
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit  h t t p  : / /  c r e a  t i  
v e c  o m m  o n s .  o r  g / l  i c e  n s e s  / b  y - n c - n d / 4 . 0 /.

He et al. BMC Medical Imaging          (2025) 25:169 
https://doi.org/10.1186/s12880-025-01711-3

BMC Medical Imaging

*Correspondence:
Yan Zhang
doctorzhangyan@vip.163.com

Full list of author information is available at the end of the article

Abstract
Background In the prognosis of breast cancer, the status of axillary lymph nodes (ALN) is critically important. While 
traditional axillary lymph node dissection (ALND) provides comprehensive information, it is associated with high risks. 
Sentinel lymph node biopsy (SLND), as an alternative, is less invasive but still poses a risk of overtreatment. In recent 
years, digital breast tomosynthesis (DBT) technology has emerged as a new precise diagnostic tool for breast cancer, 
leveraging its high detection capability for lesions obscured by dense glandular tissue.

Purpose This multi-center study evaluates the feasibility of preoperative DBT-based radiomics, using tumor and 
peritumoral features, to predict ALN metastasis in breast cancer.

Methods We retrospectively collected DBT imaging data from 536 preoperative breast cancer patients across two 
centers. Specifically, 390 cases were from one Hospital, and 146 cases were from another Hospital. These data were 
assigned to internal training and external validation sets, respectively. We performed 3D region of interest (ROI) 
delineation on the cranio-caudal (CC) and mediolateral oblique (MLO) views of DBT images and extracted radiomic 
features. Using methods such as analysis of variance (ANOVA) and least absolute shrinkage and selection operator 
(LASSO), we selected radiomic features extracted from the tumor and its surrounding 3 mm, 5 mm, and 10 mm 
regions, and constructed a radiomic feature set. We then developed a combined model that includes the optimal 
radiomic features and clinical pathological factors. The performance of the combined model was evaluated using the 
area under the curve (AUC), and it was directly compared with the diagnostic results of radiologists.

Results The results showed that the AUC of the radiomic features from the surrounding regions of the 
tumor were generally lower than those from the tumor itself. Among them, the Signaturetuomor+10 mm model 
performed best, achieving an AUC of 0.806 using a logistic regression (LR) classifier to generate the RadScore.The 
nomogram incorporating both Ki67 and RadScore demonstrated a slightly higher AUC (0.813) compared to the 
Signaturetuomor+10 mm model alone (0.806). By integrating relevant clinical information, the nomogram enhances 
potential clinical utility. Moreover, it outperformed radiologists’ assessments in predictive accuracy, highlighting its 
added value in clinical decision-making.

Preoperative DBT-based radiomics 
for predicting axillary lymph node metastasis 
in breast cancer: a multi-center study
Shuyan He1,3 , Biao Deng5,6, Jiaqi Chen4, Jiamin Li5, Xuefeng Wang6, Guanxing Li1,2, Siyu Long1,2, Jian Wan2 and 
Yan Zhang1,2*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://orcid.org/0000-0002-2378-5408
http://crossmark.crossref.org/dialog/?doi=10.1186/s12880-025-01711-3&domain=pdf&date_stamp=2025-5-16


Page 2 of 11He et al. BMC Medical Imaging          (2025) 25:169 

Introduction
Axillary lymph node status is crucial in breast cancer 
diagnosis and prognosis, with direct implications for clin-
ical decision-making and patient treatment outcomes [1, 
2]. Traditionally, axillary lymph node dissection (ALND) 
has been considered the gold standard for assessing 
lymph node status [3]; however, this procedure is asso-
ciated with significant complications, such as upper limb 
lymphedema, infection, and tumor dissemination. With 
the emergence of sentinel lymph node biopsy (SLND), 
lymph node evaluation has gradually shifted towards a 
more minimally invasive approach, but SLND may still 
result in overtreatment in some patients [4].

Digital breast tomosynthesis (DBT) is an advanced 
imaging technique that has revolutionized breast can-
cer screening and diagnosis by providing three-dimen-
sional views of the breast. Studies have shown that DBT 
enhances the detection of breast lesions, particularly in 
dense breasts and overlapping structures [5].

Although DBT images are typically evaluated in detail 
by experienced radiologists, the interpretation process 
may still be somewhat subjective, and DBT exams do 
not fully cover all axillary lymph nodes, which limits the 
completeness of the assessment. To address this chal-
lenge, radiomics—the process of extracting high-dimen-
sional, quantitative features from medical images—has 
been applied to breast imaging [6]. DBT radiomics 
enables the objective analysis of tumor characteristics 
and the surrounding environment, potentially improving 
the accuracy of ALN status prediction.

