From: Artifact estimation network for MR images: effectiveness of batch normalization and dropout layers
Layer no. | Structure | Layer no. | Structure | Layer no. | Structure |
---|---|---|---|---|---|
1–1 | Conv 1 | 13 | Dropout 2 (0.5) | 24–2 | Conv 8 |
13 | Conv 1 | 13 | Upsampling 1 | 25 | Upsampling 4 |
2 | Max pooling 1 | 14 | Batch normalization1 | 26 | Batch normalization 4 |
3–1 | Conv 2 | 15 | Dropout 1 (0.5) | 27 | Dropout 4 (0.5) |
3–2 | Conv 2 | 16–1 | Conv 6 | 28–1 | Conv 9 |
4 | Max pooling 2 | 16–2 | Conv 6 | 28–2 | Conv 9 |
5–1 | Conv 3 | 17 | Upsampling 2 | 29 | Conv 10 |
5–2 | Conv 3 | 18 | Batch normalization 2 | 30 | Regression (output) |
6 | Max pooling 3 | 19 | Dropout 2(0.5) | Â | Â |
7–1 | Conv 4 | 20–1 | Conv 7 |  |  |
7–2 | Conv 4 | 20–2 | Conv 7 |  |  |
8 | Dropout 1 (0.5) | 21 | Upsampling 3 | Â | Â |
9 | Max pooling 4 | 22 | Batch normalization 3 | Â | Â |
10 | Conv 5 | 23 | Dropout 3 (0.5) | Â | Â |
11 | Conv 5 | 24–1 | Conv 8 |  |  |