3D Vit, respec-
tively. The AUC, accuracy, precision, recall, and F1 scores 
for the 3D ResNet-18 model are 0.8899, 0.8125, 0.7742, 
0.9231, and 0.8421, respectively; the AUC, accuracy, pre-
cision, recall, and F1 score for the 3D ResNet-18 model 
are 0.8899, 0.8125, 0.7742, 0.9231, and 0.8421, respec-
tively; collectively, the 3D ResNet-18 model has the best 
stability in each index (Figs. 5 and 6).

Table 4  Internal validation results for four deep learning models
Model ACC Precision Recall F1-score AUC
3D ResNet-18 0.8718 0.8148 1.0000 0.8980 0.9305
3D Vit 0.6154 0.5946 1.0000 0.7458 0.6765
3D DenseNet 0.8462 0.8636 0.8636 0.8636 0.8690
3D VGG 0.7179 0.7895 0.6818 0.7317 0.7059

Fig. 3  Radar chart of results from the internal test set of four deep learning models. Note: In the internal test set, 3D ResNet-18 performs well and bal-
anced compared to the other three models in all evaluation metrics. This advantage stems from its residual linkage structure that effectively mitigates 
the gradient vanishing problem, the 3D convolutional layer’s ability to capture voxel-level spatial features, and the parameter efficiency advantage (the 
number of parameters is only 42% of that of 3D ViT), which ensures the stability of the training and at the same time realizes the optimal balance between 
feature extraction and classification performance
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Discussion
The differentiation between glioblastoma (GBM) and 
solitary brain metastasis (SBM) has always been a focus 
of attention for clinicians. Glioblastoma, as the most 

malignant glioma, is widely infiltrated within the brain 
tissue, progresses rapidly, and is highly prone to recur-
rence, and the tumor cells can undergo seeding through 
the cerebrospinal fluid circulation and be planted in other 
intracranial sites such as the ventricular system and the 
subarachnoid space [24]; SBM’s There is no uniform data 
on the exact incidence of SBM, but the incidence of brain 
metastases has been reported to be up to nearly 30% in 
cancer patients [25], and in the face of patients initially 
diagnosed with intracranial symptoms, the similarity 
between the imaging manifestations of GBM and SBM 

Table 5  External validation results for four deep learning models
Model ACC Precision Recall F1-score AUC
3D ResNet-18 0.8125 0.7742 0.9231 0.8421 0.8899
3D Vit 0.6042 0.5778 1.0000 0.7324 0.6294
3D DenseNet 0.7708 0.7586 0.8462 0.8000 0.8287
3D VGG 0.6667 0.7083 0.6538 0.6800 0.7203

Fig. 4  Internal validation of ROC curves for different deep learning models

 



Page 10 of 15Kong et al. BMC Medical Imaging          (2025) 25:171 

poses a significant diagnostic challenge to radiologists; to 
address this challenge, the present study collected cranial 
MR images of patients with single glioblastoma and brain 
metastasis from a multicenter, with the It aims to estab-
lish a preoperative noninvasive discrimination model by 
integrating large-scale image data and advanced deep 
learning algorithms [26]. The introduction of a multi-
center study design ensures the diversity and breadth of 
data sources, which can better reflect the heterogeneity 
of patients in different geographic regions and equip-
ment conditions, and provides a reliable foundation for 
the robustness and generalizability of the model. In terms 
of model performance, after several rounds of rigorous 
training and testing, we found that the 3D ResNet-18 
model demonstrated excellent performance and was able 
to accurately differentiate between glioblastoma and soli-
tary brain metastases, effectively reducing the occurrence 
of misdiagnosis and underdiagnosis.

In the research methodology, we combined several 
mainstream deep learning models, including CNN as well 
as Transformer architecture, to explore the best diagnos-
tic performance through model comparison and optimi-
zation. Meanwhile, a multimodal image data processing 
approach is also introduced in the study, which integrates 
image features from different sequences of conventional 
T1WI, T2WI, T2-FLAIR, and T1-CE in order to compre-
hensively capture the subtle differences in morphology, 
enhancement features, and microstructures of GBM and 
SBM. By building this deep learning-based noninvasive 
differentiation model, we hope to provide an efficient 

and reliable diagnostic tool for the differentiation of glio-
blastoma and brain metastases at the preoperative stage. 
This innovative approach not only theoretically deepens 
the understanding of imaging features of brain tumors, 
but also provides a potential auxiliary diagnostic tool for 
clinical practice, which is expected to be applied to actual 
clinical work in the future, thus improving the diagnos-
tic and treatment process and prognostic outcomes of 
patients.

