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Abstract
Background Carotid artery calcifications are important markers of cardiovascular health, often associated with 
atherosclerosis and a higher risk of stroke. Recent research shows that dental radiographs can help identify these 
calcifications, allowing for earlier detection of vascular diseases. Advances in artificial intelligence (AI) have improved 
the ability to detect carotid calcifications in dental images, making it a useful screening tool. This systematic 
review and meta-analysis aimed to evaluate how accurately AI methods can identify carotid calcifications in dental 
radiographs.

Materials and methods A systematic search in databases including PubMed, Scopus, Embase, and Web of 
Science for studies on AI algorithms used to detect carotid calcifications in dental radiographs was conducted. Two 
independent reviewers collected data on study aims, imaging techniques, and statistical measures such as sensitivity 
and specificity. A meta-analysis using random effects was performed, and the risk of bias was evaluated with the 
QUADAS-2 tool.

Results Nine studies were suitable for qualitative analysis, while five provided data for quantitative analysis. These 
studies assessed AI algorithms using cone beam computed tomography (n = 3) and panoramic radiographs (n = 6). 
The sensitivity of the included studies ranged from 0.67 to 0.98 and specificity varied between 0.85 and 0.99. The 
overall effect size, by considering only one AI method in each study, resulted in a sensitivity of 0.92 [95% CI 0.81 to 
0.97] and a specificity of 0.96 [95% CI 0.92 to 0.97].

Conclusions The high sensitivity and specificity indicate that AI methods could be effective screening tools, 
enhancing the early detection of stroke and related cardiovascular risks.

Clinical trial number Not applicable.
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Introduction
Stroke is the third most common cause of death globally, 
responsible for about 10% of total fatalities according to 
the World Health Organization (WHO) [1]. A consider-
able contributor to stroke risk is atherosclerotic carotid 
plaques, which are present in about 15% of cases [2]. 
Carotid artery calcification appears on various radio-
graphs like lateral cephalometric, panoramic or lateral 
neck radiographs as an irregular nodular radiopacity situ-
ated just below the mandibular angle and the hyoid bone, 
near the cervical vertebrae at the C3–C4 intervertebral 
space [3]. These calcifications are notable indicators of 
cardiovascular disease, often pointing to the presence of 
atherosclerosis and a higher risk of stroke and other vas-
cular problems [3, 4].

Early detection of atherosclerotic carotid plaques is 
crucial for preventing strokes, enabling healthcare pro-
viders to manage at-risk patients before serious damage 
occurs [5]. Traditionally, identifying carotid calcifica-
tions has relied on imaging techniques like ultrasound 
and computed tomography (CT) [5, 6]. However, recent 
studies have indicated that dental radiographs, includ-
ing panoramic images and cone beam computed tomog-
raphy (CBCT) scans, can reveal important incidental 
findings, such as carotid calcifications, making dental 
imaging a valuable tool for screening cardiovascular risk 
[7, 8]. Since these radiographic examinations are com-
monly performed by dentists and oral and maxillofacial 
surgeons, they offer a practical way to identify potential 
health concerns.

Advancements in artificial intelligence (AI) are revo-
lutionizing diagnostic practices across various fields of 
medical and dental sciences [9–11]. Recent advances in 
machine learning, particularly deep learning architec-
tures such as convolutional neural networks (CNNs), 
have demonstrated remarkable capabilities in analyzing 
complex medical imaging data with precision that fre-
quently exceeds human performance. These technologies 
extract detailed and objective information from images, 
significantly improving disease detection accuracy [9, 
12–14]. Decision-making models have the potential to 
enhance computerized analysis, enabling the acquisition 
of accurate and consistent data quickly, which can then 
be used to develop treatment strategies. However, this 
approach to computerized diagnosis and treatment plan-
ning remains in its early stages, despite various techno-
logical advancements in AI [13].

Several research papers have used AI to automati-
cally segment carotid artery calcification in magnetic 
resonance (MR), CT, and ultrasound images [15–17]. 
In dental radiology, AI applications now encompass the 
detection of pathological conditions, identification of 
anatomical structures, and recognition of incidental find-
ings, offering substantial potential to enhance diagnostic 

accuracy and patient outcomes [14, 18, 19]. By applying 
AI to dental radiographs, the identification of carotid 
calcifications can be improved, utilizing readily available 
dental imaging resources.