Previous studies have explored the applications of arti-
ficial intelligence (AI) in DBT, including deep learning, 
radiomics, and radiogenomics [7–9]. These studies have 
primarily focused on early breast cancer detection, the 
classification of benign and malignant lesions, molecu-
lar subtype evaluation, and the prediction of treatment 
response [10, 11].

From the perspective of tumor biology, the radiomics 
features of the intratumoral region, such as gray-level 
co-occurrence matrix entropy and wavelet transform 
texture, can quantitatively characterize the degree of 
intratumoral heterogeneity and cell proliferation activity 
[12], while the peritumoral region reflects the complex 
biological interaction process at the tumor-host interface, 
including the distribution of immune cells, angiogenesis 
status and interstitial structure [13]. A previous study 
demonstrated that a predictive model for axillary lymph 

node (ALN) metastasis, constructed from radiomic fea-
tures extracted from digital breast tomosynthesis (DBT) 
images, could significantly improve the accuracy of diag-
nostic imaging in breast cancer [14]. However, despite 
these significant advances, prior research on sentinel 
lymph node (SLN) status prediction has concentrated 
on the tumor region within the breast [15–17]. There 
is a relative lack of research on using radiomic features 
from both the tumor and peritumoral region, combined 
with clinical data, to comprehensively assess axillary 
lymph node (ALN) status.To fill this research gap, this 
study aims to explore and develop an innovative pre-
operative assessment tool based on DBT technology, 
which analyzes radiomic features from both the tumor 
and surrounding regions and integrates patient clinical 
and pathological characteristics to predict axillary lymph 
node metastasis (ALNM) in early breast cancer patients.

Medthod
Patients
This retrospective multicenter analysis was approved by 
the institutional review boards of both centers and did 
not require informed consent. A total of 390 patients 
were recruited from Guangdong women and Children 
Hospital (from January 2021 to June 2023) and 146 
patients from Guangdong Medical University Affiliated 
Hospital (from March 2019 to June 2023), all of whom 
had pathologically confirmed invasive breast cancer. The 
inclusion criteria were: (a) female patients with histologi-
cally confirmed invasive breast cancer; (b) patients with 
pathologically confirmed axillary lymph node (ALN) 
status; (c) patients who underwent preoperative digital 
breast tomosynthesis (DBT) imaging with lesions con-
firmed as masses or masses with calcification. The exclu-
sion criteria were: (a) patients without pathological 
results; (b) patients lacking preoperative DBT images; (c) 
patients with other tumors in the past or present.

According to the 2013 St. Gallen Consensus Confer-
ence [18], breast cancer is classified into four molecular 
subtypes: luminal A, luminal B, HER2-positive, and tri-
ple-negative. According to the BI-RADS classification, 
grades 1–3 are generally considered benign, while grades 
4 and above may be considered malignant [19]. Basic 
patient information is provided in Table 1.

P-value < 0.05: significant difference between training 
and validation set.

Conclusions Radiomics based on DBT imaging of the tumor and surrounding regions can provide a non-invasive 
auxiliary tool to guide treatment strategies for ALN metastasis in breast cancer.

Clinical trial number Not applicable.

Keywords DBT, Radiomics, Machine learning, Axillary lymph node
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Machine parameters
GE Senographe Essentia and Fuji AMULET Innovality 
digital breast tomography system were used in the image 
data set of our hospital. All patients were routinely pho-
tographed in the head and caudal position of the breast 
(eraniocaudal, CC) and mediolateral oblique (MLO), 
the acquisition mode was sector step-exposure scan-
ning, automatic rotation acquisition: X-ray tube swing 
Angle was 25°(± 12.5°), 15°(± 7.5°); The acquisition time 
was < 10s. The imaging data were acquired using a digi-
tal breast tomography system (Hologic model: Hologic 
Selenia) with the following technical parameters in other 
hospitals: the imaging system used automatic exposure 
technology (Comb mode), and standardized projection 
position images were obtained in CC and MLO posi-
tions, respectively. Automatic rotation acquisition: X-ray 
tube swing Angle was 15°; The acquisition time was < 5s. 
All machine images were processed by 3D reconstruction 
algorithm to generate breast tomovolume images. All raw 
data and reconstructed results were archived in accor-
dance with the DICOM standard.