In the diagnosis of neurological tumors, MRI can pro-
vide high-resolution anatomical images that clearly show 
the complex structure of the central nervous system, 
including brain tissue, ventricular system, and the rela-
tionship between the lesion and the surrounding normal 
tissues [27]. Compared with traditional CT examination, 
MRI can not only locate the tumor more precisely, but 
also obtain more critical information about the nature of 
the tumor, making it the preferred examination method 
for patients with nervous system tumors [28]. In the diag-
nostic process of neurological tumors, the multimodal 
imaging technique of MRI is of great value. Conventional 
T1WI and T2WI provide the basic anatomical structure 
and morphological information of the tumor, which helps 
to initially determine the size, shape, boundary, and rela-
tionship with the surrounding tissues of the lesion [29]; 
whereas T1-enhanced scanning can more intuitively 
show the blood supply of the tumor and the destruction 
of the blood-brain barrier, which can provide a basis for 
the differentiation of malignant tumors [30]. As glio-
blastoma and brain metastases show similar tumor and 

Fig. 5  Radar chart of external validation results for four deep learning models. Note: 3D ResNet-18 has a balanced performance in all evaluation indexes, 
and its stability and accuracy are better than other models; 3D Vit model Recall is the highest, indicating that its tumor capturing ability is stronger, while 
its learning ability and identification efficiency are much lower than other models
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peritumor regions in MR images, several previous stud-
ies have explored the segmentation of the tumor regions 
of GBM and SBM [31, 32], and at the histological level, 
the peritumor region of GBM exhibits a high degree of 
heterogeneity, which is mainly composed of tumorigenic 
microvascular proliferation, tumor cell infiltration, and 
mixed mesenchymal components [33]. This complexity 
of the peritumor region makes GBM not only confined to 
the core part of the tumor, but also shows extensive inva-
siveness to the surrounding normal brain tissues. There-
fore, on imaging presentation, the peritumoral edema of 

GBM is usually more diffuse and has blurred borders, 
reflecting the expansion path of tumor cells as well as the 
abnormal behavior of microscopic angiogenesis [34]. In 
contrast, SBM mainly exhibits vasogenic edema, which 
is characterized by fluid leakage from capillaries into the 
interstitial spaces of brain tissue, leading to the formation 
of localized edema [35]. However, a distinguishing fea-
ture of vasogenic edema is the lack of evidence of infil-
trative tumor cells, which are histologically manifested 
by the relative structural integrity of the surrounding 
brain tissue, with no spread of tumor cells. In addition, 

Fig. 6  External validation ROC curves for different deep learning models
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the peritumoral edema in SBM is usually more concen-
trated than in GBM, showing a well-defined border and 
forming a clearer demarcation from the tumor core [36]. 
Therefore, in our segmentation of tumors, the peritumor 
region was also included in the study.

As a powerful tool capable of extracting a large num-
ber of features from MR images, covering a wide range 
of information such as tumor morphology, texture, den-
sity, etc., imaging histology occupies an important role 
in the field of tumor identification. The machine learning 
model support vector machine (SVM) is comparable to 
the radiologist’s discrimination ability when distinguish-
ing GBM and MET based on MR images T2WI, apparent 
diffusion coefficient map (ADC), and texture parameters 
on T1-CE [37].Artzi et al. [38], in a study of radiohistol-
ogy in combination with T1-CE images for distinguish-
ing GBM and MET, showed that the best results were 
obtained using the SVM classifier model obtained the 
best results (AUC = 0.96) and was the best for classify-
ing MET subtypes (breast, lung and other brain metas-
tases). Similarly Qian [39] obtained the highest efficacy 
(AUC = 0.90) for distinguishing between GBM and soli-
tary MET in a classifier using T1-enhanced images com-
bined with support vector machine (SVM) with least 
absolute shrinkage and selection operator (LASSO).Su et 
al. [40] obtained the best results (AUC = 0.90) for distin-
guishing between GBM and solitary MET in a classifier 
using T1CE based on the minimally redundant maxi-
mal correlation (mRMR) and least absolute shrinkage 
and selection operator (LASSO) to establish radiomic 
features, with a validation cohort AUC value of 0.81. 
Swinburne [41] improved the diagnostic accuracy of 
radiologists by approximately 19% by identifying glioblas-
toma, brain metastases, and CNS lymphomas via a mul-
tilayer perceptron (MLP); all of these studies achieved 
good results, demonstrating that machine learning mod-
els can efficiently perform diagnostic analysis of GBM 
and brain metastatic tumors. However, these studies have 
certain limitations, machine learning usually takes single 
sequence MR images as the research object, in practice, 
radiologists need to judge the images through the infor-
mation provided by multiple sequence MR images, and 
the limitations of the computational ability of machine 
learning in coping with multi-tasks objectively exists; 
moreover, it requires the researcher to spend a certain 
amount of time and energy in the process of feature 
selection and data processing.