This systematic review aimed to assess the perfor-
mance of AI-based detection methods for carotid cal-
cifications in dental radiographs, synthesizing findings 
from existing literature to answer the question “Are AI 
algorithms effective for the detection of carotid artery 
calcifications?” by including a meta-analysis and report-
ing diagnostic accuracy, sensitivity, and specificity. The 
authors hypothesize that AI-assisted detection would 
demonstrate clinically acceptable performance for iden-
tifying carotid calcifications, potentially serving as a valu-
able decision-support tool in dental practice.

Materials and methods
The protocol for this review was registered with PROS-
PERO under the registration number #CRD42024595866. 
The review methodology and results were reported accu-
rately and transparently by adhering to the Preferred 
Reporting Items for Overviews of Reviews (PRIOR), 
the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses of Diagnostic Test Accuracy Studies 
(PRISMA-DTA), and PRISMA-AI criteria [20–22].

Eligibility criteria
“Are artificial intelligence (AI) algorithms effective for 
carotid calcifications detection in dental radiographs?” 
was the primary research question formulated for this 
study based on the PIRD criteria (the population, index 
test, reference test, and diagnosis of interest) which are 
used to choose studies on diagnostic accuracy [23]. This 
review used the following PIRD framework: Population: 
Adults who have carotid atherosclerosis and underwent 
dental imaging. Index Test: The use of AI algorithms for 
detecting carotid calcifications in dental radiographs 
(Fig. 1). Reference Test: Assessment of carotid calcifica-
tions based on ultrasound images or dental radiographs 
by radiologists or experienced dentists. Diagnosis of 
Interest: The diagnostic accuracy of detecting athero-
sclerotic plaques using AI models, including sensitivity, 
specificity, log diagnostic odds ratio, and the area under 
the receiver operating characteristic (ROC) curve (AUC).

The inclusion criteria for this review consisted of 
studies utilizing AI algorithms specifically for detect-
ing carotid calcifications in dental radiographs includ-
ing panoramic, CBCT, and cephalometry. Studies that 
did not focus on carotid calcifications, non-diagnostic 
studies, case reports, and reviews were excluded. Addi-
tionally, guidelines, comments, editorials, duplicate 
publications, conference papers, and abstracts lacking 
full-text availability were also omitted from our analysis.
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Search strategy
A comprehensive literature search (Table S1) was con-
ducted across five databases up to November 11, 2024, 
including PubMed (Medline), Scopus, Embase, Cochrane 
Library and Web of Science. The search strategy com-
bined keywords with syntax adapted to each platform’s 
search rules (e.g., MeSH terms for PubMed, Emtree for 
Embase) to create a highly sensitive method for identify-
ing potential records. Additionally, the reference lists of 
the selected research articles and relevant previous stud-
ies were reviewed, along with a supplementary search on 
Google Scholar to locate any other potentially qualifying 
studies.

Study selection
Two independent reviewers (SA and AK) conducted title 
and abstract screening after removing duplicate papers 
using Endnote 21 (Clarivate, Philadelphia, USA). Full-
text relevant records were obtained and reviewed based 
on inclusion and exclusion criteria. During the screening 
process, text mining was performed using the SWIFT-
Review software (Sciome LLC, NC, USA), which auto-
matically groups abstracts on similar topics through 
machine learning techniques [24]. We utilized AI algo-
rithms within SWIFT-Review to search, categorize, and 
prioritize a large volume of primary studies during this 
stage [11]. However, final inclusion decisions were made 
based on human judgment. Disagreements during the 
screening process were addressed by reaching a consen-
sus between the two reviewers or by consulting a third 
author (PS).

Data extraction
Data extraction was performed by the same two inde-
pendent authors (SA and AK). Various details from each 
included study were collected, such as the first author 
and year of publication, study objective, type of dental 

imaging modality used, sample size, image augmenta-
tions applied, software or hardware utilized, the formula-
tion task applied, type of AI algorithm employed, and key 
findings, including statistical measures like sensitivity, 
specificity, and accuracy. Disputes in the data extraction 
phase were settled with the help of a third author (MY).