Segmentation and feature extraction
To ensure the reproducibility of the feature extraction 
process, all images were resampled and normalized to a 
uniform voxel spacing of 1 mm×1 mm×1 mm. The seg-
mentation of the region of interest (ROI) was manually 
sketched by a radiologist with 5 years of experience who 
was unaware of the basic information and pathological 
findings of the images both positions CC and MLO were 
outlined along the edge of the lesion, outlining the lesion 
to show the clearest multi-layer images. For the mass 
with calcification, if the calcification was located inside 
the mass, the contour was delineated along the bound-
ary of the mass. If the calcification was located around 
the mass, the suspected calcification was included in the 
ROI. Finally, all ROIs were reviewed by a senior radiolo-
gist with > 20 years of experience.In case of disagreement 
between the two radiologists, the lesion boundary was 
determined by the senior radiologist.

The segmentation and processing of ROIs were 
conducted on the Darwin Research Platform 
(http://211.145.67.46:8590/ login), developed by Yiz-
hun Medical AI Technology Co., Ltd. Based on relevant 

Table 1 Patient profiles
Primary cohort External validation cohort
Positive ALN (n = 156) Negative ALN (n = 234) P* value Positive ALN (n = 49) Negative ALN (n = 97) P value

Age(yrs) 51.31 ± 10.634 52.44 ± 10.596 0.302 49.09 ± 10.071 54.38 ± 9.573 0.003
BI-RADS categories (%) 0.000 0.129
3 6(3.8%) 14(6.4%) 0(0.0%) 2(2.1%)
4a 9(5.8%) 9(4.1%) 4 (8.2%) 10(10.3%)
4b 18(11.5%) 34(15.5%) 6(12.2%) 28(28.9%)
4c 27(17.3%) 66(30.1%) 15(30.6%) 26(26.8%)
5 96(61.5%) 96(43.8%) 24(49.0%) 31(32.0%)
Histological grade (%) 0.433 0.802
/ 33(21.2%) 53(22.6%) 6(12.2%) 14(14.4%)
1 14(9.0%) 33(14.1%) 1(2.0%) 2(2.1%)
2 78(50.0%) 107(45.2%) 14(28.6%) 32(33.0%)
3 31(19.9%) 41(17.5%) 28(57.1%) 49(50.5%)
Estrogenic receptor (%)
+ 111(71.2%) 168(71.8%) 0.909 35(71.4%) 63(64.9%) 0.276
- 45(28.8%) 66(28.2%) 14(28.6%) 34(35.1%)
Progesterone receptor (%)
+ 98(62.8%) 146(59.8%) 0.600 32(65.3%) 57(58.8%) 0.477
- 58(37.2%) 98(40.2%) 17(34.7%) 40(41.2%)
HER-2 (%)
+ 50(32.1%) 71(30.3%) 0.738 28(57.1%) 44(45.4%) 0.220
- 106(67.9%) 163(69.7%) 21(42.9%) 53(54.6%)
Ki-67 status (%)
>20% 119(76.3%) 141(60.3%) 0.001 46(93.9%) 77(79.4%) 0.029
≤ 20% 37(23.7%) 93(39.7%) 3(6.1%) 20(20.6%)
Molecular subtype (%)
Luminal A 29(18.6%) 73(31.2%) 0.022 4(8.2%) 8(8.2%) 0.687
Luminal B 89(57.1%) 101(43.2%) 28(57.1%) 57(58.8%)
HER2 positive 19(12.2%) 29(12.4%) 14(28.6%) 21(21.6%)
TNBC 19(12.2%) 31(13.2%) 3(6.1%) 11(11.3%)

http://211.145.67.46:8590/
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literature on peritumoral analysis, tumor surrounding 
regions of 3  mm, 5  mm, and 10  mm were defined for 
analysis on the platform. The detailed workflow is illus-
trated in Fig. 1.

