Skip to main content

Table 5 The performance evaluation of applied ML techniques on features extracted using novel MobLG-Net

From: Novel transfer learning based bone fracture detection using radiographic images

Model

Accuracy

Target class

Precision

Recall

F1 Score

Support

KNN

0.98

fractured

0.97

0.99

0.98

892

non-fractured

0.99

0.97

0.98

881

Average

0.98

0.98

0.98

1773

LGB

0.99

fractured

0.99

0.99

0.99

892

non-fractured

0.99

0.99

0.99

881

Average

0.99

0.99

0.99

1773

LR

0.99

fractured

0.99

0.99

0.99

892

non-fractured

0.99

0.99

0.99

881

Average

0.99

0.99

0.99

1773

RF

0.98

fractured

0.98

0.98

0.98

892

non-fractured

0.98

0.98

0.98

881

Average

0.98

0.98

0.98

1773