Statistical analysis
For the diagnostic meta-analysis, true positive (TP), 
true negative (TN), false positive (FP), and false nega-
tive (FN) counts from each eligible study were extracted. 
For those studies that reported sensitivity, specificity, and 
standard errors, total negative and positive values were 
calculated, and other required measures were derived. 
The summary receiver operating characteristic (SROC) 
curve was obtained using the “metandi” command in 
Stata 17. Synthetizing effect sizes was done using ran-
dom effects meta-analysis considering just one effect size 
for every study. Heterogeneity across the enrolled stud-
ies was evaluated by Cochran Q-statistic and I² statistic 
[18]. Subgroup analyses and sensitivity analyses were 
also performed according to image modality, leaving out 
one study per time. Publication bias was evaluated using 
Egger’s and Begg’s tests. Significant probability level was 
considered as p < 0.05. Stata Statistical Software version 
17 (College Station, TX: StataCorp LLC) was used for 
meta-analysis.

Risk of bias assessment
The risk of bias in the included studies was assessed by 
two independent researchers (SA and MY) utilizing the 
QUADAS-2 (Quality Assessment of Diagnostic Accuracy 
Studies) tool. This evaluation focused on key domains 
including patient selection, index test, reference standard, 
and flow and timing. A third reviewer (ZK) was brought 
in to help resolve conflicts between the assessors.

Fig. 1 Panoramic image with severe carotid artery calcification on the left side accompanied by vascular clips
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Results
Study selection
The initial search identified 1430 studies. After removing 
duplicates and screening titles and abstracts, 14 records 
were deemed suitable for full-text review. Ultimately, 
after excluding 5 records (Table S2), 9 studies met the 
eligibility criteria for qualitative analysis, while 5 of these 
provided data for quantitative analysis (Fig. 2).

Study characteristics
The characteristics of the studies are summarized in 
Table  1. The included studies covered a range of publi-
cation years, with one study conducted before 2022 [5], 
three conducted in 2022 [4, 25, 26], two conducted in 
2023 [6, 9], and three conducted in 2024 [27–29]. These 

studies assessed the performance of AI algorithms in 
detecting carotid calcification using CBCT (n = 3) [9, 25, 
28] and panoramic radiographs (n = 6) [4–6, 26, 27, 29].

The reviewed studies employed diverse deep learning 
approaches for carotid calcification detection, with con-
volutional neural networks (CNNs) emerging as the pre-
dominant methodology. Among these, architectures such 
as Faster R-CNN (ResNet-based), U-Net, and Inception-
based models were most frequently implemented [4–6, 
25–29]. The field has seen growing adoption of transfer 
learning techniques utilizing pre-trained models includ-
ing ResNet, EfficientNet, and DenseNet architectures [4, 
6, 25, 27]. Hybrid architectures demonstrated superior 
performance, as shown by Inception V3 + U-Net (accu-
racy: 96.35%; sensitivity: 94.2%) [25] and EfficientNet-B4 

Fig. 2 Systematic review flowchart diagram according to PRISMA 2020
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which achieved the highest standalone model perfor-
mance (accuracy: 98.5%; sensitivity: 98.0%) [27].

Quality assessment
The quality assessment of the included studies, sum-
marized in Fig.  3 using the QUADAS-2 tool, reveals a 
generally favorable profile concerning risk of bias and 
applicability concerns. Most studies exhibit low risk 
across all evaluated domains, indicating robust method-
ological quality [4, 6, 9, 26, 27]. Two studies [5, 25] show 
unclear risk in the patient selection domain of bias, while 
one study [28] showed an unclear risk in the index test 
(bias) and reference test (applicability) domains, along 
with a high risk of bias in the reference standard domain 
of bias. Additionally, Vinayahalingam et al. [29] demon-
strated low risk in most areas, though they were marked 
with high risk in the timing of flow and patient selection. 
Overall, the majority of studies demonstrate low risk 
of bias, supporting their reliability for inclusion in the 
meta-analysis.