First, the ROI for the tumor mass was delineated 
and labeled as “Tumor.” The “Expand Mask” function 
was then used to generate 3  mm, 5  mm, and 10  mm 

peritumoral region masks. This resulted in seven dif-
ferent models: (1) “Tumor” represents the tumor core 
region; (2) “Tumor + magin 3 mm” represents the tumor 
core plus a 3  mm surrounding peritumoral region; 
(3) “Tumor + magin 5  mm” represents the tumor core 
plus a 5  mm surrounding peritumoral region; (4) 
“Tumor + magin 10 mm” represents the tumor core plus 

Fig. 1 The whole workflow in the study
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a 10  mm surrounding peritumoral region; (5) “magin 
3  mm” refers to the 3  mm surrounding peritumoral 
region only; (6) “magin 5  mm” refers to the 5  mm sur-
rounding peritumoral region only; (7) “magin 10  mm” 
refers to the 10 mm surrounding peritumoral region only. 
All seven types of masks for each tumor mass were ana-
lyzed, and the images were grouped into seven sets to 
deeply analyze the characteristics of both the tumor core 
and surrounding areas.

Radiomic features were extracted using the Darvin 
research platform from the delineated intratumoral and 
peritumoral regions of interest (ROIs) on both cranio-
caudal (CC) and mediolateral oblique (MLO) views. A 
total of 3 562 features were extracted from each intra-
tumoral and 3 peritumoral ROIs, respectively, and 14 
248 radiomics features were obtained for each patient. 
The extracted features encompassed several categories. 
Morphological features (n = 28) were derived from 3D 
geometrical parameters, including volume, surface area, 
compactness, flatness, maximum diameter, and sphe-
ricity deviation, which reflect spatial occupancy and 
morphological heterogeneity of the lesions. First-order 
statistical features (n = 396) quantified voxel intensity 
distribution within the ROIs, including metrics such as 
maximum, minimum, mean, median, skewness, kur-
tosis, and entropy, offering insights into enhancement 
heterogeneity and tissue-level changes like necrosis or 
calcification. Texture features were extracted to capture 
spatial relationships between voxels using gray level co-
occurrence matrix (GLCM, n = 528), gray level run length 
matrix (GLRLM, n = 352), gray level size zone matrix 
(GLSZM, n = 352), gray level dependence matrix (GLDM, 
n = 308), and neighboring gray tone difference matrix 
(NGTDM, n = 110), thereby characterizing tumor micro-
structural heterogeneity and spatial patterns. In addition, 
1,488 wavelet features were derived using wavelet trans-
form to capture multi-scale and localized image details, 
further enriching the radiomic representation of the 
tumor and its surrounding tissue.

Model construction and validation
Patients from the two centers were divided into training 
and validation sets. To reduce overfitting and identify 
the most relevant features, we first performed feature 
selection using Analysis of Variance (ANOVA) and Least 
Absolute Shrinkage and Selection Operator (LASSO) 
algorithms on the training set. ANOVA was used to cal-
culate the ratio of between-group variance to within-
group variance (i.e., ANOVA-F value) for each feature 
using the f_classif function from the sklearn library, 
selecting features with a p-value less than 0.05. The 
best parameters (Alpha) for the LASSO algorithm were 
then determined to further select the relevant features. 
Finally, the Support Vector Machine Recursive Feature 

Elimination (SVM-RFE) algorithm was applied for fea-
ture selection, identifying the minimal feature set that 
optimally predicted the model performance.

Based on the selected features, we constructed three 
machine learning models: Logistic Regression (LR), 
Support Vector Machine (SVM), and Extreme Gradient 
Boosting (XGBoost), and evaluated the models’ robust-
ness using 5-fold cross-validation. Previous studies have 
shown that these algorithms yield excellent performance 
in tasks such as tumor classification and lymph node 
metastasis prediction, supporting their applicability in 
this study context [20, 21].

Model performance was assessed by the Area Under 
the Receiver Operating Characteristic Curve (AUC-
ROC), and additional metrics such as 95% confidence 
intervals (CI), sensitivity, and specificity were calculated.

After normalization, clinical variables were combined 
with the radiomic score (Radscore) using multivari-
ate logistic regression analysis to establish a combined 
model. In addition to calculating the AUC, DeLong test-
ing and calibration curves were performed. Finally, deci-
sion curve analysis (DCA) was used to assess the clinical 
utility of the combined model.

