Skip to main content

Table 3 ROC curve analysis for identifying IAC from MIA in convention group and VMIs group

From: An artificial intelligence algorithm for the detection of pulmonary ground-glass nodules on spectral detector CT: performance on virtual monochromatic images

  

AUC

95% CI

P value

Sensitivity

Specificity

Youden index

Cutoff value

DeLong test (vs. Convention)

Total mass

Convention

0.862

0.790–0.926

0.000

82.60%

75.00%

0.576

120.65

—

 

80

0.871

0.798–0.932

0.000

82.60%

77.30%

0.599

114.90

0.11

 

70

0.869

0.798–0.932

0.000

82.60%

79.50%

0.621

117.35

0.24

 

60

0.867

0.796–0.930

0.000

76.10%

84.10%

0.602

128.35

0.32

 

50

0.866

0.794–0.928

0.000

76.10%

81.80%

0.579

125.85

0.48

 

40

0.851

0.776–0.919

0.000

78.30%

77.30%

0.556

117.40

0.24

Total volume

 

Convention

0.823

0.736–0.899

0.000

69.60%

81.80%

0.514

359.12

—

 

80

0.846

0.766–0.917

0.000

82.60%

72.70%

0.553

276.45

0.01

 

70

0.842

0.759–0.914

0.000

82.60%

70.50%

0.531

263.84

0.03

 

60

0.843

0.760–0.914

0.000

71.70%

81.80%

0.535

322.91

0.02

 

50

0.837

0.752–0.910

0.000

71.70%

81.80%

0.535

325.48

0.13

 

40

0.807

0.719–0.888

0.000

71.70%

77.30%

0.49

312.16

0.23

  1. MIA Minimally invasive adenocarcinoma, IAC Invasive adenocarcinoma, VMIs Virtual monochromatic images, ROC Receiver operating characteristic, AUC Area under curve, CI Confidence interval