Compared with traditional machine learning, deep 
learning has realized multiple improvements. In terms 
of model structure, deep learning has a deep neural net-
work, and when analyzing MR images, unlike the man-
ual extraction of features in machine learning, the deep 
learning model can directly extract complex tumor fea-
tures from image pixels without the need to manually 

pre-set the extraction rules, which reduces human bias 
while greatly improving the efficiency and accuracy of 
feature extraction [42]. The relationship between the 
image features of a tumor and the tumor type and malig-
nancy degree is not simple and linear, and the deep learn-
ing model is able to capture these complex nonlinear 
relationships, thus improving the identification accuracy 
[43]. In addition, deep learning performs better in multi-
task learning, and through techniques such as parameter 
sharing and joint optimization, it can effectively balance 
the resource allocation between different tasks, reduce 
the interference between tasks, and simultaneously 
improve the processing performance of multiple tasks, 
providing more comprehensive and accurate support for 
comprehensive tumor identification and diagnosis. In the 
face of massive medical image data, deep learning models 
can process and learn more efficiently by virtue of their 
powerful computational capabilities and optimization 
algorithms, and can still be trained and identified sta-
bly, even in the case of huge and complex data volumes. 
Bae et al. [44] extracted 265 radiomics features from 
multicenter images of T2WI and T1-CE, trained seven 
machine learning models with the deep learning model 
DNN, which showed the highest diagnostic performance 
in external validation (AUC = 0.956, (95% confidence 
interval, 0.918–0.990)), outperforming the best-per-
forming traditional machine learning model (adaptive 
enhancement combined with tree-based feature selec-
tion: AUC, 0.890 (95% CI, 0.823–0.947)) and radiolo-
gist (AUC, 0.774 [95% CI, 0.685–0.852]; 0.904 [95% CI, 
0.852–0.951]), which suggests that deep learning pos-
sesses better discriminative capabilities in the compari-
son of traditional machine learning and deep learning 
models.

It is worth noting that most of the previous studies 
did not introduce the reasons in the selection of MRI 
sequences, Yan et al. [45] a study, the deep learning 
model with multiple sequences combined had better 
discriminatory performance than single sequence model 
and the worst performance in T1WI; this is consistent 
with the present study, I believe that MR images with 
different sequences can provide different information 
and features, for example, T1-CE shows the destruction 
of the blood-brain barrier, T2-FLAIR shows peritumor 
edema; by learning different features, the deep learning 
model can better identify glioblastoma and brain metas-
tases. T2-FLAIR shows peritumor edema; by learning 
different features, the deep learning model can better 
identify glioblastoma and brain metastases, therefore, 
the selection of sequences is crucial before identifying 
tumors by MR images. In recent years, there have been 
deep learning model studies on the identification of 
glioblastoma (GBM) and single brain metastasis (SBM) 
mostly using the ResNet family of network architectures 
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(e.g., ResNet-50, ResNet-101, ResNet-152, etc.). A deep 
learning model construction study based on T2WI and 
T1CE images showed that the ResNet-50 model outper-
formed radiologists in discrimination in both internal 
and external validation sets [46]. Although ResNet effec-
tively solves the gradient vanishing problem in very deep 
network training through the residual mapping mecha-
nism, deep network structures (e.g., more than 50 layers) 
still face the insufficient stability of gradient propaga-
tion and the risk of overfitting [47]. Therefore, this study 
makes two improvements based on the classical ResNet 
architecture: first, normalization is implemented on the 
inputs of each layer of the network to stabilize the data 
distribution and enhance the stability of the gradient 
propagation; second, an L2 regularization term is intro-
duced into the loss function to reduce the overfitting risk 
by constraining the scale of the model parameters. This 
study innovatively adopts the 3D ResNet-18 network 
architecture, which is more suitable for medical imag-
ing data characterization than the traditionally used deep 
networks (e.g., ResNet-50) with its streamlined 18-layer 
structure while maintaining the residual learning advan-
tage. The results show that the optimized 3D ResNet-18 
network exhibits significant advantages in the discrimi-
native task of GBM vs. SBM. To explore the value of 
models with different architectures in two kinds of tumor 
identification, the deep learning models 3D VIT, 3D 
DenseNet and 3D VGG are introduced for the first time 
in this study and validated in multiple centers; in both 
internal and external validation, 3D ResNet-18 has the 
highest AUC, ACC, precision, recall, and F1 score with 
good robustness.