Statistical analysis
All statistical analyses were performed using SPSS 26.0 
and R software(version 4.0.3). The nomogram construc-
tion was performed using the “rms” package. For con-
tinuous variables, independent sample t-tests (for normal 
distribution) or Mann-Whitney U tests (for non-normal 
distribution) were used. For categorical variables, Fisher’s 
exact test or chi-square tests were applied. The radiomics 
model was constructed using a multi-algorithm compari-
son strategy. Three Machine learning algorithms includ-
ing LR, SVM and XGBoost were included. The clinical 
model, radiologist diagnostic model and Nomogram were 
all constructed based on the logistic regression frame-
work. Statistical differences in the area under the receiver 
operating characteristic curve (AUC) were evaluated by 
DeLong test for performance comparison between mod-
els. In order to further evaluate the clinical application 
value of the clinical radiomics combined model, Decision 
Curve Analysis (DCA) was used to quantify the net ben-
efits under different threshold probabilities. All statistical 
tests were two-sided, and the significance level was set at 
α = 0.05.

Result
Patient information
Table  1 summarizes the baseline characteristics, clini-
cal, and pathological information of patients with breast 
masses in the internal and external validation groups. 
There were no statistically significant differences in his-
tological grade, ER, PR and HER2 status between the two 
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sets (P > 0.05). However, there were statistically signifi-
cant differences in age, BI-RADS classification, Ki67 sta-
tus, and molecular subtypes between the train or external 
validation set (P < 0.05).

Model construction and results
Based on the DBT images of the tumor core and sur-
rounding areas at 3 mm, 5 mm, and 10 mm, we extracted 
a total of 3,562 features from these images, followed by 
feature selection for each group. In order to ensure the 
scientificity and stability of feature selection, we used the 
three-step selection strategy of ANOVA, LASSO and 
SVM-RFE. Compared with the single selection method, 
this combination strategy not only removed redundant 
features and reduced the complexity of the model, but 
also retained the most predictive features to improve 
the robustness and generalization ability of the model.
Using dimensionality reduction, 9 features were selected 
from the tumor region, and 9, 6, and 10 features were 
selected from the 3  mm, 5  mm, and 10  mm surround-
ing areas, respectively. The features from the tumor and 

surrounding areas (3 mm, 5 mm, and 10 mm) were inte-
grated to establish a radiomic model for the tumor core 
and surrounding regions, which quantitatively assesses 
the difference between patients with and without lymph 
node metastasis. The results of these models in both the 
train and validation sets are shown in Table  2. Among 
these models, the Signaturetuomor+10  mm model combin-
ing the Margin 10  mm region and the tumor demon-
strated the highest diagnostic performance. Therefore, 
we selected this model to calculate the Radscore, which is 
given by the following formula:

RadScore = + 5.632*wavelet-HLH_glcm_Idn_MLO_
MLO + 5.490*logarithm_firstorder_Median_CC_
CC-10  mm-3.890*wavelet-LLH_firstorder_10Percentile_
CC_CC-2.992*log-sigma-3-0-mm-3D_firstorder_Skew-
ness_CC_CC-2.759*wavelet-HHL_glszm_LargeAr-
eaLowGrayLevelEmphasis_CC_CC-10 mm + 2.509*wave-
let-LLL_firstorder_Kurtosis_MLO_MLO-2.435*lbp-
3D-k_glszm_SizeZoneNonUniformityNormalized_
MLO_MLO-10 mm-2.266*original_glrlm_ShortRunLow-
GrayLevelEmphasis_MLO_MLO-10  mm + 2.209*expo-

Table 2 Predictive performance of training and external validation sets
Training set External validation set
SEN SPE ACC AUC 95%CI SEN SPE ACC AUC 95%CI

