Skip to main content

Table 2 The optimized hyperparameters used for DL and ML techniques

From: Novel transfer learning based bone fracture detection using radiographic images

Model

Hyperparameter values

CNN

activation=’sigmoid’, optimizer=’adam’, loss=’binary_crossentropy’

MobLG-Net

weights = ’imagenet’, activation=’softmax’,

LGB

n_estimators=10, boosting_type=’gbdt’, max_depth=−1, num_leaves=31

KNN

n_neighbors=2, weights=’uniformn’, metric=’minkowski’, leaf_size=30, p=2

LR

penalty=’l2’, max_iter=100, solver=’lbfgs’, fit_intercept=True

RF

max_depth=300, criterion=’gini’, min_samples_split=2, n_estimators=300, random_state=0