Skip to main content

Table 3 Segmentation results of different models

From: An ultrasound image segmentation method for thyroid nodules based on dual-path attention mechanism-enhanced UNet++

Model

F1_score

IoU

Accuracy

Precision

Recall

HD95

SGUNet [38]

0.7323

0.6298

0.9540

0.8522

0.7120

60.06

UNet [34]

0.7486

0.6507

0.9583

0.8184

0.7668

62.27

CMUNeXt [35]

0.7812

0.6908

0.9643

0.8194

0.8192

50.47

TransAttUNet [39]

0.7992

0.7054

0.9645

0.8374

0.8271

39.56

TRFE+ [4]

0.8003

0.7109

0.9663

0.8536

0.8172

40.44

DeepLabV3+ [36]

0.8058

0.7159

0.9681

0.8525

0.8208

36.50

TransUNet [37]

0.8067

0.7188

0.9667

0.8574

0.8161

37.73

DPAM-UNet++(ours)

0.8310

0.7451

0.9718

0.8443

0.8702

35.31