Mass
LR 0.801 0.581 0.669 0.766 0.719–0.814 0.814 0.663 0.721 0.766 0.691–0.841
SVM 0.744 0.688 0.710 0.765 0.717–0.813 0.915 0.505 0.637 0.745 0.667–0.823
XGBOOST 0.756 0.675 0.708 0.789 0.744–0.834 0.745 0.626 0.664 0.712 0.625–0.798
Margin 3 mm
LR 0.763 0.611 0.672 0.759 0.712–0.807 0.936 0.485 0.630 0.743 0.661–0.825
SVM 0.731 0.645 0.679 0.762 0.715–0.809 0.936 0.475 0.623 0.738 0.655–0.821
XGBOOST 0.801 0.585 0.672 0.755 0.707–0.803 0.745 0.606 0.903 0.651 0.617–0.799
Margin 5 mm
LR 0.821 0.585 0.679 0.765 0.718–0.812 0.617 0.758 0.712 0.727 0.642–0.813
SVM 0.744 0.643 0.682 0.759 0.707–0.799 0.644 0.611 0.623 0.699 0.577–0.752
XGBOOST 0.950 0.552 0.706 0.756 0.791–0.869 0.797 0.526 0.630 0.695 0.577–0.751
Margin10mm
LR 0.744 0.615 0.667 0.753 0.705–0.801 0.809 0.616 0.678 0.734 0.652–0.816
SVM 0.808 0.594 0.679 0.768 0.721–0.814 0.787 0.616 0.671 0.734 0.654–0.814
XGBOOST 0.776 0.577 0.656 0.749 0.700-0.797 0.745 0.646 0.646 0.696 0.602–0.790
Mass + Margin 3 mm
LR 0.756 0.705 0.726 0.790 0.744–0.836 0.766 0.687 0.712 0.762 0.685–0.840
SVM 0.788 0.650 0.705 0.782 0.736–0.829 0.723 0.687 0.699 0.760 0.682–0.838
XGBOOST 0.853 0.594 0.697 0.799 0.756–0.843 0.660 0.697 0.685 0.697 0.607–0.788
Mass + Margin 5 mm
LR 0.814 0.624 0.700 0.794 0.750–0.838 0.681 0.737 0.719 0.751 0.671–0.830
SVM 0.814 0.611 0.692 0.786 0.741–0.831 0.723 0.657 0.678 0.760 0.682–0.838
XGBOOST 0.872 0.594 0.705 0.800 0.757–0.843 0.638 0.768 0.726 0.728 0.642–0.813
Mass + Margin 10 mm
LR 0.763 0.697 0.723 0.806 0.762–0.850 0.787 0.717 0.740 0.785 0.712–0.858
SVM 0.801 0.611 0.687 0.784 0.738–0.829 0.872 0.606 0.692 0.783 0.708–0.858
XGBOOST 0.808 0.637 0.705 0.798 0.754–0.843 0.830 0.646 0.705 0.772 0.697–0.846
SVM, support vector machine; LR, logistic regression; XGBOOST, eXtreme Gradient Boosting; AUC, area under the curve; SEN, sensitivity; SPE, specificity; ACC, 
accuracy



Page 7 of 11He et al. BMC Medical Imaging          (2025) 25:169 

nential_glszm_SmallAreaHighGrayLevelEmphasis_
MLO_MLO + 1.748*wavelet-LHH_ngtdm_Coarseness_
MLO_MLO-10  mm + 1.351*logarithm_firstorder_Root-
MeanSquared_CC_CC-1.162*wavelet-HHL_glcm_Imc2_
MLO_MLO-0.113.

Results of integrating radiomics and clinical models
The Ki67 index was statistically different by multivariate 
logistic regression (Table  3) screening. The nomogram 
was constructed by combining the above clinically inde-
pendent predictors and Radscore as shown in Fig. 2.

In the training set, the AUC (area under the curve) of 
the nomogram reached 0.813, demonstrating robust pre-
dictive performance.

Among the four models, the nomogram showed the 
best diagnostic efficiency in predicting lymph node 

metastasis of breast cancer. Detailed comparative data 
are shown in Table  4. Figure  3A and B show the AUCs 
of the four models. Figure  3C and D show the decision 
curve analysis (DCA) results of each model of the nomo-
gram in the training set and validation set, which fur-
ther emphasizes the significant advantage of combining 
tumor and peritumoral features in improving the clini-
cal predictive value. In addition, the calibration curves in 
Supplementary Fig.  1 show the agreement between the 
predicted probabilities of the nomogram model and the 
actual observed values in the training and validation sets.

Discussion
In this in-depth academic study, we systematically evalu-
ated the intratumoral and peritumoral radiomic fea-
tures derived from DBT images of BC patients, aiming 
to validate their effectiveness as preoperative predictors 
of ALN status and to propose an innovative predictive 
method. Specifically, we meticulously extracted 14,248 
DBT radiomic features for each BC patient, and after 
rigorous dimensionality reduction, we constructed three 
advanced machine learning classifiers: SVM, LR, and 
XGBoost models. Results demonstrated that among all 
models, the Signaturetuomor+10  mm model exhibited the 
most superior performance in both the training set and 

Table 3 The results of multivariable logistic analysis in the 
training cohort
Characteristics β OR 95% CI P value
BI-RADS categories(3;4a-5) -0.268 0.765 0.282–2.077 0.599
Ki-67 status -0.795 0.452 0.279–0.731 0.001
Age 0.004 1.004 0.984–1.024 0.696
Luminal/non- Luminal -0.296 0.743 0.455–1.216 0.238
OR: Odds Ratio