In this study, we explored the value of four deep learn-
ing models in the identification of glioblastoma and brain 
metastases, seeking the best identification model. We 
labeled the tumor body and peri-tumor region in the 
images of different MR sequences to provide sufficient 
image information for the deep learning model; Vit is a 
deep learning model for processing sequence data, the 
core of which lies in its self-attention mechanism and 
multi-attention mechanism, through which the model is 
able to efficiently deal with the complex relationships in 
sequence data [48],Since Vit is applied in medical images 
later than the CNN model, no study has been done to 
analyze its application in GBM and SBM discrimination. 
In this study, we attempted to construct a discrimina-
tion model of 3D Vit, and the AUC and accuracy in both 
internal and external validation sets were explicitly lower 
than that of the CNN model; 3D Vit performed poorly in 
the tumor discrimination task in this study, which may 
be due to the following reasons. First, 3D Vit requires a 
high amount of data, and the limited amount of data in 
this study may affect the training effect and performance 
of the model. Second, 3D Vit mainly relies on the global 

attention mechanism, which makes it relatively insensi-
tive to local features when capturing image features. 
However, tumor differential diagnosis highly relies on 
the accurate recognition of subtle local changes, such as 
tumor edge morphology and texture features [49]; collec-
tively, 3D Vit is currently immature in the field of tumor 
identification, and it may take a long time for research 
and optimization before it can be widely applied in clini-
cal practice. The performance differences among the 
three CNN models, namely 3D DenseNet, 3D ResNet-18, 
and 3D VGG, are mainly attributed to the changes in the 
internal architectures of the networks, and the advantages 
of the ResNet network lie in its unique residual structure, 
which can balance the depth of the network with the sta-
bility of the training, and is suitable for complex feature 
extraction in medical images, while the inductive bias of 
the convolution is more suitable for the needs of tumor 
identification. DenseNet’s fully-connected dense mod-
ule enables feature reuse, but its parameter redundancy 
(about 28% increase in the number of parameters) due to 
the cascading of inter-layer channels may lead to slower 
training when the network depth is increased [50], and is 
prone to triggering localized feature overfitting in limited 
medical data scenarios.VGG mainly extracts features by 
stacking convolutional layers and pooling layers, and its 
single down sampling path leads to the difficulty of effec-
tive fusion of higher-order semantic features with lower-
order texture features, and as the network deepens, it will 
face problems such as gradient disappearance, resulting 
in limited performance improvement [51]. In the identi-
fication task of GBM and SBM, 3D ResNet-18 is the pre-
ferred baseline model architecture, which can provide a 
reliable technical foundation for accurate identification of 
medical images.

Our study has several limitations. First, our data vol-
ume needs to be further expanded due to the difficulty 
in obtaining pathology and follow-up data for patients 
with single brain metastases, and smaller data samples 
may not provide comprehensive coverage of a variety of 
clinical conditions and patient characteristics, with the 
risk of sampling bias. Although our three-dimensional 
ResNet-18 model performed well in internal and exter-
nal validation, its stability needs to be further tested by 
increasing the data volume. Second, our study did not 
include magnetic resonance functional imaging, such as 
diffusion-weighted imaging (DWI), perfusion-weighted 
imaging (PWI), and magnetic resonance spectroscopy 
(MRS), which should be included in future studies; third, 
our model lacked some important clinical indicators, 
such as immunohistochemical information, and further 
improvement of the model’s discriminative efficacy by 
combining diverse clinical information will be the focus 
of future studies. The combination of diverse clinical 
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information to further improve the discriminative effi-
cacy of the model will be the focus of future research.

Conclusions
The combination of deep learning and magnetic reso-
nance imaging (MRI) can efficiently identify glioblas-
toma and single brain metastases, and the combination 
of three sequences, T2WI, T1-CE, and T2-FLAIR, can 
provide rich and critical imaging information for the 
identification of the two types of tumors compared with 
the combination of a single sequence or other sequences. 
Different deep learning models have different discrimi-
native values for glioblastoma and single brain metasta-
ses. In multicenter validation, 3D ResNet-18 has better 
discriminative ability than other CNN and Transformer 
models, shows the best robustness and generalization 
ability, shortens the training cycle and improves the diag-
nostic efficiency compared with machine learning mod-
els, and brings a new choice for clinical tumor diagnosis 
and treatment models.
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