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Abstract
Background  Only in recent years it has been demonstrated that the thoracolumbar fascia is involved in low back 
pain (LBP), thus highlighting its implications for treatments. Furthermore, an easily accessible and non-invasive 
way to investigate the fascia in real time is the ultrasound examination, which to be reliable as is, it must overcome 
the challenges related to the configuration of the machine and the experience of the operator. Therefore, the lack 
of a clear understanding of the fascial system combined with the penalty related to the setting of the ultrasound 
acquisition has generated a gap that makes its effective evaluation difficult during clinical routine. The aim of the 
present work is to fill this gap by investigating the effectiveness of using a deep learning approach to segment the 
thoracolumbar fascia from ultrasound imaging.

Methods  A total of 538 ultrasound images of the thoracolumbar fascia of LBP subjects were finally used to train and 
test a deep learning network. An additional test set (so-called Test set 2) was collected from another center, operator, 
machine manufacturer, patient cohort, and protocol to improve the generalizability of the study.

Results  A U-Net-based architecture was demonstrated to be able to segment these structures with a final training 
accuracy of 0.99 and a validation accuracy of 0.91. The accuracy of the prediction computed on a test set (87 images 
not included in the training set) reached the 0.94, with a mean intersection over union index of 0.82 and a Dice-score 
of 0.76. These latter metrics were outperformed by those in Test set 2. The validity of the predictions was also verified 
and confirmed by two expert clinicians.

Conclusions  Automatic identification of the thoracolumbar fascia has shown promising results to thoroughly 
investigate its alteration and target a personalized rehabilitation intervention based on each patient-specific scenario.
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Background
Connective tissues (such as fascia) are hypothesized to 
play a key role in the pathogenesis of low back pain (LBP) 
[1–3]. In fact, the thoracolumbar fascia (TLF), i.e. a tri-
laminar structure that involves the back muscles, in sub-
jects with LBP showed greater thickness and echogenicity 
compared to a control group of subjects without LBP [1, 
4]. Furthermore, it has been shown that the shear stress 
of the thoracolumbar fascia, within its layers, is lower in 
human subjects with chronic LBP [5]. Despite the clini-
cal importance of the fascial structure in disorders and 
consequently in treatment, it has long been considered 
a “forgotten structure” with difficulty for operators in its 
identification [6–8]. Consequently, studies quantitatively 
evaluating fascial tissues in this clinical condition were 
lacking. For the reasons mentioned above, an automatic 
segmentation of the fascial layers is essential to support 
their analysis. A rapid way to evaluate fascial structures 
in a static and dynamic scenario is ultrasound (see Fig. 1), 
but anatomical detection strictly relies on the experience 
and reliability of the operator [6]. Even more, an auto-
matic segmentation of the fascial system in ultrasound 
imaging is a necessity.

Imaging segmentation offers a variety of methodologi-
cal solutions in ultrasound domain [9, 10]. Taking advan-
tage of the success of artificial intelligence, in recent years 
deep learning solutions have been implemented in vari-
ous medical fields to solve the segmentation task, from 
computer-assisted surgery [11, 12], to treatment facili-
tation [13, 14]. Indeed, deep learning has proven to be 
a feasible paradigm for segmenting different musculo-
skeletal structures, even in ultrasound imaging [11–13, 
15–20]. However, there is a lack of results in the literature 
regarding the segmentation of the fascial system, such 

as the thoracolumbar fascia of low back pain subjects, in 
this imaging modality.

The implication of the thoracolumbar fascia in the 
scenario of low back pain, the challenges related to its 
evaluation by ultrasound, the clinical need for automated 
solutions, the lack of results in the literature that com-
bined these requirements, triggered the current study. 
Therefore, we considered this open topic (i.e., automated 
segmentation of the thoracolumbar fascia of subjects 
with low back pain using ultrasound) as the focus of cur-
rent work that aims to offer a solution of practical utility 
for clinical applications and prospects.

Methods
In this section, we present the dataset and network used 
to solve the task of TLF segmentation from ultrasound 
images.