Meta-analysis
Four studies reported the numbers of TP, TN, FP, and FN 
[25–28], while one study provided sensitivity, specificity, 
and standard errors [6]. These values were used for the 
meta-analysis. Figure 4 displays a forest plot summariz-
ing the sensitivity and specificity (with 95% confidence 
intervals (CI)) across studies employing diverse AI meth-
ods. The sensitivity ranged from 0.67 (indicating moder-
ate performance in one study) to 0.98 (excellent detection 
in others), while specificity remained consistently high 
(0.85–0.99). Figures  5 and 6 present subgroup analyses 
stratified by dental radiography type (CBCT and pan-
oramic radiograph), with each study restricted to one 
AI method to avoid redundancy. Figure  5 specifically 
displays the diagnostic odds ratio (DOR) for each sub-
group, with the overall pooled estimate reaching 241.46 
[95% CI 39.53 to 1475.03]. This extreme width suggests 
substantial heterogeneity between studies, possibly due 
to varying image resolutions or clinical settings. Figure 6 
consists of two complementary forest plots analyzing 
sensitivity and specificity separately for each radiogra-
phy subgroup. The overall effect size, by considering only 
one AI method in each study, resulted in a sensitivity of 
0.92 [95% CI 0.81 to 0.97] and a specificity of 0.96 [95% 
CI 0.92 to 0.97]. Figure 7 presents the summary receiver 
operating characteristic (SROC) curve, which plots the 
true positive rate (sensitivity) against the false positive 
rate (1-specificity) across all studies. Sensitivity analysis 
by leaving out each study one at a time did not change 
the pooled DOR substantially (Figure S1). There was no 
evidence of publication bias in reported DORs (Egger’s 
p = 0.332, Begg’s p = 1.0).
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Discussion
This systematic review and meta-analysis provide a com-
prehensive evaluation of the diagnostic performance of 
AI models in detecting carotid calcification on dental 
radiographs. The included studies covered various AI 
techniques, particularly focusing on convolutional neu-
ral networks (CNNs). The results indicate that AI mod-
els, when applied to CBCT and panoramic radiographs, 
demonstrate high sensitivity and specificity, reaching 0.92 
and 0.96 respectively, in identifying this condition. This 
substantial diagnostic performance indicates the poten-
tial of AI models to accurately identify both true positive 
and true negative cases of carotid calcification. Addition-
ally, the sensitivity analysis suggests that the pooled DOR 
of 241.45 is robust and not significantly influenced by any 
individual study. Moreover, the absence of publication 
bias in the reported DORs further strengthens the reli-
ability of the findings.

Atherosclerosis in the carotid arteries is a complex pro-
cess that involves several stages and mechanisms. This 
process begins with damage to the endothelial cells of 
the arterial walls, caused by factors such as high blood 
pressure, smoking, high cholesterol, and diabetes [30, 
31]. Once the endothelium is damaged, low-density lipo-
proteins (LDL) penetrate the arterial wall and become 
oxidized, forming oxidized LDL (oxLDL), which in turn 
initiates an inflammatory response. Immune cells, par-
ticularly macrophages, engulf the oxLDL, becoming 
foam cells [32]. These foam cells accumulate and form 
fatty streaks, which are the earliest visible signs of ath-
erosclerosis. Over time, the fatty streaks evolve into more 
complex atherosclerotic plaques. These plaques consist 
of a lipid core, a fibrous cap, and calcified areas [33]. The 
plaques can grow large enough to obstruct blood flow or 
become unstable. Unstable plaques can rupture, expos-
ing the thrombogenic material within the plaque to the 

Fig. 4 Forest plot of sensitivity and specificity (95% confidence interval) of AI methods across included studies. Each row represents an individual study, 
the square markers indicate the point estimates of sensitivity and specificity, while the horizontal lines represent the 95% confidence intervals

 

Fig. 3 Quality assessment of included studies according to QUADAS-2
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bloodstream. This can lead to the formation of a throm-
bus, which can further obstruct blood flow or break off 
and travel to the brain, causing a stroke [34]. Carotid 
artery calcification is a significant risk factor for cardio-
vascular disease. Traditional methods for detecting these 
calcifications, such as ultrasound, CT angiography, and 
magnetic resonance imaging (MRI), can be invasive and 
costly [35, 36]. Dental panoramic radiographs, on the 
other hand, are widely available and non-invasive.

