From: AI-ready rectal cancer MR imaging: a workflow for tumor detection and segmentation
MR Imaging Characteristic | n (%) | |
---|---|---|
T2-weighted Images | 37 (100) | |
Manufacturer | General Electric | 24 (64.86) |
Siemens | 8 (21.62) | |
Philips | 5 (13.51) | |
Slice Thickness (mm) | 2.5 | 2 (5.41) |
3 | 34 (91.89) | |
3.5 | 1 (2.70) | |
Diffusion-weighted Images | 106 (100) | |
Manufacturer | General Electric | 70 (66.04) |
Siemens | 21 (19.81) | |
Philips | 15 (14.15) | |
Slice Thickness (mm) | 2.7 | 3 (2.83) |
3 | 81 (76.42) | |
4 | 3 (2.83) | |
4.2 | 3 (2.83) | |
5 | 11 (10.38) | |
7 | 3 (2.83) | |
8 | 2 (1.89) | |
Diffusion B-value | 0 | 34 (32.08%) |
50 | 29 (27.36) | |
100 | 2 (1.89) | |
400 | 3 (2.83) | |
600 | 1 (0.94) | |
800 | 24 (22.64) | |
1000 | 9 (8.49) | |
1400 | 4 (3.77) |