Table 4 Performance of radiomics and clinical models in training and external validation cohort
DBT AUC Accuracy SEN SPE PPV NPV P
Training set -
Signaturetuomor+10 mm 0.806 0.723 0.763 0.697 0.626 0.815 <
Clinical model 0.580 0.544 0.763 0.397 0.458 0.715 <0.001
Nomogram 0.813 0.751 0.750 0.752 0.669 0.819 0.051
Radiologist 0.583 0.654 0.706 0.354 0.231 0.936 <0.001
External validation set
Signaturetuomor+10 mm 0.785 0.740 0.787 0.717 0.569 0.877 -
Clinical model 0.569 0.438 0.936 0.202 0.358 0.870 <0.001
Nomogram 0.792 0.726 0.851 0.667 0.548 0.904 0.184
Radiologist 0.582 0.705 0.611 0.719 0.234 0.929 <0.001
AUC: Area Under Curve, SEN: sensitivity, SPE: specificity, ACC: Accuracy, PPV: PositivePredictive Value, NPV: Negative Predictive Value. p values represent the delong 
test of the efficacy of each model compared with the Signaturetuomor+10 mm model

Fig. 2 Nomogram
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external validation set, with area under the receiver oper-
ating characteristic (ROC) curve (AUC) values ranging 
from 0.784 to 0.806 and 0.772–0.785, respectively. The 
logistic regression (LR) model achieved the best perfor-
mance, likely because the screened radiomic features 
exhibited a near-linear relationship with lymph node 
metastasis, allowing LR to better fit the data.This finding 

aligns with previous studies using contrast-enhanced 
mammography (CEM) to analyze peritumoral features 
for predicting axillary lymph node metastasis [22], fur-
ther supporting the critical role of intratumoral + peri-
tumoral 10  mm radiomic features in evaluating nodal 
status.Feature importance analysis revealed that in the 
intratumoral model, the most predictive radiomic feature 

Fig. 3 Figure A and B show the AUCs of the four models. Figures C and D present the decision curve analysis (DCA) of each model in the training and 
validation sets for the nomogram
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was the wavelet feature wavelet-HLH_glcm_Idn, whereas 
in the 3 mm, 5 mm, and 10 mm peritumoral regions, the 
most significant features were all first-order features (log-
arithm_firstorder_RootMean Squared). This feature type 
was consistent with the findings of Cheng [23] et al.

The radiomic model incorporating the 10-mm peritu-
moral region demonstrated superior predictive perfor-
mance compared to other peritumoral models, which 
may be attributed to a combination of biological and 
technical factors. Biologically, the peritumoral microen-
vironment within this range is known to be highly active 
in tumor–host interactions and is enriched with cancer-
associated fibroblasts (CAFs), tumor-associated macro-
phages (TAMs), and infiltrating immune cells [24]. These 
components facilitate processes such as epithelial–mes-
enchymal transition (EMT), extracellular matrix remod-
eling, lymphangiogenesis, and lymphovascular invasion, 
all of which are critical for tumor metastasis [25, 26]. 
The 10-mm region may effectively capture these altera-
tions, which are often missed in smaller peritumoral 
margins (e.g., 3–5  mm) due to limited spatial coverage. 
From a radiomics perspective, this region provides a bal-
ance between capturing sufficient biologically relevant 
information and maintaining signal stability without 
excessive interference from surrounding normal tissues, 
which may occur when larger margins are applied. There-
fore, features extracted from this specific zone may more 
accurately reflect local stromal and immune alterations 
associated with axillary lymph node metastasis in breast 
cancer.This finding not only deepens our understanding 
of the biological behavior of breast cancer but also pro-
vides an important reference for preoperative planning in 
early BC patients, helping to reduce unnecessary surgical 
interventions and the risk of overtreatment [27].

Furthermore, this study conducted a comparative anal-
ysis between the intratumoral and peritumoral models 
and the peritumoral-only model, revealing that the model 
integrating both intratumoral and peritumoral informa-
tion provided a more accurate depiction of the tumor. 
This finding is in line with the conclusions of Zhang et 
al. [28], which highlighted the limitations of relying solely 
on peripheral tissues for diagnosis, emphasizing the 
necessity of integrating both intratumoral and peritu-
moral information. AUC comparisons further validated 
this point, underscoring the superiority of the integrated 
model in predicting ALN status.