Before the advent of deep learning, traditional methods 
were employed to detect coronary artery calcifications on 
panoramic radiographs. These methods included fuzzy 
image contrast enhancement and algebraic image opera-
tors, which aimed to highlight calcified regions. These 
approaches achieved a detection rate of 50% [37]. Harada 
et al. [38] improved detection accuracy by incorporat-
ing a support vector machine, reducing false positives by 
75%. Another method by Sawagashira et al. [39], using a 
top-hat filter, achieved a sensitivity of 93.6% with 4.4 false 
positives per image by using a rule-based approach and 
support vector machine to minimize false positives.

Recent advancements in AI, specifically the introduc-
tion of deep learning paved the way for automating the 
detection of carotid artery calcifications on dental radio-
graphs. Among the included studies in this review, the 
study by Kats et al. [5] in 2018 was one of the pioneer-
ing efforts to use deep learning for detecting atheroscle-
rotic carotid plaques in panoramic radiographs. Despite 
working with a relatively small dataset of 65 panoramic 
images, the Faster R-CNN model achieved an accuracy of 

83.0%, a sensitivity of 75.0%, a specificity of 80.0%, and an 
AUC of 83.0%. Future studies utilized larger datasets and 
explored the use of CBCT images to achieve more reli-
able diagnoses in three-dimensional images. In general, 
CNNs, particularly with architecture like Faster R-CNN, 
U-Net, and Inception-based models were the preferred 
deep-learning approach [6, 9, 25, 26]. Additionally, the 
use of transfer learning by employment of pre-trained 
models such as ResNet and EfficientNet is gaining promi-
nence [4, 6, 27].

Considering imaging modalities, six studies used data-
sets containing panoramic radiographs for the detec-
tion of carotid artery calcifications [4–6, 26, 27, 29]. The 
datasets used in these studies for developing models 
used numbers of images that varied from 65 panoramic 
images used by Kats et al. [5] to 22,999 radiographs in 
the study of Lee et al. [26]. Interestingly, Yoo et al. [27] 
developed a cascaded deep learning network (CACSNet) 
consisting of classification and segmentation networks 
for carotid calcifications on panoramic images. CACSNet 
with EfficientNet-B4 outperformed other tested models, 
with a classification accuracy of 98.5% and segmentation 
sensitivity and precision of 75.6% and 74.9%, respectively. 
Moreover, Vinayahalingam et al. [29] compared the per-
formance of different backbone networks (ResNet-50 and 
Swin-T) with Fast R-CNN and Faster R-CNN on a data-
set of 370 panoramic radiographs. Faster R-CNN + Swin-
T demonstrated superior performance with an F1 score 
of 88.8%, sensitivity of 88.1%, and specificity of 89.7%. 
Three studies used CBCT images to detect carotid 

Fig. 5 Forest plot of diagnostic odds ratios (DOR) with 95% confidence intervals for AI-based detection of carotid artery calcifications across different 
dental radiograph types (CBCT and panoramic). Each row lists an included study with a corresponding blue square representing the point estimate of 
DOR and a horizontal line indicating its 95% confidence interval. The size of the square reflects the study’s weight in the meta-analysis. Subgroup results 
(CBCT, panoramic radiographs) are shown with red diamonds, and the overall pooled estimate is shown with a green diamond. Larger DOR values indi-
cate better diagnostic performance. Heterogeneity statistics (τ², I², H²) are provided for each group and overall
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calcifications. Firstly, Ajami et al. [25] combined Incep-
tion V3 and U-Net to classify and segment calcifications 
in the cervical carotid artery in CBCT images, report-
ing an accuracy of 96.35%. In addition, Alajaji et al. [9] in 
2024 used a U-Net-based neural network to segment and 
classify extracranial and intracranial carotid artery ath-
eromas in CBCT images. While the model achieved high 
sensitivity values for both regions (92% and 96%, respec-
tively), other diagnostic metrics including precision, 
accuracy, and specificity were relatively low, particularly 
for intracranial calcifications. Finally, Nelson et al. [28] 
employed a CNN to classify external carotid artery calci-
fications in CBCT images, achieving an accuracy of 76%. 
Panoramic imaging is a readily available and widely used 
radiation technique, offering a relatively low cost and 
radiation dose of nearly 0.02 mSv. Given its prevalence, it 