Dataset collection
This retrospective study was approved by the Univer-
sitätsklinikum Münster (ethics committee approval n° 
2022-303-f-S) and informed consent was waived. All data 
were collected at the institute from June 2022 to Decem-
ber 2022 by the same operator who had more than 8 
years of experience in the field of fascia evaluation and 
identification (F.G.). Patients eligible for inclusion were 
aged between 20 and 70 years with a diagnosis of chronic 
LBP (lasting more than 3 months with daily manifesta-
tions). 46 patients (28 females; 18 males) were enrolled 
in the study. The mean age of the study group was 58.50 
years (y/o), ranging between a minimum of 25 years and 
a maximum of 70 years, with an average LBP duration 
of 60 months (ranging between a minimum of 3 months 
and a maximum of 540 months). The exclusion criteria 

Fig. 1  Thoracolumbar fascia of a low back pain subject, from US imaging. Selection: (blue) a portion of TLF composed by different sublayers, (yellow) a 
portion of epimysial fascia of the erector spinae muscles. The proper gliding between TLF and epimysium ensures forces transmission
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were as follows: (1) neurological signs of disc herniation 
with sensorimotor impairment (2) severe spinal stenosis 
(3) structural lesions of grade 2 or higher spondylolisthe-
sis (4) secondary vertebral lesions (5) neoplastic origin 
(6) vascular etiology. They underwent a single session 
of ultrasound examinations (machine manufacturer and 
model: Alpinion- ECUBE i7) of the TLF at the L3 level 
of the spinal erectors, bilaterally. The acquisition proto-
col [21] required the patient to be in the prone position 
(no movement). The spinous process of L2 was used as 
an anatomical landmark for the transverse acquisitions. 
Starting from this position, longitudinal acquisitions was 
captured after a 90° rotation on the central portion of the 
belly of the erector spinae. The acquired images/videos 
for each subject were at least one for each scan and body 
side. The patient group reflects a great variability regard-
ing anthropometric parameters, pain level, disease dura-
tion and phenotype. Outliers were discarded from the 
total original image dataset by two operators with more 
than 8 years of experience in the field of fascia evalua-
tion and identification (F.G. and C.P.). A total of 538 final 
images were used for the study. The latter images collec-
tion was then randomly split into training (360 images), 
validation (91 images) and testing (87 images) subsets 
(so-called Test set 1). To improve network generaliz-
ability in different scenarios (a different center, operator, 
machine manufacturer, patient cohort, protocol), net-
work performances were tested on an additional dataset 
(not included in the training set, so-called Test set 2) col-
lected during 2023, by two expert clinicians in the field 
(C.P. and C.S.), according to the Helsinki Declaration and 
human experimentation rules [22], and the Ethics Com-
mittee of the University of Padua approved the research. 
Each volunteer was informed of the testing protocol 
and signed a written informed consent before starting 

the study. All data were collected anonymously. In this 
case, the exclusion criteria comprised a prior history of 
LBP and a pain that limits daily activities at lower limb, 
a history of spinal or lower extremity surgeries, spinal 
deformities, severe lower back pain, prior fractures in the 
spine or lower extremities, fibromyalgia, balance impair-
ments, and systemic diseases such as rheumatological 
conditions or diabetes. The TLF acquisition protocol 
required the patient to perform a trunk extension and 
the ultrasound images were acquired at vertebral level 
L3 (transversal probe positioning orientation), randomly 
during the movement, 1 each patient. The manufacturer 
and model of the ultrasound machines was Edge II, Son-
osite, FUJIFILM, Inc. 21,919, WA, USA, with a linear 
probe, 6-15 MHz. Finally, the included patients were 6 (1 
male, 5 females), aged 18 to 30 years.

Dataset preparation
Each image of the final dataset collection was labelled 
(C.P.) in three classes with Apeer annotation tool [23]. 
The first class included the tissues over the thoracolum-
bar fascia, the second class the TLF itself, the third one 
the tissues below (including the epymisial fascia of the 
erector spinae muscles) (Fig. 2).

The images were first pre-processed. Specifically, the 
region of interest was cropped, 256 by 256 resized and 
normalized.

Model specification
An established convolutional network architecture for 
ultrasound image segmentation, 2D U-Net [17, 19, 20, 
24] was used to solve the segmentation task. This archi-
tecture has proven to be the most used in the segmenta-
tion of musculoskeletal structures [25].