To more comprehensively assess the impact of Ki-67 
expression levels on lymph node status, this study also 
employed multivariate logistic regression analysis, suc-
cessfully identifying significant risk factors associated 
with high Ki-67 expression. Based on these findings, we 
developed a combined model incorporating Ki-67 and 
RadScore, aiming to further enhance prediction accuracy 
and reliability. The results indicated that the combined 

model slightly outperformed the RadScore model alone 
in the validation set (AUC of 0.813 vs. 0.806), with similar 
high performance maintained in the training set (AUC of 
0.792 vs. 0.785). This suggests that, while RadScore plays 
a dominant role in the model, Ki-67’s risk factor provides 
additional value to the nomogram model for predicting 
lymph node status.

In the in-depth study exploring the correlation between 
Ki-67 expression levels and lymph node metastasis, 
we observed that cancer cells with high Ki-67 expres-
sion exhibited stronger proliferation and invasiveness, 
undoubtedly increasing their risk of metastasis via the 
lymphatic system. This observation aligns with previous 
research findings [29, 30], further reinforcing the role of 
Ki-67 as a critical biomarker for assessing tumor inva-
siveness and predicting lymph node metastasis poten-
tial. However, when attempting to combine Ki-67 with 
radiomics features to enhance predictive performance, 
we found that, despite a certain degree of performance 
improvement, the enhancement did not reach statistical 
significance. Similarly, in the study by Wu et al., despite 
integrating clinical features and radiomics informa-
tion to predict Ki-67 status, no significant performance 
improvement was achieved. The common result of these 
two studies reveals an important fact: single or simple 
combined models have significant limitations in predict-
ing complex biological phenomena.

However, the direct evaluation of digital breast tomo-
synthesis (DBT) images by radiologists for predicting 
lymph node metastasis has its limitations [31]. These 
limitations primarily stem from DBT’s inability to com-
prehensively cover axillary lymph nodes. The complexity 
of lymph node metastasis involves multiple aspects, such 
as tumor cell invasion patterns, immune evasion mecha-
nisms, and lymphatic invasion, making it difficult for 
visual interpretation alone to fully capture its dynamic 
changes and micro-characteristics [32, 33]. Addition-
ally, subjective judgment differences among physicians, 
varying levels of experience, and factors such as visual 
fatigue may significantly affect diagnostic accuracy. This 
study also demonstrates that compared to traditional 
radiologist diagnostic models, radiomics models show 
statistically significant differences. In contrast, radiomics 
methods, driven by algorithms and automated extraction 
and analysis of numerous quantitative features, effectively 
reduce human biases, thereby enhancing prediction sta-
bility and objectivity. This approach not only captures 
lymph node metastasis-related features more compre-
hensively but also provides clinicians with more precise 
and reliable diagnostic support.In future work, prospec-
tive studies will be essential to further validate the robust-
ness and generalizability of our model. Additionally, to 
facilitate clinical translation, strategies such as integrat-
ing the radiomics pipeline into radiology workstations 
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or PACS systems, and developing user-friendly software 
interfaces for real-time prediction, should be explored. 
These steps would enable clinicians to leverage radiomic 
insights in routine practice and potentially improve indi-
vidualized decision-making for axillary lymph node man-
agement in breast cancer.

Regarding limitations, previous studies have indicated 
that incorporating hormone receptor status, such as 
ER and PR, can improve the performance of predictive 
models in breast cancer [22, 34]. However, in our study, 
no significant differences in these markers were found 
between the ALN metastasis and non-metastasis groups 
(p > 0.05). This discrepancy may be due to the relatively 
small sample size (n = 536) and heterogeneity in molecu-
lar subtype distribution. Further large-scale, multicenter 
prospective studies are needed to validate the predictive 
value of hormone receptor status in specific subtypes and 
its potential synergy with radiomic features.Although this 
study employed a dual-center design to enhance sample 
diversity and applied image resampling and normaliza-
tion techniques to minimize inter-center variability, the 
overall sample size remained limited. Moreover, potential 
differences in imaging equipment between centers may 
still have introduced additional variability.

Conclusion
This study, through a dual-center collaboration, proposes 
a combined model that integrates Ki-67 status and intra-
tumoral and peritumoral radiomics features, demonstrat-
ing significant advantages in predicting axillary lymph 
node metastasis in breast cancer patients preoperatively. 
These findings provide a solid and reliable basis for devel-
oping personalized treatment strategies, although further 
validation and optimization are needed to enhance its 
application.
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