is important to use its potential in older adults to moni-
tor for stroke risk factors, such as carotid artery calcifi-
cations. In contrast, CBCT images, while exposing the 
patient to a relatively higher radiation dose, provide 
superior resolution for detecting subtle calcified lesions 
due to their three-dimensional nature. Interestingly, the 
included studies indicated that panoramic radiographs 
had a higher diagnostic odds ratio (DOR) than CBCTs; 
however, the difference was not statistically significant 
(P = 0.30). Both panoramic images and CBCT scans are 
commonly obtained in older individuals experiencing 
tooth loss, primarily for treatment planning related to 
oral rehabilitation. By utilizing these imaging techniques, 
clinicians can plan dental treatments effectively and also 
concurrently assess and monitor for other significant 

Fig. 6 (a) Forest plot of sensitivity and specificity (95% CI) for studies using AI-based methods on CBCT images to detect carotid artery calcifications. The 
black square represents the point estimate of sensitivity or specificity, and the horizontal line shows its 95% confidence interval. The size of the square 
reflects the study’s weight in the analysis. The red diamond represents the pooled estimate across all studies, and the red dashed line indicates the sum-
mary value. (b) Forest plot of sensitivity and specificity (95% CI) for studies using AI-based methods on Panoramic radiographies to detect carotid artery 
calcifications. The black square represents the point estimate of sensitivity or specificity, and the horizontal line shows its 95% confidence interval. The 
size of the square reflects the study’s weight in the analysis. The red diamond represents the pooled estimate across all studies, and the red dashed line 
indicates the summary value
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health conditions, such as cardiovascular disease and 
stroke risk.

It is important to consider that in six of the reviewed 
papers, the ground truth was provided by radiologists 
annotating the same CBCT or panoramic images. While 
only three papers employed a more definitive approach 
for diagnosis, the exact method for confirming the pres-
ence of carotid artery calcifications was not clarified in 
any of the studies. This lack of methodological transpar-
ency can lead to variability in the accuracy and reliability 
of the results. The gold standard for diagnosing carotid 
artery calcifications typically includes digital subtraction 
angiography, which offers high-resolution images and 
precise measurements of arterial stenosis. Additionally, 
duplex ultrasonography and contrast-enhanced CT and 
MRI are widely used for detecting carotid artery calcifi-
cations due to their high sensitivity and specificity. How-
ever, the use of less definitive methods for establishing 

ground truth can introduce biases and reduce the valid-
ity of the findings. The reliance on weaker ground truths, 
such as annotations by radiologists without standard-
ized protocols, can lead to inconsistencies and limit the 
generalizability of the results. To improve the robustness 
of future studies, it is crucial to adopt standardized and 
validated methods for establishing ground truth. This 
includes clear documentation of the diagnostic criteria 
and techniques used, as well as the involvement of mul-
tiple experts to minimize inter-observer variability. By 
ensuring methodological rigor, researchers can enhance 
the reliability and reproducibility of their findings, ulti-
mately contributing to more accurate and clinically rel-
evant conclusions.

The integration of AI-based detection systems into 
clinical practice presents several challenges that must be 
addressed to ensure effective utilization. One key chal-
lenge is the need for user-friendly interfaces that allow 

Fig. 7 Summary Receiver Operating Characteristic (SROC) curve with 95% confidence and prediction regions for AI-based detection of carotid artery 
calcifications. Each black dot represents the observed sensitivity and 1-specificity from an individual study. The solid line shows the SROC curve, which 
summarizes the overall diagnostic accuracy. The diamond marks the pooled (summary) sensitivity and specificity point. The dashed line represents the 
95% confidence region around this summary point, indicating the precision of the pooled estimate. The dot-dash line shows the 95% prediction region, 
reflecting expected variability in future studies. The closer the curve is to the top-left corner, the better the overall diagnostic performance
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dental practitioners to easily interact with AI models 
without requiring extensive technical expertise. Addi-
tionally, interoperability between AI systems and existing 
dental imaging software is critical for seamless integra-
tion into routine workflows.

