Method | Architecture | ADNI test dataset | ||||
---|---|---|---|---|---|---|
ACC | SEN | SPE | F1 | AUC | ||
Only using 3D images | ||||||
3D Trans-ResNet [20] | 3D CNN + 2D Transformer | 0.9143 | 0.8431 | 0.9815 | 0.9053 | 0.9683 |
3D ResNet [21] | 3D CNN | 0.8095 | 0.7843 | 0.8333 | 0.8000 | 0.9187 |
3D Swin Transformer [22] | 3D Transformer | 0.8857 | 0.8431 | 0.9258 | 0.8776 | 0.9330 |
Only using 2D slices | ||||||
DE-ViT [23] | 2D Transformer | 0.9048 | 0.9412 | 0.9704 | 0.9057 | 0.9563 |
2D ResNet [24] | 2D CNN | 0.7905 | 0.8431 | 0.7407 | 0.7963 | 0.8228 |
3D images + 2D slices | ||||||
M3T [25] | 3D CNN + 2D CNN + 2D Transformer | 0.9616 | 0.9412 | 0.9815 | 0.9600 | 0.9899 |
MHAGuideNet (ours) | 3D CNN + 2D CNN + 2D Transformer | 0.9758 | 0.8863 | 0.9989 | 0.9398 | 0.9931 |