Fig. 2  (a) Image and (b) mask (labelled) as inputs for the network
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Model training/validation/testing
The proposed network was implemented using Keras 
framework and trained on Google Collaboratory. The net 
was trained on 451 images (as above-mentioned, divided 
proportionally into 80% training and 20% validation sub-
sets), using categorical cross-entropy loss function with 
ADAM optimizer for 200 epochs, with batch size of 16.

Model performance
On the testing subsets the segmentation performance 
was evaluated using: accuracy index, mean (averaged 
on the three classes) Intersection over Union coefficient 
(IoU) and Dice-score coefficient [25] Furthermore, two 
expert clinicians (F.G. and C.P.) for Test set 1 and one 
clinician (C.P.) for Test set 2 validated the segmentation 
results (network predictions) through visual inspection.

Results
The segmentation achieved by the proposed model 
showed a final training/validation accuracy and loss 
of 0.99/0.91 and 0.02/0.71, respectively, as reported in 
Fig. 3.

The total time to train/validate the model was less than 
120  min. The TLF segmentation network on a new test 
image could be performed approximately in real time 
(43  s to predict 87 images). Automated segmentation 
performance metrics yielded a mean IoU coefficient of 
0.82 and a Dice-score of 0.76. The prediction accuracy on 
the test subset was 0.94. Meanwhile, the values obtained 
from the Test set 2 were a mean IoU index and Dice-
score of 0.85 and 0.91, respectively.

Furthermore, the results were verified by the two medi-
cal experts in the field, and both confirmed the validity 
of the model estimation through visual inspection. Some 
examples of TLF segmentation, from different testing 
images, are depicted in Fig. 4.

The trained network can segment the thoracolumbar 
fascia with all its layers. Moreover, the fascia can be dis-
tinguished from the surrounding structures, such as from 
the epimysial fascia of the erector spinae muscles.

Discussion
In clinical practice, patients with LBP are studied through 
expensive clinical tests and imaging examinations (such 
as magnetic resonance imaging and computed tomog-
raphy), which not always provide detailed information 
about the fascial tissues. On the other hand, ultrasound 
is gaining more and more interest as a fascia evaluation 
tool. Since it provides an objective tool to investigate 
myofascial tissue in real time, segmentation of ultra-
sound images could be extremely useful during clinical 
practice to identify and quantify alterations simply and 
quickly, resulting in cost reduction. To date, there is not 

an objective tool in literature that allows automatically 
investigating this structure in real time.

In literature, we could find example of ultrasound 
structures segmentation such as lower limb, upper limb, 
and so on [11–13, 15–20]. In this work, we segmented 
the thoracolumbar fascia from ultrasound images 
acquired from low-back-pain subjects, to respond to 
a clinical need that aims to support the investigation of 
this structure in an automatic and rapid way to evaluate 
its implications in conditions of musculoskeletal disease. 
Indeed, given the multifactorial nature of back pain and 
the need for a multidisciplinary approach [3], this work 
aims to contribute to the management of back pain by 
offering a new perspective for its automatic and rapid, 
real-time computational analysis during clinical routine 
(e.g., thickness assessment, targeted physical therapy on 
the segmented layer, changes after treatments, to name a 
few).

In term of implementation, it has been shown that 
computational choices resulting from using: data prepro-
cessing steps such as normalization and resizing, dataset 
proportional splitting into subsets, the state-of-the-art 
U-Net model, a variant of the cross-entropy loss func-
tion, and the IoU/Dice-score as metrics, these are, in 
general, consolidated solutions to build up a tool for the 
segmentation of musculoskeletal structures from bioim-
aging [25].

In term of network, since the purpose of this study was 
to demonstrate the feasibility and potential of automatic 
TLF segmentation from low back subjects with a well-
known state-of-the-art solution (i.e., U-Net), we did not 
focus on comparing the performance of the used algo-
rithm with other state-of-the-art or recent artificial intel-
ligence algorithms, however this comparison could be 
done as a future improvement.

