Skip to main content

Table 2 Confounder matrix for the four sets in the four models

From: CT-based delta-radiomics for predicting pathological response to neoadjuvant immunochemotherapy in esophageal squamous cell carcinoma: a multicenter study

Predicted results

Actual results

AUC(95% CIs)

Accuracy (%)

Specificity (%)

Sensitivity

(%)

 

pCR

Non-pCR

    

Clinical model

      

Training data set

  

0.758[0.658–0.858]

71.0

81.8

44.4

pCR

12

12

    

Non-pCR

15

54

    

Testing data set

  

0.615[0.427–0.804]

68.1

76.5

46.1

pCR

6

8

    

Non-pCR

7

26

    

Pretreatment radiomics model

      

Training data set

  

0.787[0.675-0.900]

75.2

77.3

70.4

pCR

19

15

    

Non-pCR

8

51

    

Testing data set

  

0.621 [0.436–0.806]

57.4

52.9

69.2

pCR

9

16

    

Non-pCR

4

18

    

Delta-radiomics model

      

Training data set

  

0.827[0.730–0.925]

74.2

68.2

88.9

pCR

24

21

    

Non-pCR

3

45

    

Testing data set

  

0.790[0.646–0.933]

72.3

70.6

76.9

pCR

10

10

    

Non-pCR

3

24

    

Mixed model

      

Training data set

  

0.847[0.766–0.928]

71.0

68.2

77.8

pCR

21

21

    

Non-pCR

6

45

    

Testing data set

  

0.719[0.567–0.872]

61.7

52.9

84.6

pCR

11

16

    

Non-pCR

2

18

    
  1. pCR, pathological complete response; AUC, area under the curve; CI, confidence interval