From: Segmentation for mammography classification utilizing deep convolutional neural network
Previous study | Dataset | Segmentation (Yes/No) | Purpose | Best method | AUC (score) |
---|---|---|---|---|---|
Garrucho et al. [39] | OPTIMAM | No | Detection | Defor-DETR | 0.948 |
Li et al. [31] | DDSM | No | Classification | TV-NN | 0.968 |
Al-masni et al. [32] | DDSM | No | Detection and Classification | CNN | 0.97 |
Ragab et al. [23] | DDSM | Yes | Detection | DCNN-SVM-AlexNet | 0.88 |
Salama et al. [24] | DDSM | Yes | Classification | InceptionV3 | 0.989 |
Khamparia et al. [38] | DDSM | Yes | Detection | Hybrid MVGG16Â ImageNet | 0.933 |
Das et al. [33] | INbreast | No | Detection | Xception | N\(\backslash\)A |
Saffari et al. [34] | INbreast | Yes | Classification | CNN | N\(\backslash\)A |
Hama et al. [35] | INbreast | Yes | Detection and Classification | DenseNet121 | N\(\backslash\)A |
Proposed Model | INbreast | Yes | Prediction and Classification | Pyramid Transformer | 0.998 |