Another important consideration is the variability in 
AI model performance across different imaging modali-
ties and datasets. Panoramic radiographs exhibited 
lower heterogeneity and a consistently high diagnostic 
performance across studies, with models such as CAC-
SNet paired with EfficientNet-B4 achieving standout 
diagnostic potential with a pooled sensitivity and speci-
ficity of 98% and 99%, respectively [27]. Faster R-CNN, 
utilized by Lee et al. [26], also performed robustly with 
a pooled sensitivity of 92% and specificity of 96%. These 
models benefit from transfer learning and deep feature 
extraction, enhancing their ability to accurately detect 
carotid calcifications in large datasets. Models applied 
to CBCT images, despite their superior resolution, dis-
played higher heterogeneity, suggesting performance 
inconsistencies. The approach by Ajami et al. [25] using 
Inception V3 and U-Net yielded impressive sensitivity 
and specificity (94% and 97%, respectively), but Nelson et 
al.‘s CNN showed lower sensitivity (67%) [28]. This dis-
parity indicates that while CBCT offers detailed imaging, 
the effectiveness of AI models depends heavily on dataset 
characteristics and model architecture.

While the findings of the present review are encourag-
ing, it is important to acknowledge the limitations of this 
study. First, the included studies used diverse AI tech-
niques and imaging modalities, which could introduce 
heterogeneity into the analysis. Second, the relatively 
small number of studies included in the meta-analysis 
may limit the generalizability of the findings. Finally, 
further validation of these AI models in larger, indepen-
dent datasets is mostly missing in the included studies. 
Future research should focus on the integration of these 
AI-based models into clinical practice by developing 
user-friendly interfaces and guidelines for incorporating 
AI into routine dental practice. Additionally, validation of 
these AI models is crucial to confirm their performance 
and clinical utility.

The differential diagnosis of carotid artery calcifica-
tions includes calcification of triticeal cartilage, stylohy-
oid ligament, thyroid cartilage, and epiglottis. It is crucial 
to differentiate these structures from true carotid artery 
calcifications to avoid misdiagnosis and ensure appropri-
ate patient management. Further imaging studies such 
as ultrasound or CT scans can be helpful for confirma-
tion of diagnosis. Results of a study by Almog et al. [40] 
indicated that human examiners, after completing a spe-
cialized training program, achieved a positive predictive 
value (PPV) of 34.6% for identifying carotid artery calci-
fications, with good inter-examiner agreement (κ = 0.87). 

In contrast, our meta-analysis of AI performance showed 
significantly higher accuracy, with a pooled sensitivity of 
0.92 and a pooled specificity of 0.96. These findings sug-
gest that AI systems not only offer superior diagnostic 
precision but also minimize variability in performance 
between different examiners, thus providing more con-
sistent and reliable results in detecting carotid artery cal-
cifications on dental images. Additionally, AI can serve 
as an educational or training tool for young dentists and 
dental students, enhancing their diagnostic skills and 
providing valuable learning experiences through expo-
sure to a wide range of cases and expert-level analyses.

Conclusion
This systematic review and meta-analysis revealed prom-
ising results. The included studies demonstrated high 
accuracy in identifying carotid calcifications using AI 
algorithms, particularly in CBCT and panoramic radio-
graphs. The pooled sensitivity and specificity values 
were notably high, indicating the potential of AI-based 
methods as effective novel screening tools. These results 
highlight the importance of using AI in dental imaging 
to increase early detection of stroke and other athero-
sclerosis-related risks, leading to better patient outcomes 
and preventative treatments. There is great potential for 
improving the field of cardiovascular risk assessment and 
management through additional research and application 
of AI-driven techniques in dental radiology.
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