In term of dataset, in this specific scenario no data aug-
mentation was performed to avoid artificially increasing 
the sample size. Data augmentation operations such as 
affine transformation can be subject to unreliable rep-
resentation of fascial structures. In fact, to demonstrate 
the generalizability of the method, an additional test set 
was introduced (Test set 2) that varied center, operator, 
machine manufacturer, patient cohort, and protocol. 
Despite the scarcity of images, the performance indica-
tor results of Test set 2 (subjects without low-back pain) 
outperformed those of Test set 1 (subjects with LBP). 
This evidence opens the way for future studies (i.e., opti-
mized network) aimed at understanding these structures 
in more depth. Further research into reliable data aug-
mentation methods for fascial structures could be con-
ducted in the future to mitigate the risk of overfitting and 
improve its robustness in real-world settings. Moreover, 
the dataset collection (Test set 1) was performed from a 
group of patients suffering from LBP, randomly selected 
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during clinical practice and who showed high variabil-
ity in anthropometric parameters and pain character-
istics (i.e., pain level, disease duration and phenotype). 
This is a fundamental step, in fact, beyond the numerical 

values, the interpretation of the performance metrics 
should always be accompanied by an analysis of the ini-
tial dataset, since to be successful in clinical practice it 
should reflect the variability faced in the daily routine. 

Fig. 3  Training/Validation (a) accuracy and (b) loss from model
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Otherwise, the high-performance indicator values mis-
lead its clinical utility and success in case of anatomical 
variant. Moreover, limitations in failure cases, especially 
in the case of complex images of lower quality (e.g., due 
to noise), are crucial for clinical application, since seg-
mentation errors in critical areas can lead to misinter-
pretations. In the future, it will be possible to perform 
further simulations by adding a specific noise pattern 
to the test images. In term of validation, in the present 
study, the results showed promising metric indicators 
and clinical assessments from visual inspections. As a 
future work, quantitative evaluations or broader expert 
validation may be performed to increase reliability. For 
example, it is capable to identify the space between the 
TLF and the epymisial layer (identifying them as separate 
structures), and it is hypothesized that this interface is 
potentially one of the biomarkers of a proper layer glid-
ing. One option to improve the robustness of the results 
could be to additionally expand the sample size by intro-
ducing additional variability (e.g., patient with specific 
pathological conditions) to assess this biomarker.

Furthermore, we hypothesize that since the training 
dataset used static images, if the algorithm is applied to 

video sequences, as in clinical routine, the error is poten-
tially mitigated as the same structure is always analyzed 
in more than one frame.

The currently developed tool could offer an in-depth 
knowledge of fascia properties. Since fascia is acquiring 
a central role in the etiopathogenesis and treatment of 
musculoskeletal diseases (such as LBP), segmentation of 
the TLF could become an important task to understand 
its alterations and ultrasound patterns in patients with 
LBP. More specifically, an increase in fascial thickness 
has been associated with LBP and a reduction in fascial 
gliding between fascial surfaces resulted in patients with 
LBP compared to healthy subjects [1, 5, 21]. Therefore, 
additional post-processing steps may be performed in the 
future to quantify these properties.

Having precise data in terms of quantification of fas-
cial thickness with its variations could highlight the 
importance of establishing practical precision protocols 
in bioimaging assessments. Fascia segmentation could 
be integrated in ultrasound devices for the evaluation 
both in research and in clinical practice to evaluate a 
specific region of interest before/during/after treat-
ment and in follow-up, to direct medical intervention 

Fig. 4  Examples of TLF segmentation: (a) original images, (b) clinicians’ annotations VS (c) model outputs
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towards a treatment that is not only personalized but also 
site-specific.

Conclusions
Segmentation of the thoracolumbar fascia using ultra-
sound imaging has shown promising outcomes, using a 
standard 2D U-Net architecture. Furthermore, thanks to 
the correct variability captured in the dataset, this tool 
will allow these results to be expanded into clinical prac-
tice. The findings of the proposed approach could pave 
the path for a successful confirmation of the fascia’s role 
in various nonspecific muscular pains that currently face 
challenges in being objectively identified.
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LBP	� Low back pain
TLF	� Thoracolumbar fascia
IoU	� Intersection over union
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